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Mexico

A computational study of rigidity for dense fluids of monodisperse and bidisperse

hard-disks near a phase and a glass transition respectively is presented. To achieve

this goal, the transversal part of the dynamical structure factor is calculated. In both

cases, a viscoelastic behavior is obtained, with a dynamical gap determined by a critical

wavevector kc. Transversal waves exist for k > kc while the maximal correlations happens

at frequency ω = 0 for k < kc. In both cases kc goes to zero as the freezing point is

approached. Both systems are able to fulfill a scaled dynamical law as a power law is

found for the critical kc as a function of the packing. The obtained results indicate that

this method gives an alternative to study rigidity and constraint theory in dense fluids,

since it is possible to assign a number of floppy modes or broken constraints in the

liquid by computing the number of modes below kc, as well as an effective average

coordination number. Also, this suggests that the critical wavevector kc can serve as a

suitable order parameter.

Keywords: dynamical-gap, rigidity, relaxation, hard-disks, viscoelasticity

1. INTRODUCTION

Over the last years it has become clear that rigidity topology of glass melts is intimately related with
its relaxation properties (Selvanathan et al., 2000; Boolchand et al., 2001, 2018; Novita et al., 2007;
Rompicharla et al., 2008; Bhosle et al., 2012; Gunasekera et al., 2013; Yildirim et al., 2016), as for
example the relationship with fragility, which determines if a compound is good or bad glass former
(Mauro et al., 2009, 2014).

Phillips and Thorpe’s constraint theory of rigidity gives good insights on how such problems are
related to network topology (Phillips, 1979; Thorpe, 1983). These ideas were eventually extended to
include thermodynamics (Huerta and Naumis, 2002a,b, 2003; Huerta et al., 2004; Naumis, 2005;
Flores-Ruiz and Naumis, 2012; Yan, 2018) and even the Boson peak (Flores-Ruiz and Naumis,
2009, 2011; Flores-Ruiz et al., 2010). Molecular dynamics in realistic systems has been of invaluable
help regarding this point (see for instance Bauchy and Micoulaut, 2011). Stochastic models gave
similar results (Naumis and Kerner, 1998; Kerner and Naumis, 2000). Boolchand and coworkers
have made different studies concerning rigidity in melts and glass aging using optical, mechanical
and thermodynamical properties (Selvanathan et al., 2000; Gunasekera et al., 2013).

Rigidity also plays a role in usual thermodynamic phase transitions as any transition involves
the development of a generalized rigidity to keep phase order against thermal fluctuations (Chaikin
and Lubensky, 1995). In spite of this, even for the usual thermodynamical phase transitions the
understanding of the rigidity transition that takes place is not well understood. One of the aims
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of this paper is precisely this, to study how rigidity evolves for
dense fluids near a phase and a glass transition.

Experimentally, rigidity is usually calculated through the
average coordination number, obtained from the relative
concentration and corresponding valence of each chemical
ingredient (Phillips, 1979). Although this is a clear defined
protocol in a solid, in a liquid it is more difficult to have such
a picture. A simple procedure to surmount such problem is to
look not only at the average coordination number, but also to the
elastic properties. In fact, the lack of elastic behavior against shear
stress turns out to be the main defining feature of a Newtonian
fluid. A striking consequence is the absence of transversal waves
in fluids at low frequencies and wavenumbers (Trachenko and
Brazhkin, 2015; Baggioli et al., 2019). However, elasticity of
liquids depends upon the time and spatial scales in which the
system is probed or perturbed. Thus, viscoelasticity will contain
very valuable information concerning the rigidity of dense liquids
close to a glass transition. For organic glasses, there are some
early works concerning the study of flexible and rigid polymer
models and how this is related with relaxation (Bartenev, 1970;
Picu and Weiner, 1998; Picu et al., 1999). For inorganic glasses,
this area is still open in many important aspects (Scopigno et al.,
2007; Gueguen et al., 2015; Zhou et al., 2017; Zhu et al., 2018;
Sen et al., 2019). In this article we will concentrate on how to
test rigidity in simple fluids by using the information concerning
transversal waves. Such information is encoded in the dynamical
structure factor. Here we will compare glass and crystal forming
fluids, both in its most elementary aspects.

As previously mentioned, the main feature that defines a rigid
system is the resistance to shear-stress. Rigidity relates to the
propagation of transversal waves. Thus, a natural starting point
is to look at wave propagation, which involves a frequency ω and
a wavevector k. Therefore, rigidity of liquids involves time and
space density-density and velocity-velocity fluctuations, which
are well-described by the dynamical structure factor. Here we are
concerned with the transversal part of the dynamical structure
factor, defined as (Boon and Yip, 1991),

S(k,ω) =
∫ ∞

0
dte−ıωtCT(k, t) . (1)

where CT(k, t) is the transversal current density-density
correlation function,

CT(k, t) = 〈J∗T(k, t)JT(k, 0)〉 , (2)

and the brackets 〈...〉 represent an ensemble average. JT(k, t) is the
transversal density current averaged over the different directions
of k given the wavenumber k = |k|,

JT(k, t) =
1

√
2Nk

N
∑

i=1

k× vi(t) exp
(

ık · ri(t)
)

. (3)

Here, vi(t) and ri(t) are the velocity and position of the ith particle
of a given system at time t. The 1/

√
2 factor takes into account the

two transverse currents in three-dimensional systems. This factor
is replaced by one in two dimensions.

The resulting correlations functions can also be used to find
the complex susceptibility ξ (k, z) (where z = ω + iǫ) when
an external field probe F(t) is appplied to the system. It can be
proved that the susceptibility is given by (Boon and Yip, 1991),

ξ (k, z) = izβS(k, z)− βCT(k, 0) (4)

where β = 1/kBT with T the temperature and kB the
Boltzmann constant.

Let us now apply this test to different systems. In particular,
here we will start with the most simple fluids able to produce
glasses and crystals. One system is made from two dimensional
hard-disks and the other is a bidispersive mixture of hard disks.
In the monodisperse hard-disks system, the diameter of the disks
is σ , while in the bidisperse case there are two kinds of disks,
A and B, each with diameters σA and σB , respectively. For
the monodisperse system, the packing fraction is given by η =
Nπσ 2/A where A is the area. For the bidisperse system η =
[Nπ(xσ 2

A
+ (1 − x)σ 2

B
]/A, where x is the relative concentration

of disks A. In our simulation, we take x = 1/2 and σA = 1.4σB .
The monodisperse hard-disk system is interesting in many senses
as crystallization takes place by two phase transitions. First the
liquid goes into coexistence at η ≈ 0.70 with the hexatic phase
at η ≈ 0.7175. This is captured by the orientational order
parameter, such that in the hexatic phase orientational order
appears and the transition is characterized by the Mayer-Wood
loop in the P − v diagram (Engel et al., 2013). As the packing
fraction increases, a second order transition from hexatic to solid
is observed at η ≈ 0.72 (Engel et al., 2013; Russo and Wilding,
2017). While the hexatic phase has short range positional order
and quasi-long-range orientational order, the solid has quasi-long
range positional order and long-range orientational order. In this
regard, positional order parameter is used to distinguish between
the hexatic and solid phase (Engel et al., 2013). Recently it has
been observed that a small polydispersity destroys the hexatic
phase (Russo and Wilding, 2017). Moreover, the bidisperse
system at x = 1/2 is able to generate a glass (Isobe, 2016;
Russo and Wilding, 2017; Russo et al., 2018). In fact, there is a
nice correlation between disk’s mismatch, glass forming ability,
configurational and vibrational entropy (Russo et al., 2018).

In Figure 1, we present the evolution of the compressibility
factor P/ρkBT where ρ = N/A as a function of η. Such
results were obtained from an Event-DrivenMolecular Dynamics
simulation with N = 2, 500 hard-disks. An event driven
molecular dynamics simulation called DynamO (Bannerman
et al., 2011) was used while, in the case of bidisperse, the initial
configuration was generated using the code developed by Skoge
et al. (2006). For hard potentials, particles interact only when the
distance between them is equal to the sum of their radius. While
this condition is not fulfilled, the velocity of the particles remain
the same. Event-Driven Molecular Dynamics takes advantage of
this by locating the next collision (i.e., the time when the collision
will occur and the pair of particles that will collide), evolving
the simulation up to that time and implementing the collision
dynamics (Allen and Tildesley, 2017). The hydrostatic pressure
is computed from the trace of the pressure tensor and divided
by 3. However, since we are simulating 2D systems, the element
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FIGURE 1 | Pressure vs. packing fraction in the studied region for

monodisperse hard-disks (blue curve) and bidisperse hard-disks (red curve) as

shown in the plot legend. For the case of monodisperse hard-disks, below

η ≈ 0.7 the system is in the fluid phase (colored pink), between η ≈ 0.7 and

η ≈ 0.7175 the fluid coexist with the hexatic phase (colored green). Above

η ≈ 0.7175 the system is in a hexatic phase (colored yellow). At η ≈ 0.72, a

second order phase transition from hexatic to solid occurs (marked with a

dashed line), and above η ≈ 0.72 the system is in the solid phase (colored

purple) (Russo and Wilding, 2017). This plot was obtained from a simulation

with N = 2, 500 hard-disks.

Pzz = 0, therefore, we have rescale by 3/2. The way in which
DynamO computes this tensor is from the kinetic and interaction
contributions, i.e., the kinetic contribution is defined as

Pkinetic =
1

V

N
∑

i=1

mivivi , (5)

where V is the volume, N the number of disks,mi = 1 is mass, vi
is the velocity of disk i and vivi is the dyadic product which yields
a matrix. The interaction contribution is defined as

Pinteraction =
1

Vtsim

event
∑

i,j

1pirij , (6)

where tsim is the total time of the simulation, the summation is
over each two-particle event (collision), i and j indicate the two
particles involved in the event, 1pi is the momentum impulse on
particle i, and rij = ri − rj is the separation vector between the
interacting particles.

Figure 1 allows to confirm that, in the case of monodisperse
hard-disks, the system is undegoing a first order phase transition,
while the bidisperse hard-disk system is not. Our aim is now
to look at the viscoelastic response of both systems. In the
upper panel of Figure 2, we present the transversal part of

FIGURE 2 | Countour plot of the transversal dynamical structure factor S(k,ω)

for N = 2, 500 in the case of (Upper panel) monodisperse hard-disk system

with packing fraction is η = 0.68 and (Lower panel) polydisperse hard-disk

system with packing fraction is η = 0.73. The red dots are the observed

maximums. The dotted curve allows to compare with the indicated functional

form. Notice the presence of the dynamical gap located at k < 3kmin and

k < 2kmin for packing fraction 0.68 monidisperse and packing fraction 0.73

polydisperse, respectively.

the dynamical structure factor S(k,ω) for the monodisperse
system near the phase transition. The colors here represent
the values of S(k,ω) for different wavenumbers k given in
terms of the lowest wavenumber kmin = 2π/L, where L =√

πη/N4/σ . As k increases, the peaks in S(k,ω) shift to
larger values of ω. A gap is seen between the peaks for
k ≤ 2kmin. Also, in Figure 2, we compare with the function
ω(k) ≈

√

k2 − k2c , which shows a good agreement with a
recent theoretical solid-state approach to liquids (Trachenko
and Brazhkin, 2015; Baggioli and Trachenko, 2018a,b) (see
Baggioli et al., 2019 for a recent review on the subject). The
lower panel of Figure 2 shows that the bidisperse melt also
shows a similar transversal branch with a gap and a critical kc.
Recently, this phenomena has been called the dynamical gap
(Trachenko and Brazhkin, 2015).

Figure 2 gives a nice glimpse of the viscoelasticity and how a
transition from a fluid-like to a solid-like behavior is revealed by
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the presence of a dynamical gap. What is most important to us, is
the observation that for k < kc all peaks of S(k,ω) are at ω = 0.
Thus, in this region S(k,ω) ≈ δ(ω), where δ(ω) is the Dirac delta
function. Since for k < kc we have ω = 0, we can consider these
states, in terms of rigidity, as floppy, i.e., the system is flexible.
Another way to see this result is by observing that here the rigidity
transition will depend upon the time-scale of observation.

To test these ideas, we further follow the behavior of kc
as a function of η up to the freezing packing fraction for
the monodisperse case. Figure 3 shows the evolution of kc. As
expected, kc → 0 as η → ηm, where ηm = 0.7 is the packing
fraction where the system becomes solid for this system size.
We should stress that for a larger system, kc → 0 at a packing
fraction equal to ≈ 0.72 in the case of monodisperse hard-disks,
in agreement with the hexatic-to-solid phase transition (Russo
and Wilding, 2017). Figure 3 also shows the evolution of kc for
the bidisperse case. It is observed that kc → 0 as η → ηp, where
ηp = 0.75.

Thus, Figure 3 clearly shows that a rigidity transition will
take place as the fluid density increases. Figure 3 has other
interesting features. The first is that the bidisperse fluid presents
a bigger dynamical gap for the same given packing fraction.
From a rigidity point of views this is expected as the effective
number of contacts is reduced. In fact, a previous test in solids
showed how one can, by decreasing the size of some disks in
a monodisperse system, create a Boson peak (Flores-Ruiz and
Naumis, 2009, 2011; Flores-Ruiz et al., 2010). Thus, Figure 3
gives a nice alternative to test in a quantitative way the underlying
rigidity of the solid.

Another revealing aspect of Figure 3 is that the critical kc
seems to follow the law,

kc ∼ (ηγ − η)α (7)

where γ = m or γ = p depending whether the system is
monodisperse (m) or polydisperse (p). As kc is the inverse of a
dynamical length scale, α represents the scaling of this rigidity,
suggesting to be a critical exponent for the size of rigid clusters.
Thus, it is expected to depend upon the dimensionality of the
system (Toledo-Marín and Naumis, unpublished).

To test this possibility we fitted the curves shown in Figure 3

to the functional from given in Equation (7). We obtained α =
0.8± 0.1 in both cases. We, further, fitted kc vs (1η/ηγ )

α , where
1η = ηγ − η. In Figure 4, we show the fits and the legend shows
the slope values.

In the hydrodynamic regime,CL(k, t) Equation (2) satisfies the
transverse part of the linearized Navier-Stokes equation. Under
very general arguments, it can be proved that the expression for
S(k,ω) is given by Boon and Yip (1991),

S(k,ω) =
2v20k

2Ŵ(k)/τ (k)
(

ω2 −
(

k2Ŵ(k)− 1
2τ 2(k)

))2
+
(

k2Ŵ(k)− 1
4τ 2(k)

)

1
τ 2(k)

(8)
Here Ŵ(k) = G∞(k)/ρ, where G∞(k) is the wavenumber-
dependent high-frequency shear modulus, ρ is the density, v20 =

CT(k, t = 0) and τ (k) is the wavenumber-dependent relaxation
time (Boon and Yip, 1991).

The condition for shear wave propagation is obtained from
equating to zero the derivative of Equation (8) with respect to ω.
The resulting inequality for shear wave propagation is,

k2Ŵ(k) >
1

2τ 2(k)
. (9)

As k decreases, Ŵ(k) decreases much faster than τ (k). Thus, the
inequality in (9) eventually breaks at a certain kc, such that

k2c ≈
1

2τ 2(kc)Ŵ(kc)
. (10)

In fact, Trachenko and Brazhkin (2015) and Baggioli et al.
(2019) studied the dynamical gap and provided a variation to the
Navier-Stokes equation, which in turn leads to the well-known
telegraph’s equation, from that they obtain the following equation
for ω,

ω2 + ı
ω

τ
− V2

t k
2 = 0 . (11)

where τ is a relaxation time. Solving for ω yields

ω± = −
ı

2τ
± Vt

√

k2 − k2c , (12)

the energy dispersion with a damping and a gap determined
by kc = 1/2τVt , a result similar to Equation (10) as Vt ≈
√

G∞(k)/ρ for k >> kc.
Notice that ω has a finite imaginary part. In Figure 2,

the frequency corresponds to the real part. Now, from linear
response theory, it is easy to see that the inverse of the left-
hand-side of Equation (11) is proportional to the susceptibility,
hence, by Equation (4) we would expected the imaginary part
being encoded in the width of the peaks of the transverse density
current correlation function. In Figure 5, we have plotted S(k,ω)
vs ω for different values of k, while in Figure 6 we have plotted
the width of the transverse density current correlation function
vs. the wavenumber, for 2, 500 hard disks with packing fractions
η = 0.68 monodisperse and η = 0.73 polydisperse, respectively.
As k increases, the width becomes larger, which would imply
smaller relaxation times, in agreement with Boon and Yip (1991),
Trachenko and Brazhkin (2015), and Baggioli et al. (2019).

To test numerically Equation (12) we proceed as follows.
Consider for example the case of the polydisperse system for
η = 0.68. First Vt is obtained from considering k >> kc from
where ω = Vtk. This is the slope of the dotted line in Figure 2,
fromwhereVt ≈ 0.24π/kmin. Next from Figure 6, we obtain that
1/(2τ ) ≈ 0.68π . Using Equation (12) we find that kc ≈ 2.83kmin,
in good agreement with Figure 2, in which kc ≈ 2kmin.

It is worthwhile to remark that our data satisfy Equation
(8), which contains the Maxwell relaxation relationship for
viscoelasticity, as it can be proved that in the long wavelength
limit, the relaxation time τ (k) is given by Boon and Yip (1991),

τ (0) =
ν

G∞(0)
(13)
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FIGURE 3 | Dynamical gap vs. reduced packing fraction η/ηc where ηc es the

packing fraction such that kc = kmin. The data points correspond to the

simulations while the dashed lines corresponds to fits (see legends). For

monodisperse disks ηc = 0.7 while for polydisperse disks ηc = 0.75. The

computations were made for systems with N = 400 and N = 2, 500 disks as

indicated in the labels.

FIGURE 4 | Plot of the dynamical gap vs reduced packing fraction (1η/ηc)
α .

The data points correspond to the simulations while the dashed lines

corresponds to fits (see legends). The computations were made for systems

with N = 2, 500 disks.

where ν is the viscosity. This relation holds for any k dependence
of τ (k), even if we make the crude assumption of taking τ (k) =
τ (0) = τ .

Let us know return to investigate the connection of constraint
theory with the dynamical gap. As the fluid is isotropic, we can
obtain a relationship between kc and the number of floppy modes
as follows. First we can approximate the behavior for k < kc by a
delta function, resulting in a simplified version of S(k,ω),

Sf (k,w) ≈ δ(ω)2(kc − k)+ 2(k− kc)S(k,ω) (14)

where2(x) is the Heaviside function. The total number of modes
with zero frequency in three dimensions is proportional to the

FIGURE 5 | The transverse density current correlation function as a function of

ω for different wavenumbers. This was obtained for polydisperse hard-disks at

a packing fraction 0.73. Notice that for all curves where k < 3kmin, the

maximum is located at ω = 0. For k ≥ 3kmin, the peak moves to higher

frequencies as k increases, indicating transversal wave propagation although

with an increased damping.

FIGURE 6 | Half-width of the transverse density current correlation function

as a function of the wavenumber for packing fraction η = 0.68 monodisperse

and η = 0.73 polydisperse for 2, 500 hard disks. As k increase, the width

becomes larger which is qualitatively consistent with (Trachenko and Brazhkin,

2015; Baggioli et al., 2019).

volume of a sphere with radius kc in the k-space,

Nf (kc) ≈ 2

∫ kc

0
4πk2dk =

8π

3
k3c (15)

where the factor 2 comes from the possible transversal waves
polarizations. In 2D we have Nf (kc) ≈ πk2c .
The fraction of floppy modes (f ) with respect to the total number
of modes is obtained by normalization,

f3D ≈
2

3

(

kc

kD

)3

, f2D ≈
1

2

(

kc

kD

)2

(16)

The normalization factor kD (≫kc) is the Debye wavevector
(Yang et al., 2017) while the subscripts 3D and 2D refer
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to the dimensionality of the system. We can conclude that
floppy modes are related with the dynamical gap seen in the
viscoelastic properties.

Using Equation (7), one can obtain a relationship between η

and f valid for the monodisperse and polydisperse system,

f2D ∼
1

2k2D

(

1η

ηγ

)2α

(17)

In principle, we can go further by relating the previous results
to obtain a dynamical average coordination. However, the lattice
may have a strong heterogeneous character as floppy regions
favor the maximization of vibrational entropy (Naumis, 2005)
and care must be taken since it is possible that the system may
gain structure and order (Frenkel, 2014) as in the case of the
network studied in Yan (2018) where floppy regions appear in a
given coordination number window above the rigidity threshold.
Relaxation is affected by this heterogeneity (Glasstone et al., 1941;
Hänggi et al., 1990; Toledo-Marín and Naumis, 2017, 2018).
Yet it is tempting to go further and define a mean dynamical
coordination number 〈Z〉. For angular and radial forces are
present, is known that f3D = 2−5〈Z〉/6, while f3D = 1−〈Z〉/6 for
radial forces (Thorpe, 1983). In 2D, we have for pure radial forces
f2D = 1 − 〈Z〉/4. Using Equation (16), for pure radial forces and
in 2D we have,

〈Z〉2D ∼ 4

(

1−
1

2k2D

(

1η

ηγ

)2α
)

(18)

This number can be compared with results obtained from the
first-neighbor-counting obtained from collisions (Wyart, 2005).
In particular, we observe that for kc = 0 we recover the condition
for rigidity, and as kc grows, the coordination number decreases
as expected for a fluid system. Furthermore, it is known that
the coordination number may be obtained integrating the radial
distribution function in a small sphere of radius equal to the
distance between two particles. The radial distribution function
is related to the structure factor which in turn may be put in
terms of the current density correlation function (Boon and
Yip, 1991). Thus, it seems plausible to relate the coordination
number with the current density correlation function and, in
particular, with the dynamical gap. However, we leave that for
future work.

In conclusion, here we observed that for simple dense fluids
near a glass or a crystal phase transition there is a dynamical gap
and above a certain critical wavevector, kc, there are transversal
propagating modes although with strong damping. Modes with k
below to kc have zero frequency. This critical kc goes to zero as a
power law with exponent close to 0.8 as the fluid goes into a solid
in the vicinity where this phase transition occurs.

In fact, this sole observation opens new avenues for future
research. For example, quite recently it was shown that the

hexatic-to-solid phase transition in the case of monodisperse
hard-disks, as well as with a small concentration of bidispersity,
is a KT transition (Russo and Wilding, 2017). This was proven
on the basis of a prediction made within the KTHNY-theory
framework, in which the elastic constant, K, should be zero in the
hexatic phase and have a jump to 16π in the solid (Strandburg,
1988). This elastic constant K may be expressed in terms of the
transverse and longitudinal speed of sound denoted as V2

t and
V2
l
, respectively, which yields

K = 4ρV2
t

(

1−
V2
t

V2
l

)

. (19)

When kc goes to zero, shear waves propagate in the system as
a whole and the transverse speed of sound changes from zero
to some finite value. Hence, in the case of monodisperse hard-
disks, we speculate that kc may serve as an order parameter for
the hexatic-to-solid transition.

An even more interesting aspect is that, although the hexatic
phase disappears for even a small concentration of small
hard-disks, the KT transition should still happen theoretically
(Strandburg, 1988; Russo and Wilding, 2017). In this sense, the
dynamical-gap may serve as a tool to locate it.

Finally, by assuming isotropy of the liquid, one can count zero
frequency modes to assign a number of floppy modes to the fluid.
Thus, a dynamical average coordination number and a certain
number of broken constraints can be defined from this count.
Our study suggest that viscoelasticity can serve as a powerful tool
to characterize rigidity in the fluid phase.
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