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Carbon capture and storage (CCS) combined with CO2-enhanced oil recovery (EOR),

has been recently viewed as an economical and effective method for the reduction of

carbon emissions. However, corrosion is a challenging issue in the whole chain process

of CO2-EOR production if water presents and mild steel pipeline is used. In this paper,

the corrosion risk of pipeline at different stages of CO2-EOR production is systematically

assessed based on a detailed analysis of the fluid characteristics. According to the fluid

state of CO2, water and crude oil, current understandings on the corrosion behavior of

steel materials in multiphase flow conditions are reviewed. Furthermore, the intermittent

water wetting phenomena and the fluid behavior of water droplets or clusters in an

electrolyte/non-electrolyte emulsion are correlated with the steel corrosion performance,

providing new insights into the corrosion phenomena. Besides application of corrosion

resistant materials and corrosion inhibitors, tailoring of processing parameters, such as

enhancing the water entrainment, shortening the water contact time, and reducing the

solution corrosivity, is highly recommended as an effective method for corrosion control

in aggressive CO2-EOR production conditions. Based on these, some important future

research topics on the corrosion in multiphase fluids are suggested.

Keywords: CCS, CO2-EOR, multiphase flow corrosion, corrosion mechanism, pipeline

BACKGROUND

Our daily life is closely relied on the technological advancement of a carbon-based civilization. Over
eighty percent of the global energy consumption in 2015 is fossil fuels, i.e., coal (29.2%), crude oil
(32.9%), and natural gas (23.8%), from which a direct emission of about 36 billion tons of carbon
dioxide has become a great challenge in combating its possible environmental impacts. Carbon
Capture and Sequestration (CCS) is one of the most promising ways for reducing the buildup of
greenhouse gas emissions in the atmosphere.

Combined with CCS techniques, CO2 enhanced oil recovery (EOR) has proved to be currently
applicable in China for reducing CO2 emissions (Zhang et al., 2013; Lv et al., 2015). The CO2-EOR
technique may produce a net zero emission of CO2, as it can store carbon underground during oil
production. Therefore, the crude oil comes from CO2-EOR is generally termed as “carbon negative
oil” (Hornafius and Hornafius, 2015). A significant improvement of oil production can be observed
with CO2 injection into reservoirs compared to the conventional water injection production. In a
pilot scale CCS-EOR project in Shengli oilfield, the improved efficiency of crude oil is around 8%
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and the dynamic ratio of carbon storage in reservoir conditions is
around 50% (Lv et al., 2015). It provides a green and economical
way to improve oil production in an old oilfield.

However, corrosion is a big concern in operating a CO2-
EOR project, as CO2 becomes corrosive to steel-based facilities
when it meets water. For example, in the CO2-EOR production
section of Shengli oilfield, the presence of a large amount of CO2

in the production fluids has resulted in an abrupt increase of
pipeline leakages within the initial 3 years after the injection of
CO2 into reservoirs (Wang et al., 2015), revealing an averaged
corrosion rate of pipeline materials higher than 1.0 mm/y
(Zhang J. et al., 2012; Wang Z. M. et al., 2014). According
to the field experience from Chevron, the coated tubes can
only service for 50 months in CO2-injection well conditions
(IEAGHG, 2010). Similar damage induced by the presence of
high partial pressure of CO2 has also been reported in other
CO2-EOR projects (Tzimas et al., 2005; Singh et al., 2010). The
corrosion performance of different materials in CO2-containing
aqueous solutions has been systematically investigated, and
some strategies on corrosion control in CCS and CO2-EOR
production have been suggested based on field experiences
(Sim et al., 2014b; Wang et al., 2015). The use of corrosion-
resistant alloys (CRA) and corrosion inhibitors is regarded as
two of the important ways to mitigate corrosion in aggressive
CO2 conditions (IEAGHG, 2010). However, in operating a
large-scale CO2-EOR project, corrosion management should be
systematically considered at the design and operation stages,
which could significantly minimize the cost. Therefore, the
corrosion risk of pipeline materials should be carefully evaluated.
In this paper, we summarize the current views on corrosion
evaluation and control of the CO2-containing multiphase flow
pipelines in CCS-EOR production, based on which some ideas on
corrosion management in the whole chain process of a CCS-EOR
project are discussed.

FIELD ANALYSIS

Whole Chain Process
There has been a long history of the trial application of CO2-EOR
technique in oil and gas industry. However, the combination
of this technique with CCS was recently adopted. As illustrated
in Figure 1, the whole chain can be divided into carbon
capture, CO2 transportation, CO2 injection, and oil production,
during which a great portion of CO2 are permanently stored
underground and the other is reutilized in the recycling process.
In this whole chain process, CO2 can be viewed as a feedstock
and crude oil is the product. When the net emission of CO2 is
less than zero, i.e., the amount of CO2 stored underground is
larger than that produced after burning the CO2-EOR crude oil,
the crude oil will become “carbon negative.”

Currently, corrosion is one of the big concerns for wide
application of the CCS-EOR technique, as water may be acidified
in a CO2-containing environment. The presence of crude
oil could vastly change the corrosion performance of steel
materials, implying that the fluid structure may significantly
affect corrosion. Therefore, the state of water and the fluid
properties will be highlighted in this paper.

FIGURE 1 | Whole chain process of a CCS-EOR project.

Fluid Properties
Pressure and Temperature
Pressure and temperature are two important parameters that
determine the properties of the CO2-containing fluids, including
the state of CO2 phase, solubility, and pH-values, as well as the
properties of crude oils. The diagram of pressure and temperature
of CO2 phase is illustrated in Figure 2, where pressure refers to
the partial pressure of CO2. A transitional point at 7.31 MPa
and 31.06◦C is indicated and the liquid phase, supercritical phase
and gas phase of CO2 are separated by black lines, as labeled
in Figure 2.

CO2 can be transported in different states, but a single-phase
state is preferred in pipeline for a security reason. Generally, a
supercritical phase or a gas phase is selected, since it needs less
energy for long-distance transportation. In some cases, CO2 is
liquefied to a small volume and transported by tanks. Liquid
CO2 may also be encountered when CO2 is transported in a
supercritical state, as the failure of the heat-resistant coatings
on the outside surface of a pipeline may result in a decrease of
temperature below the critical point. Generally, the pressure of
CO2 transportation pipeline is in a range from 5 to 20 MPa. A
high pressure can increase the efficiency of transportation. The
temperature may vary in a wide range from below 20◦C up to
50◦C, depending on the heating or cooling conditions.

CO2 injection may need a pressure higher than 10 MPa at
wellhead and the pressure will be further increased with depth
from wellhead. As reported in a previous paper (Wang and Song,
2018), at a depth of 3,000m, the pressure can be higher than
35 MPa, which is certainly determined by the injection rate
and the pressure at wellhead. Temperature is closely relied on
the depth profile of the ground temperature. According to the
field experience in Shengli oilfield, a supercritical state could be
kept during continuous injection deeper than 700m if CO2 was
initially injected in a liquid state. A higher injection rate will push
the transitional point to a deeper site in well conditions. The
ranges of temperature and pressure of CO2 fluid in a typical well
are schematically shown in Figure 2.

In an oil production well, the distributions of pressure and
temperature are dependent on well depth. At the wellbore,
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FIGURE 2 | Pressure and temperature diagram in the whole chain process of a CO2-EOR project.

temperature and pressure reach their highest values, where CO2

may be in a supercritical or gas state. As flowing from the
well bottom to wellhead, both of the pressure and temperature
of the fluids gradually decrease. In some cases, temperature
may decrease below 30◦C at wellhead and pressure below 1.0
MPa. The fluid must be heated and pressurized in the following
transportation process. Different from a CO2 injection well, the
fluid in an oil production well is generally a complex mixture of
oil, water and gas. In CO2-EOR production, the content of CO2

in gas phase can be as high as 70% in volume (Wang et al., 2015).
The oil gathering and transportation system is generally

operated at a pressure from 0.3 to 2.0 MPa, relatively low
compared to the pressure in well conditions. Its temperature is
generally lower than 60◦C, but for some highly viscous crude oil
it may reach 80◦C for obtaining a good fluidity. Therefore, the
CO2-containing aqueous phase in oil transportation pipeline is
usually less corrosive than that in oil production well. It is obvious
that the flow pattern in a horizontal pipe or a slightly inclined
pipe for crude oil transportation is generally different from that
in a vertical well tube.

CO2 Phase
In CO2 transportation and injection, the state of CO2 phase
is determined by its pressure and temperature. As shown
in Figure 2, the supercritical state of CO2 may be widely
encountered in the CO2 transportation, injection, and oil
production processes. Depending on the technology of carbon
capture and the resource of CO2, trace amounts of impurity
gases may remain in the CO2 after purification. These impurities

generally include water, O2, SOx, NOx, and H2S. Water
is the most common impurity compound in CO2 during
transportation and injection, whose concentration limit is
recommended to be <500 ppm. Although these impurities are
generally controlled at a very low level, they may affect steel
corrosion in water-containing supercritical (SC) CO2 conditions.

In the oil production and transportation stages, CO2 gas
is mixed with natural gas at a fraction around 30∼70 vol.%,
according to the CO2-EOR production in Sinopec Shengli oilfield
(Wang et al., 2015). At the initial stage of injection, the fraction
of CO2 is similar to that of the conventional oil production, as
CO2 has not migrated to the production well. After continuous
injection for months, a sharp increase of the fraction of CO2 can
be observed, finally reaching a value around 50∼70% in volume
fraction. In this case, besides acidifying the aqueous phase, the
large volume of CO2 gas may also affect the flow patterns.

Water Phase
During CCS and EOR production, water is saturated with CO2

forming carbonic acid. The pH-value of the aqueous solution is
depending on the partial pressure of CO2 and the temperature, as
well as the salinity of solution (Nesic, 2007); a linear relationship
can be observed between pH-value and CO2 pressure. It should
be noticed that the diffusion coefficient of CO2 in water is
around 10−8 m2/s in stagnant conditions, according to which
it needs several to tens of minutes to diffuse through the bulk
solution layer (Grogan et al., 1988; Farajzadeh et al., 2009).
However, in a multiphase flow condition the saturation of CO2

in water can be greatly accelerated owing to the well-known
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migration mechanism. It should be noticed that CO2 corrosion is
generally controlled by cathodic reactions, where different kinds
of ionic species (such as H+, HCO−

3 , and even H2CO3) would
be participated in the reduction process depending on pH-values
(Nesic, 2007). The formation of corrosion product layer mainly
relies on the local solution chemistry at the vicinity near the
steel surface where the concentrations of ferrous ion and CO2−

3
are above the solubility limit of FeCO3 for precipitation (Nesic
et al., 2004; Ingham et al., 2012; Bian et al., 2015). In turn,
the formation of FeCO3 layer will retard the anodic reaction
depending on its morphology and protectiveness (Barker et al.,
2018). The presence of a trace amount of S2− (Yang et al., 2017)
and Ac− (Amri et al., 2010) ions in aqueous phase can change the
formation and the stability of FeCO3 layers.

Crude Oil
Crude oil is a complexmixture of hydrocarbons and it is generally
categorized into three types according to its density. A heavy
crude oil has an American Petroleum Institute (API) gravity
lower than 20, a medium crude oil has an intermediate API
gravity of 20–34, while a light crude oil has an API gravity higher
than 34. The API gravity is a factor inversely proportional to the
density of crude oil. It is generally accepted that heavier oils are
more protective than lighter ones with regard to corrosion (De
Waard et al., 2003). Another way to classify crude oils is based
on the proportions of the organic compounds (Sokolova et al.,
1992), such as paraffin, aromatic compounds, and naphthenic
compounds. These compounds may have a profound effect on
the wettability of crude oil and the chemistry of brine solutions
(Efird et al., 2004), thus affecting pipeline corrosion.

The presence of CO2 may change the properties of crude
oil. The solubility of CO2 in a crude oil is generally many
times higher than that in water (Rostami et al., 2017). The
incorporation of CO2 may induce a volume expansion of crude
oil (Yang et al., 2013). The viscosity of crude oil vastly decreases
with increasing pressure, as more CO2 and natural gas can be
dissolved into crude oil (Freitag, 2018). A beneficial effect of
low viscosity has been reported in multiphase flow loop tests
(Kanwar, 1994; Jepson andMenezes, 1995) and recently observed
in an oil/water alternate wetted condition (Wang et al., 2019a).
These observations are particularly interesting for corrosion
evaluation under well conditions where the oil viscosity may be
vastly changed with temperature and pressure. One should also
notice that a lower viscosity may lead to an easier separation of
oil and water and it is harmful for the corrosion mitigation in
water-in-oil (w/o) emulsions or dispersions.

Solid Particle and Scale Deposition
Besides the oil, water and gas phases, solid particles may
also be presented in CO2-EOR production fluids. The solid
phase may come from the reservoir and the precipitation of
scales due to variation of brine chemistry. Generally, extremely
large (>1mm) solid particles are rarely observed in the oil
and water transportation systems, as a number of filters are
equipped on pipeline ahead of a pump. However, in the well
conditions or the deep-sea pipeline, where the removal of sand
becomes economically unacceptable, erosion corrosion may be

encountered (Pouraria et al., 2016). The precipitation of scales
on a pipeline surface can be encountered in CO2-containing
fluids, especially in a water treatment system, where the CO2

partial pressure and pH-value have greatly changed, breaking the
balance of brine chemistry. This would produce an under-deposit
corrosion problem.

Corrosion Risk Analysis
CO2 Transportation and Injection
Corrosion can only occur when CO2 meets water. Therefore,
the concentration of water in CO2 during transportation
and injection is generally controlled below a critical value.
There are several recommendations according to successful
project experiences, as summarized in Table 1. For example, a
recommended value of H2O in dense phase CO2 was 500 ppm
in the DYNAMIS project (de Visser et al., 2008). Below this
concentration, it was believed that corrosion would not be a
problem during CO2 transportation and injection conditions
(Cole et al., 2011; Sandana et al., 2012; Jacobson, 2014). However,
in case of CO2 and water being alternately injected into reservoirs
to reduce CO2 migration, the well tubes may suffer from serious
corrosion damage (IEAGHG, 2010). Occasional ingress of water
into the transportation pipeline may also induce corrosion.

Another possibility of water ingress is originated from the
diffusion of water after injection stops. Theoretically, this takes
a few months to form a water saturated CO2 phase in the well
tube usually within a length of several and tens of meters from
wellbore, since the diffusion of water in stagnant CO2 is relatively
slow. However, in a long-term sealed well, corrosion induced
by water diffusion from the reservoirs must be considered.
Even though cement sealing outside the casing pipe is generally
believed to be a robust protective layer, it should be borne inmind
that CO2 is actually very corrosive to cement, which has not been
widely realized in engineering. After long-term carbonation, the
originally protective cement layer might have failed much earlier
than expected (Kutchko et al., 2007; Carpenter et al., 2011).

TABLE 1 | Practical recommendation of water concentrations in CO2

transportation.

Project name Operation conditions Recommended water

level

Weyburn (Race et al., 2012;

Barker et al., 2017)

18.6 and 20.4 MPa 20 ppm

DYNAMIS (de Visser et al.,

2008)

Worst case 4◦C, 4.0 MPa 500 ppm

Central Basin (Oosterkamp

and Ramsen, 2008; Race

et al., 2012)

15.1–17.2 MPa 257 ppmw

Sheep Mountain

(Oosterkamp and Ramsen,

2008)

Critical 1.7◦C, 8.27 MPa 129 ppmw

Snøhvit (Oosterkamp and

Ramsen, 2008; Race et al.,

2012)

15 MPa, 25◦C 50 ppm

Shengli EOR 15◦C, 10 MPa ∼200 ppm
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There are many reported damage cases of CO2 transportation
pipelines and injection well tubes induced by corrosion.
According to the CO2-EOR projects in the United States
since 1970s, aggressive corrosion damage has been observed in
CO2 injection wells in a water-alternate-gas (WAG) injection
condition, although corrosion resistant alloys and liners were
adopted for corrosion protection (IEAGHG, 2010). For CO2

transportation pipelines, corrosion induced damage at the
pipeline bottom has also been encountered in the practical
operation in east China, owing to the accumulation of the
remaining water in CO2 phase.

Oil Production Well
The produced fluid is complex and its corrosiveness is
determined by many factors, such as the fraction of CO2, pH-
value, states of oil, water content and water chemistry. Different
from conventional oil production, the well fluid contains a large
fraction of CO2 in CO2-EOR production. As estimated from
a previous reference (Choi and Nešić, 2011), the pH-value at
wellbore condition can be as low as 3.0. A greater depth of
the well tube can result in a higher partial pressure of CO2,
which indicates a higher corrosion risk at deeper sites. It should
also be noticed that the gas-to-liquid ratio becomes extremely
high once a large amount of CO2 gas is presented in the well
tube. It has been reported that the gas-to-liquid ratio could be
as high as several hundreds (Wang et al., 2015). Therefore, a
highly stirred oil-water-gas three phase flow is a predominant
feature of the CO2-EOR production fluid. A complete mixture
of oil and water may reduce the corrosion risk of well tubes
(Cai et al., 2012; Wang et al., 2015), owing to the inhibition
effect of crude oil on corrosion. As stated above, the viscosity
reduction in oil well conditions may also reduce the corrosion
risk of well tubes. Moreover, the accumulation of corrosion
released ferrous ion in well tube may in return affect corrosion
of steel materials (Bian et al., 2015), through formation of a
protective iron carbonate layer. All these make the corrosion
process extremely complicated.

Oil Gathering and Transportation
The produced fluid is subsequently transported by pipelines
to a treatment station for separation. Different from the well
condition, the transportation pipeline is generally in a horizontal
or inclined direction. Its corrosion risk is highly dependent on
the mixing state of oil and water, which is determined by the flow
parameters (Sarica and Zhang, 2008; Kee et al., 2014), such as the
flow rate, fraction and fluidity of different phases and the pressure
and temperature of the system. The settlement of free water at
the bottom of pipeline can initiate corrosion (Jiang and Cheng,
2013; Wang Z. L. et al., 2014). A large gas-to-liquid ratio will
further complicate the mixing state of oil, water, and gas (Wang
et al., 2015), which can also result in a significantly increased
actual flow velocity of the liquid phase. On one hand, this may
lead to flow-accelerated corrosion if water cannot be completely
entrained into the oil phase or erosion-corrosion damage when
solid particles are involved in the transportation. On the other
hand, a mixture of oil and water may reduce the corrosion at the

pipeline bottom, as the water phase may be highly dispersed and
thus continuous water wetting of the steel surface is avoided.

Water Treatment
CO2 cannot be completely removed from water phase after
separation of the produced fluid at the treatment station. The
partial pressure of CO2 may be reduced significantly from ∼1.0
MPa or higher to <0.2 MPa, and the dissolved CO2 gas may
evolve from the aqueous phase. However, the left fluid remains
corrosive to mild steel. Without the presence of crude oil, the
CO2 containing aqueous fluid can become even more aggressive
to steel. It can also be less corrosive as the transportation
temperature and pressure are lower than the oil production and
transportation systems.

In some cases, alkaline solution may be introduced to
neutralize the CO2 containing solution, further reducing its
corrosiveness. However, neutralization of the CO2 containing
fluid may induce a scaling problem, owing to the presence of
Ca2+ and Mg2+ ions. Generally, these scale forming cations
are dissolved from the reservoir rocks in CO2-EOR conditions.
Once the salt scale is formed and attached on the inner surface
of pipeline, under-deposit corrosion and crevice corrosion will
occur, leading to localized corrosion damage of the pipeline
in CO2-containing environments (Zhang et al., 2016). A
complicated corrosion product layer may be formed owing
to the incorporation of Ca2+ and Mg2+ cations, which may
have improved protectiveness or increased pitting susceptibility
(Esmaeely et al., 2013; Tavares et al., 2015). Recently, Shamsa et al.
(2019) identified the corrosion products on X65 carbon steel as
FexCayCO3 in the presence of Ca

2+ cations. The stoichiometry of
FexCayCO3 could vary with immersion time. They also pointed
out that incorporation of the Ca2+ cations in the corrosion
product layer may lead to severe localized corrosion damage at a
low temperature relevant to oil production (generally below 80◦C
in the gathering and transportation system).

MULTIPHASE FLOW CORROSION

Single-Phase CO2
In the temperature range of oil production, completely dry CO2

is not corrosive to steel. Direct carbonation of steel materials by
CO2 can only occur at a high temperature (Cao et al., 2012).
As mentioned above, CO2 is generally transported and injected
into wells in a dense phase state, for example, the supercritical
state. The presence of a trace amount of water in the dense
phase CO2 is the origin of corrosion; the formation of CO2

saturated water layer on steel surface triggers corrosion. In this
case, corrosion will be very slight, since this water layer can
quickly become saturated with ferrous ion and an iron carbonate
layer can be easily formed on the steel surface. The variation of
local temperature and pressure is believed to be the primary cause
of forming droplets or a water layer on steel surfaces (Choi and
Nešić, 2011), just like that in a wet natural gas pipeline. However,
CO2 fluids can have a very high density, vastly different from
natural gas. As seen from Figure 3, the density of CO2 can be
higher than 800 kg/m3 in a certain depth in the injection well.
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FIGURE 3 | Distribution of density and velocity of CO2 fluid as a function of well depth at different injection flow rates, which was calculated based on the field

condition of an injection well in Shengli oilfield, where the injection temperature and pressure of CO2 fluid at wellhead were −20◦C and 10 MPa, respectively (Wang

and Song, 2018).

Therefore, in a flow condition, such a dense-phase CO2 may
behave more like an oil phase rather than a natural gas phase.

Recently, it was found that the corrosion morphology was
highly relied on the flow rate and the degree of water saturation
(Liu et al., 2018); a higher flow rate and a higher degree of
water saturation produced larger corrosion product particles
and patches, implying a possible corrosion mechanism related
to the direct bombardment of water droplets on steel surfaces
and these droplets are likely entrained in the dense CO2 phase,
rather than directly nucleated on steel surfaces. In SC CO2

fluids, the entrainment of these water-rich clusters (or droplets)
is possible and the presence of such water-rich heterogeneities in
wet SC CO2 has been identified by near-infrared spectroscopy
(Wang et al., 2013) and radial distribution function method
(Glezakou et al., 2010). Above the solubility limit of water in
SC CO2, the water-CO2 mixture may form stable water-in-SC
CO2 micro-emulsions (Lee et al., 1999). Below the saturation
limit, the formation of a weak Lewis acid-base H2O:CO2 complex
(Thanthiriwatte et al., 2012; Wang et al., 2013) has been reported
in SC CO2 media. As illustrated in Figure 3, depending on the
flow rate in transportation and injection, the velocity of a CO2

fluid can be in a wide range from <0.1 to 0.5 m/s or higher.
Obviously, decreasing the velocity of CO2 can reduce the impact
of water droplets on steel surface, thus reducing the corrosion
risk (Bian et al., 2015). Therefore, to get a high transportation
efficiency, pressurizing the CO2 fluid is better than improving its
flow velocity from a corrosion view.

Besides the influence of flow rate and water concentration, it
has been reported that some impurity gases may also significantly
change the corrosion morphology and increase the corrosion
rate. To date, the corrosion performance of steel in presence
of trace amounts of O2 (Xiang et al., 2013; Hua et al., 2014b),
SOx, NOx (Ayello et al., 2010; Dugstad et al., 2013a), H2S

(Choi et al., 2015; Sun et al., 2016b), and their mixtures (Choi
et al., 2010; Dugstad et al., 2013b; Ruhl and Kranzmann, 2013;
Xiang et al., 2013) have been extensively investigated. The results
show that these impurity gases may greatly change the water
limit for triggering corrosion, as they exacerbates corrosion by
influencing corrosion products and participating in corrosion
processes. However, it should be noticed that the presence of
impuritiesmay also change the stability of the water-CO2 mixture
in a supercritical state (Mohitpour et al., 2012). Visualization
tests should be conducted to further explore the initial corrosion
and water settlement in SC CO2 environments. This may finally
lead to a better management of the corrosion risk in CO2

transportation and injection pipelines.

Water-CO2 Slugs
Although CO2 is dried prior to transportation, water ingress
may happen in some occasional conditions. It has been reported
that the corrosion rate of mild steel in a dense-phase CO2-
water flowing conditions can be as high as several to tens of
mm/y depending on their fluid parameters (Dugstad et al., 2011a;
Barker et al., 2017), because the aqueous solution was saturated
with high pressure CO2. There are many experimental results on
the corrosion rates and corrosion morphologies of steel materials
in high-pressure CO2 environments (Cui et al., 2006; Cao et al.,
2012; Zhang Y. et al., 2012; Hua et al., 2015), from which it can
be deduced that the steel materials suffer from severe corrosion
attack and the flow can vastly accelerate corrosion (Dugstad et al.,
2011a; Wei et al., 2018) in the presence of a bulk volume of water
during the transportation of dense-phase CO2.

In practice, CO2 and water may also be alternatively injected
into wells (Rogers and Grigg, 2001; Lv et al., 2015; Dang et al.,
2016). For example, in Shengli oilfield, the water alternating gas
(WAG) injection technique is planned to be adopted after a
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further verification in the pilot-scale CO2-EOR project (Lv et al.,
2015). ThisWAG injection process can to some extent retard gas-
migration under reservoir conditions (Dugstad et al., 2011b). By
adjusting the WAG ratio, a maximum ratio of the oil production
to CO2 injection could be reached (Dai et al., 2014). However,
the alternating exposure of the pipe inner wall to water and
CO2 fluids can result in severe corrosion damage. According to
field experiences, the water phase may linger for a long time
in crevices or dead spots after dry conditions were restored
(IEAGHG, 2010), leading to a corrosion problem in aggressive
well environments. Temperature and pressure are believed to be
the critical factors in corrosion (De Waard et al., 1991), since
they directly determine the solubility of water in CO2 and the
pH-value of the water layer (Choi and Nešić, 2011). During the
WAG injection process, corrosion occurs when the CO2 slug
begins to drive down the previous water slug, leaving a water
layer on the pipe inner wall being acidified by flowing CO2.
Recently, Wang and Song theoretically evaluated the corrosion
risk of steel materials in such WAG conditions by assuming
that the steel surfaces were periodically exposed to the wet/dry
cycles in CO2 fluids and the corrosion was dependent on the
dissolution of CO2 in the water layer (Wang and Song, 2018).
In their simulation work, the time of forming a CO2 saturated
water layer was simiply determined by the diffusion rate of CO2

through the layer, which was assumed to be very fast and genrally
less than several minutes (Grogan et al., 1988; Farajzadeh et al.,
2009), having little influence on the overall corrosion performace.
Therefore, the long-term corrosion behavior relied on the time
for drying the steel surface by flowing “dry” CO2, and the
amount of water absorbed by the “dry” CO2 fluid was critical for
determing corrosion risk, where the “dry” CO2 meant that the
water concentration in CO2 phase was far below its saturation
limit, a shorter drying time meant a less exposure of steel
surface to the CO2 saturated corrosive water, and corrosion was
supposed to cease when the water layer was completely absorbed
into the CO2 fluid. In this way, they concluded that the alternate
period determined the long-term corrosion performance. The
injection rate of CO2 fluid is another critical factor influencing
the distributions of temperature and pressure in well (Lindeberg,
2011; Ruan et al., 2013) and it also affects the drying time of the
water layer along the pipe internal wall.

Oil-Water Mixtures
The presence of crude oil may reduce the corrosion risk of CO2-
EOR pipelines. The corrosion performance of pipeline may be
influenced by crude oil’s physical properties, such as its density
(Lotz et al., 1991; DeWaard et al., 2003; Papavinasam et al., 2007),
viscosity (Kanwar, 1994; Jepson andMenezes, 1995; Papavinasam
et al., 2007), conductivity (Craig, 1998), and wettability (Craig,
1996; Smart, 2001; Efird et al., 2004). Recently, Wang and Zhang
(2016) summarized four different mechanisms for the inhibition
effect of crude oil on corrosion: (1) water entrainment, (2) crude
oil wetting, (3) soluble chemical partitioning, and (4) corrosion
product layer modification. De Waard et al. (2003) found that
heavy oil was less corrosive than light one in an oil-water two-
phase flow condition, which could be attributed to the formation
of w/o dispersions (Xu, 2007). A simple notion for corrosion

risk analysis has been proposed based on the assumption that
corrosion would occur only when free water was separated from
w/o emulsion during transportation (Wang Z. L. et al., 2014).
At some extremely high water cuts, w/o emulsion can also be
formed. For example, the experimentally measured emulsion
inversion point (EIP) is generally reported to be as high as 70
wt.% (Fingas and Fieldhouse, 2004; Wang Z. L. et al., 2014),
which means that a w/o emulsion can be formed at a relatively
high water cut under sufficiently stirred conditions. Free water
will be separated within a very short period from a w/o dispersed
fluid when the flow is slower than a critical velocity (Xu, 2007). In
practical oil production, it is hard to completely emulsify the oil-
brine mixtures with a very high water concentration. Generally,
a w/o emulsion containing <30 wt.% water is relatively stable
under flow conditions (Fingas and Fieldhouse, 2004).

The occurrence of corrosion may be related to the droplet
behavior in a w/o emulsion or dispersion, and the droplets
may grow to larger ones during transportation, leading to the
settlement on pipeline bottom. According to Stokes equation, the
settlement rate (V t) of water droplets in a w/o emulsion can be
expressed as (Frising et al., 2006),

Vt =
d2t g(ρw − ρ0)

18µ
(1)

where dt is the mean diameter of droplets at a test condition, g
is the gravitational acceleration, ρw and ρo are the densities of
water and oil phases, and µ is the viscosity of oil-water mixtures.
It is clear that a larger water droplet is easier to settle down in
a lighter oil-water mixture. It should also be noticed that the
formation of a stable emulsion may significantly increase the
fluid viscosity (Xu, 2007; Wang Z. L. et al., 2014), thus retarding
the settlement of water droplets. In practical uses, the theoretical
analysis must be verified by the stability of emulsion samples in
field conditions. Recently, Paolinelli et al. (2018) examined the
correlation of water droplet size distribution with different fluid
parameters (flow rate, pressure drop, oil types, and fraction of
water) after a globe valve on a pipe flow loop and compared
with theoretical analysis, and gave some reasonable hints for the
control of water droplets in flow conditions. In this way, before
the settlement of water droplets or the formation of water layer
at pipeline bottom, corrosion could be totally retarded during
the long-distance transportation of oil-water emulsion and a fast
transportation could shorten the time fromwellhead to treatment
station (Wang Z. L. et al., 2014), beneficial for reducing the
corrosion risk.

At a higher water cut, where total entrainment of water
droplets becomes impossible, the steel surface will be
intermittently wetted by water. Flow loop tests indicated
that the corrosion rate was retarded under intermittent water
wetting conditions compared to continuous water wetting
(Li et al., 2006). In a flow condition, the intermittent wetting
behavior closely depends on the flow pattern characteristics
(Nesic and Carroll, 2003). Several studies have demonstrated
that with increasing flow rate, the steel surface can be changed
from continuous water wetting to intermittent wetting or even
continuous oil wetting (Nesic and Carroll, 2003; Cai et al., 2012),
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hence reducing the corrosion risk at the pipeline bottom. The
intermittent wetting by oil and water at steel surface has been
verified by various sensors in flow loop tests (Fordham et al.,
1999; Zong et al., 2010; Luo et al., 2017). Efforts have been
made to monitor the wetting and corrosion phenomena by
electrochemical noise method in oil-water mixtures (Bouazaze
et al., 2005). However, the electrochemical noise signals are
much complicated. A quantitative and controllable method
is urgently needed for analyzing the dynamic wetting and
corrosion phenomena in one test. To further reveal the corrosion
phenomena in oil-water intermittent conditions, Wang et al.
(2019a) recently proposed an “alternate wetting cell” to record
the current signals under anodic polarization with a rotating
electrode. With a controllable movement of the oil/water
interface relative to electrode, it can simplify the intermittent
flow pattern as the alternate wetting of the electrode surface
by oil and water, as illustrated in Figure 4. The actual wetting
state could be presented as a series of oil and water slugs (see
Figure 4A). Interestingly, there is a delay in the actual oil wetting
time (tao) and the actual water wetting time (taw), which can be
confirmed by the anodic current peaks in Figure 4B. The height
and width of the current peaks could reflect the corrosion and
water wetting on the electrode surface, respectively. Their results
indicate that a slow flow and a short alternate period can generate
high corrosion mitigation efficiency. The “alternate wetting cell”
method provides a possible way to describe the correlation
between corrosion and wetting under a controllable manner and
a new insight into the corrosion phenomena in a complicated
system. It can be used for the evaluation of corrosion inhibitors
in an oil-water system (Wang et al., 2019b).

The covering effect of crude oil at the steel surface is widely
accepted as the origin for corrosion inhibition. However, a thin
layer of crude oil at the steel surface is unstable to prevent
corrosion for a long time. For example, Wang Z. L. et al. (2014)
observed that a crude oil layer could only persist for about
15min on a vertically placed steel surface in a stagnant condition.
The heterogeneous adsorption of crude oil on steel surface may
induce localized corrosion (Sun et al., 2016a). The degree of
localized corrosion may be vastly different from the averaged
corrosion rate in oil-brine mixed conditions (Choi et al., 1989;

Sun et al., 2016a), but this phenomenon and its mechanisms have
not been clearly addressed. Some soluble organic compounds in
crude oil can also decisively reduce the corrosion rate in amanner
like corrosion inhibitors (Efird and Jasinski, 1989; Castillo et al.,
2000; Ayello et al., 2013) and they may produce a possible hybrid
effect on corrosion products (Mendez et al., 2001; Yang et al.,
2014; Taleb et al., 2017).

Oil-Water-Gas/Solid Flow
The multiphase fluids are commonly encountered in CO2-
EOR production, in which a large fraction of CO2 in the gas
phase is involved. Previous efforts were mainly focused on the
relationship between corrosion and the flow characteristics of
a gas-liquid two-phase flow. Although very limited number of
studies have been focused on the corrosion phenomena in CO2-
EOR multiphase flow conditions, the results regarding corrosion
in conventional oil production can be employed for reference.
For instance, in a slug flow, the corrosion risk of pipelines can be
closely related to the superficial gas velocity (Maley, 1997; Kang
et al., 1999), slug frequency (Kang et al., 1996; Maley, 1997; Wang
et al., 2015), and Froude number (Kang et al., 1996; Chen and
Jepson, 1999). Generally, direct visualization is used to determine
the flow patterns. Other methods are also widely accepted, for
examples, pressure drop (Sotgia et al., 2008), wetting behavior
(Cai et al., 2012), and phase density distribution (Hoffmann
and Johnson, 2011). Currently, many research institutes have
developed multiphase flow loops for corrosion tests (Kouba and
Jepson, 1990; Nyborg, 1998; Li et al., 2006; Zheng et al., 2008;
Wang et al., 2015). Based on the flow loop tests, the relationship
between corrosion and flow characteristics has been built. It was
found that a higher slug frequency may increase the corrosion
rate of pipelines, owing to a sharp increase in the local wall shear
stress (Yang et al., 2010), which was viewed as an important
parameter in corrosion (Wang et al., 2002; Zheng et al., 2008).
A higher shear stress may enhance the local corrosion kinetics
or damage the corrosion products (Schmitt et al., 2000; Li et al.,
2016). It was also observed that a higher gas flow rate could
reduce the pressure drop and lower the frequency of liquid slugs
at a constant liquid velocity (Kang et al., 1999; Villarreal et al.,
2006; Wang et al., 2015), thus reducing the corrosion risk.

FIGURE 4 | (A) Simplification of intermittent flow pattern as an “alternate slug model” and (B) the anodic current transient detected on a rotating disk electrode

alternately wetted by oil and water by the “alternate wetting cell” test method (Wang et al., 2019a). In (A), tw is the time of water slug passing though the test point,

tw/o is the time of water-replacing-oil, and to/w is the time of oil-replacing-water. In (B), the rotation is 600 rpm, the alternate period is 7.4 s for the current response

and the applied anodic potential is +100mV vs. open circuit potential.
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In conducting a flow loop experiment, oil and water may be
emulsified during a long-term cyclic test if crude oil was used.
The heavier the crude oil is, the easier it can be emulsified. At a
fixed pump input fraction of oil and water, the entrainment of
water in oil phase may increase the actual water fraction of input
fluids. It has been reported that a significantly large amount of
water can be entrained into the crude oil phase after 3 days of the
cycle test in a closed flow loop (Wang and Zhang, 2016). No free
water can be separated from the oil-water mixture within a short
period after the cyclic test. Emulsification is the main reason for
the use of white oil, instead of crude oil, in most multiphase flow
loop tests. To overcome the emulsification problem, a multiphase
flow loop was built in a treatment station of Shengli oilfield,
where the oil, water and gases were separately introduced into
the test loop from the production pipelines and then went back
to the production system via the output pipeline after corrosion
test. The input of oil, water and gas was also driven by pumps
and the process was similar to that of a laboratory-scale setup
reported previously (Wang et al., 2015). The only difference
is that the mixed fluids after going through the corrosion test
section directly flows into the oil production system and never
goes back to the pipe section for corrosion tests. Using this “open”
flow loop system, field corrosion was monitored at the steel pipe
bottom. The corrosion rate can be automatically converted from
the galvanic current of a commercial corrosion probe, which has
been previously used for corrosion monitoring in an oil-water
system (Wang Z. L. et al., 2014). A flat sheet of 20# steel was
used as the corrosion probe and the diameter of the pipeline was
80mm. With changing water cut, a series of field conditions can
be simulated.

One may notice that CO2-EOR production fluids generally
contain an extremely high fraction of gas phase with a gas-to-
liquid ratio over 200, in which CO2 gas can reach a volume
fraction of 70% in the gas phase (Wang et al., 2015). Under
such a high gas-to-liquid ratio, oil and water may be strongly
stirred during transportation, and corrosion can be reduced once
the oil phase reaches the bottom of pipeline. In Figure 5, the
influence of gas-to-liquid ratio on corrosion was further verified
at different water cuts in filed conditions. The corrosion rate
initially increased and then decreased after the gas-to-liquid
ratio increased to a critical value, depending on the water cuts.
A higher water cut generally leads to a transition point at a
higher gas-to-liquid ratio. However, when the gas-to-liquid ratio
is higher than 20, corrosion will be obviously reduced. The result
agrees with the theoretical analysis of corrosion mitigation in oil-
water-gas three-phase flow conditions (Wang et al., 2015). This
is also consistent with the notion that corrosion can be mitigated
in an oil-brine mixed flow by increasing turbulence to generate
oil wetting (Wicks and Fraser, 1975; Cai et al., 2012). Under a
high pressure, the dissolved gas may reduce the viscosity of crude
oil, thus changing the flow pattern and the wetting behavior in
pipeline (Luo et al., 2017).

Sand or solid particles in CO2-EOR fluids may induce erosion
or localized corrosion problem. Generally, in the CO2 injection
and water treatment processes, no sand or solid particle is
involved. The influence of sand or solid particle on corrosion
is usually considered in presence of crude oil. The simulation

FIGURE 5 | The measured corrosion rate as a function of gas flow rate (or

Gas-to-liquid ratio) at different water cuts obtained from the multiphase flow

loop test at 0.3 MPa in field condition of Shengli oilfield. The crude oil was

heavy oil with a density of 0.92 g/cm3 at 20◦C and a viscosity of 135.3 mPas

at the operation temperature of 60◦C. The fraction of CO2 in gas phase was

around 50 vol.%. For the present field test, the liquid flow rate was 4.5 m3/h.

The input fluid was controlled by pumps and the water cut was experimentally

estimated by on-site sampling of the oil-water mixtures.

work from Landry et al. (2012) suggested that the settlement of
solid particles is much easier onto the pipeline bottom and water
may also be accumulated around such solid particles forming
a locally water-rich environment. In this condition, corrosion
may be preferentially initiated around the solid particle (Han
et al., 2013). Tang et al. (2008) observed severe erosion-corrosion
damage on steel surface and the contribution of erosion was
measured to be around 70% in the oil-sand slurry with different
sand concentrations. However, Stack and Abdulrahman (2012)
reported the movement behavior of sand particles sealed by
an oil layer, which produces a weaker impact on steel surface,
and thus reduce the mechanical and electrochemical attacks.
A further analysis is essential for understanding the corrosion
behavior associated with sand particles and crude oils, which will
be helpful to the field corrosion management in CO2-EOR well
and deep-sea conditions.

CORRELATING CORROSION WITH FLUID
STRUCTURES

Corrosion control in multiphase flow conditions is technically
challenging, owing to the complexity of fluid. In CO2-EOR
production, the multiphase flow is generally relevant to an
oil-water mixture or a dense phase CO2 containing a trace
amount of water, which attributes to oil production and CO2

injection, respectively. Here, these two cases can both be termed
as water/non-electrolyte mixture. In a previous paper, Liu et al.
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(2018) believed that the state of water in SC CO2 phase might
behave like the w/o emulsion or dispersion, where a corrosion
mechanism was proposed in SC CO2 environment regarding the
impact of water droplets on steel surfaces. It implies that the
density and velocity of water clusters in SC CO2 phase determine
the corrosion morphology. Although the corrosion propagation
has not been directly monitored, the observation of different
types of corrosion product particles on steel surfaces after
autoclave test can verify this microscopic mechanism. Actually,
similar circular-shaped corrosion product particles can also be
observed on steel surface after corrosion in a w/o emulsion for
a short period (e.g., 72 h), as typically illustrated in Figure 6. For
a longer period, the corrosion product particles may bemerged to
become large patches, finally forming a layer of FeCO3. It seems
that these corrosion product particles are probably originated
from the attachment of corrosive water droplets. Presently, the
direct links between the sizes of corrosion product particles and
water droplets are still not clear. It is interesting that the corrosion
morphologies of steel surface are similar in different types of
fluids. It is quite possible that the water droplets or clusters
present in the w/o emulsion (Wang Z. L. et al., 2014) and the
water containing SC CO2 (McGrail et al., 2009; Thanthiriwatte
et al., 2012; Wang et al., 2013) result in the corrosion product
particles on steel surfaces. As proposed by Liu et al. (2018) in
CO2 fluid, the flow and wetting behavior of water clusters are the
origin of corrosion damage. This mechanism could be extended
to interpret the corrosion performance of steel samples in various
electrolyte/non-electrolyte mixtures. This provides a new view
on corrosion prediction in complex conditions, where water is
highly dispersed in a non-conductive fluid.

The similarity in corrosion mechanism could be firstly
testified by the dependence of corrosion rate on water
concentration. As an example, Figure 7 illustrates the corrosion
rate of steel samples in different mixtures, such as w/o
emulsion and water containing SC CO2, where it presents
a linear relationship with water concentration. Such a linear
dependence of corrosion rate on water concentration could
be found in a wide range of water concentrations, regardless
of the experimental conditions, which was also observed in
correlating the weight-loss data with water concentrations in a
SC CO2 environment when the water concentration is higher
than 1,000 ppmw (Sim et al., 2014a). It also reported that the
conductivity of a w/o emulsion presented a linear relationship
with water concentrations (Craig, 1998). This may be related
to the impact of moving water droplets or clusters on steel
surfaces. Generally, a higher water concentration may generate
a larger volume of water droplets in mixed fluids (Plasencia
et al., 2013). Compared with a SC CO2 fluid, crude oil
can entrain a larger volume of water droplets, and thus the
corrosion rate was not significantly increased at high water
concentrations. This could be explained by the difference in
wettability at steel surface. The oil phase is more effective than
the dense CO2 phase against the adsorption of water droplets on
steel surfaces.

In multiphase flow corrosion, the state of fluid structure
has not been systematically investigated. Water entrainment
and water settlement are the control steps in corrosion. The

FIGURE 6 | Microscopic images of a water-in-oil emulsion with a water cut of

70 wt.% before and after corrosion test and the corrosion morphology of P110

steel surface after autoclave test for 72 h at a CO2 pressure of 10 MPa, 80◦C.

The initial emulsion was prepared by mixing oil and water at a stirring rate of

1,200 rpm in an emulsifier. The “after 72 h” refers to the state of the emulsion

after autoclave test. The oil’s density is about 0.88 g/cm3 (Wang Z. L. et al.,

2014) and the brine solution is similar to the CO2-EOR production water in

Shengli oilfield (Zhang J. et al., 2012; Wang et al., 2015). The image of

emulsions was observed using a stereomicroscope (as described in Wang Z.

L. et al., 2014) and the corrosion morphology was detected by a Scanning

electron microscope.

entrainment of water in crude oil is believed to be beneficial
in corrosion mitigation (Wicks and Fraser, 1975; Craig, 1996;
De Waard et al., 2003; Cai et al., 2012). Following this idea,
methods to stabilize water in SC CO2 emulsions might also be
effective in preventing pipeline corrosion, which has been widely
investigated in food and purification industries. However, to date
no effort has been made to tailor the SC CO2 fluid for a corrosion
mitigation purpose. If it works, this method can be applied in
CO2 transportation and injection systems.

CONTROL STRATEGIES

It should be noticed that the operation conditions for CO2

transportation, injection and oil production are different. As
summarized in Table 2, their control strategies cannot be the
same. Generally speaking, CRAs are most effective, which have
been attempted in many projects (IEAGHG, 2010). For example,
in a pilot-scale CO2-EOR project in Shengli oilfield, stainless
steels were employed for the CO2 injection well tubes. There is
no doubt that the use of CRAs is a safe choice when we have little
knowledge on the corrosion risk of an operation system, but it is
economically unacceptable. Coatings and liners are also adopted
in CO2-EOR production wells (IEAGHG, 2010), but there are
still challenging problems, such as blistering and detachment in
deep well conditions.

Recently, several kinds of corrosion inhibitors were tested in
simulated CO2 injection or transportation conditions (Turgoose
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FIGURE 7 | The dependence of corrosion rate on water concentration in different electrolyte/non-electrolyte binary systems. The red solid square and the blue solid

circle refer to the corrosion data in SC CO2 environment according to Hua et al. (2014a) and Liu et al. (2018). The green open triangle and the black open rhombus

refer to the corrosion rates in w/o emulsions or mixtures according to Sun et al. (2016a) and Li (2009). B represents the slope of the fitted line of the experimental data

points in a log coordinate system.

et al., 2014; Choi et al., 2017; Xiang et al., 2017; Cen et al., 2019),
which may theoretically be a reasonable choice in the aggressive
environments. However, the corrosion inhibitors should be
effective in high temperature conditions. Corrosion inhibitors
have also been widely used in water injection systems where
CO2 was involved. The presence of crude oil in the CO2-
EOR production system may poison the inhibitors (Gulbrandsen
and Kvarekval, 2007; Horsup et al., 2010), reducing their
effectiveness. Therefore, the evaluation of corrosion inhibitors
in oil-water mixed fluids becomes critical for the practical
inhibitor selection (Li et al., 2014, 2016; Wang et al., 2019b).
Presently, there is still lack of effective and applicable methods
for the evaluation of corrosion inhibitors in oil-water mixed
conditions (ASTM G202−12, 2016), which generally relies on
a large-scale multiphase flow loop test (Salama and Brown,
2009; Cai et al., 2012; Wang and Zhang, 2016). Most recently,
Wang et al. provided a possible method for the fast evaluation
of corrosion inhibitors in oil/water alternate conditions by
using a specially designed “Alternate Wetting Cell” (Wang
et al., 2019a), with which a kind of ODD corrosion inhibitor
has been evaluated to be effective (with a high inhibition
efficiency of 99.9%) in oil-water media (Wang et al., 2019b).
In a multiphase flow environment containing crude oil, the
wettability at the oil/water/pipe interface and the emulsion
state might be changed by the addition of a trace amount
of organic agents, such as corrosion inhibitors (Foss et al.,
2009; Li et al., 2014; Wang et al., 2019b) or some surfactant

chemicals (Wang Z. L. et al., 2014; Quej-Ake et al., 2018), finally
enhancing or decreasing the corrosion mitigation efficiency of
crude oil.

To our knowledge, managing the process parameters is one
of the most attractive methods for corrosion control in CO2-
EOR production (Wicks and Fraser, 1975; Kang et al., 1996;
Cai et al., 2012; Wang et al., 2015), as it is generally applicable,
effective and inexpensive, but the control strategies must be
relied on a deep understanding of the corrosion performance and
corrosion mechanism of pipeline materials (Store et al., 2011).
For example, to avoid corrosion damage of pipelines, CRAs
were usually used and water was strictly limited below a very
low concentration in an early pilot CO2-EOR project because
of little knowledge on steel corrosion in a dense CO2 phase.
Currently, it is generally believed that corrosion will not be a
problem if there is no free water or water droplet settlement on
the pipeline bottom. However, the critical water concentration
threshold to trigger corrosion can be different, depending on
pressure, temperature, flow rate, as well as the concentrations
of impurities. Nevertheless, limiting water concentration is still
the best choice for corrosion mitigation in CO2 transportation
(Sim et al., 2014b; Barker et al., 2017). It can be deduced
from the experimental simulation that pressurizing CO2 could
extend the solubility of water (Wang and Song, 2018) and
thus reduce the possibility of water wetting on steel surface.
Slowing down the flow rate may reduce the probability of the
bombardment of water clusters entrained in dense phase CO2,
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TABLE 2 | Corrosion control strategies in CCS-EOR systems.

Materials Corrosion inhibitors Process control

CO2 transportation Mild steel (e.g., 16 Mn) Effective in highly acidified, high pressure and high

temperature conditions. (e.g., Xiang et al., 2017)

Controlling impurity gases (de Visser et al., 2008; Sim

et al., 2014b)

Limiting water concentration (Sim et al., 2014b)

Slowing down flow and pressurizing (Liu et al., 2018)

CO2 injection Mild steel (N80, P110)

Stainless steel (304SS, 13Cr)

Coatings or liners (IEAGHG, 2010)

Injected with water slugs Reducing water/gas alternate frequency (Wang and

Song, 2018)

Oil production Mild steel (N80, P110)

Stainless steels (304SS, 13Cr)

Effective in the presence of oil, such as tailoring

wettability (Li et al., 2014; Wang et al., 2019b) and

enhancing emulsification (Wang Z. L. et al., 2014).

Not available.

Oil transportation Mild steel (20#, X52)

Stainless steel for valves

Liners for separators

Water separation before transportation (Wang Z. L.

et al., 2014)

Reducing CO2 partial pressure (Choi and Nešić, 2011)

Flow pattern control: a high flow rate, high

gas-to-liquid ratio (Cai et al., 2012; Wang et al., 2015)

Enhancing emulsification (Wang Z. L. et al., 2014)

Water treatment Mild steel (20#, X52)

Glass fiber reinforced plastics

Effective in CO2 aqueous environments

Adding pH neutralizer

Reducing dissolved CO2 by N2 stripping.

The recommended materials are based on the pilot-scale CO2-EOR project in Shengli oilfield and the reported projects in North American.

and thus decrease the density of iron carbonate particles on
steel surface (Liu et al., 2018). In this way, transporting water
containing CO2 at a high pressure and with a slow rate may
be helpful for corrosion mitigation. In a WAG CO2 injection
process, reducing the alternate frequency and increasing the
injection rate can extend the service lifetime of well tube
(Wang and Song, 2018). Obviously, tailoring the processing
parameters in CO2 transportation and injection should be
cautious as the environmental variation may totally change the
control strategies.

In oil production, if water could be completely entrained into
crude oil, corrosion would cease. Therefore, an effective method
is to separate free water from crude oil before transportation.
It would be safe if crude oil can be transported to the
terminal station before de-emulsification and water settlement.
In this way, a fast transportation seems to be beneficial. At
the same time, a high flow rate stirs the fluid, hindering
the deposition of free water. Similarly, a high gas-to-liquid
ratio is also recommended to obtain a turbulent state and
reduce the wetting of water at pipeline bottom (Wang et al.,
2015). These control strategies are relevant to the management
of flow patterns of oil, water and gas in pipeline. In some
extreme conditions, emulsification of water into oil may be
applicable in reducing the corrosion risk during long-distance
transportation. It should be noticed that depressurizing may
also reduce the corrosiveness of the CO2-containing fluids,
which can be employed in the oil transportation and the water
treatment stages.

SUMMARY AND FUTURE IDEAS

In this review, the corrosion of pipeline in CO2-EOR production
is systematically analyzed from a fluid perspective. Firstly,

the corrosion risk of pipeline at different stages of CO2-EOR
production was evaluated relevant to the fluid properties. It
identified that the presence of water in fluid was the key
for triggering corrosion. In CO2 transportation and injection
systems, although water was generally limited well below its
saturation limit, the occasional water ingress or the alternate
water slug may induce corrosion damage. In oil production
and transportation systems, the presence of crude oil may
reduce corrosion, while the flow pattern and the mixing state
of oil and water were critical for determining the corrosion
risk of well tubes and pipelines. In water treatment stage,
the scaling problem should be noticed with a reduction in
CO2 partial pressure. After a review of the corrosion behavior
of steel materials in multiphase flow conditions according to
the fluid states of CO2, water and crude oil, corrosion was
supposed to be correlated with the fluid structure, in which
the dependence of the corrosion rate on water concentrations
was attributed to the fluid behavior of water droplet or clusters
in an electrolyte/non-electrolyte binary system. An alternate
wetting test method was introduced for better understanding
the corrosion phenomena in oil/water intermittent flow. Finally,
the corrosion control strategies were summarized. Besides
the application of corrosion resistant materials and corrosion
inhibitors, tailoring the processing parameter was suggested to be
an attractive method for preventing corrosion in aggressive CO2-
EOR production conditions. For the CO2 transportation and
injection systems, limiting water concentrations, slowing down
the flow rate and reducing contact time would be beneficial for
corrosion mitigation. For the oil production system, enhancing
the water entrainment, increasing the turbulence of flow and
mitigating the corrosive environment would be helpful.

Future studies on multiphase flow corrosion associated with
CO2-EOR production should address the flowing issues:
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(1) Broadening ideas on corrosion control for aggressive CO2-
saturated oil-water mixed fluids, for example, exploring
the possibility of using oil/water alternate slugs to reduce
corrosion risk of the pipeline bottom.

(2) Selection of suitable emulsifier agents in water-SC CO2

environments to extend the water limits for a secure
transportation and injection of CO2.

(3) Deciphering the microscopic origin of corrosion initiation
and propagation and their relationship with fluid structure
in a binary mixed system.

(4) Developing new electrochemical and analytical methods in
badly conductive and harsh environments, such as the water
containing SC CO2 and the oil-water mixtures.
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