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Polyurethanes are a broad class of material that finds application in coatings, foams,

and solid elastomers. The urethane chemistry allows a diversity of monomers to be

used, and prediction of mechanical properties, which are determined by complex

interplay between monomer chemistry and chain architecture, is an unresolved

challenge. Urethanes are based on aromatic or cyclic isocyanates and linear or

branched polyols, and polymerization results in linear chains for bifunctional monomers

or branched chains for multifunctional monomers. Strong intermolecular interactions

between aromatic groups result in the formation of hard-segment domains that generate

physical crosslinks between disorganized rubbery domains and anchor the material

microstructure, contributing to resistance to deformation. Here, a general hierarchical

machine learning (HML) model for predicting the stress-at-break, strain-at-break, and

Tan δ for thermoplastic and thermoset polyurethanes is presented. The algorithm

was trained on a library of 18 polymers with different diisocyanates, bifunctional or

trifunctional polyols, and NCO:OH index. HML reduces data requirements through robust

embedding of domain knowledge and surrogate data in a middle layer that bridges

input variables (composition) and output responses (mechanical properties). In this work,

the middle layer included information on overall polymer composition, predictions of

chain architecture derived fromMonte Carlo simulations of polymerization, information on

interchain interactions from empirically derived molecular potentials and shifts in infrared

(IR) spectroscopy absorbances. The HML predictions are shown to be more accurate

than those from a random forest model directly relating composition and properties,

suggesting that embedding domain knowledge provides significant advantages in

predicting the properties of complex material systems based on small datasets.
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INTRODUCTION

Polyurethanes are ubiquitous materials found in coatings, foams, and solid elastomers
(Oertel, 1994; Engels et al., 2013). Prototypical polyurethanes are formed through step-growth
polymerization of an aromatic diisocyanate and an aliphatic diol, resulting in the formation
of a material having aggregated aromatic hard segments bridged by rubbery segments. This
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microstructure is the basis for the remarkable mechanical
properties of polyurethanes characterized by primarily elastic
behavior and large values of ultimate elongation. However,
modern polyurethanes are based on a highly diverse family of
monomers that provide control over the number of reactive
isocyanate or alcohol groups, which allow the preparation of
linear of branched materials, varying monomer chemistries,
which tune the interactions between hard segments and soft
segments, and control over the NCO:OH index, which controls
the degree of polymerization. Developing a model to predict
the mechanical properties of these materials based on all these
compositional variables is an unresolved challenge.

There are many analytical approaches to predicting properties
of polymers based on their linear or crosslinked structure.
Viscoelastic and rheological properties of linear polymers have
been predicted by tube models (Milner and McLeish, 1998;
Pattamaprom et al., 2000; van Ruymbeke et al., 2002, 2005)
where reptation theory has been extended with contour length
fluctuations and constraint release mechanisms, leading to
successful predictions especially with low molecular weight
polymers. For crosslinked polymers, mechanical properties
have been predicted using group interaction modeling (GIM)
(Foreman et al., 2008) where a mean-field potential is calculated
from cohesive energy and other molar constants derived using
a group-additivity approach based on each component in the
repeating unit. Another model for thermo-mechanical behavior
prediction uses a molecular-modeling approach (Shenogina
et al., 2012) whereas Eom et al show the effect of native
topology on mechanical strength of crosslinked polymer
chains (Eom et al., 2003).

With the advent of machine learning in many traditional
scientific disciplines and the Materials Genome Initiative,
there have also been many data-driven, ML-based approaches
for prediction of polymer properties (de Pablo et al., 2014;
Agrawal and Choudhary, 2016). Viscoelastic properties have
been modeled using a multi scale computational framework
on inverse Boltzmann method (Li et al., 2012) and specific
properties (mechanical, thermal, optical, and electrical) have
been trained on microscopic, mesoscopic, and macroscopic
structures from polymer databases available online using artificial
neural networks (Roy et al., 2006). Recently, Kim et al. (2018)
have developed a polymer informatics platform which trains
machine learning models of a dataset of high throughput DFT
calculations and experimental data from the polymer literature.

Since most of the ML based approaches rely on large
datasets, Hierarchical Machine Learning (HML) was developed
on small experimental datasets to predict properties of complex
material systems utilizing an intermediate layer between the
desired responses and system variables (Menon et al., 2017).
These intermediate variables are based on latent physicochemical
factors from domain knowledge pertaining to the material
system. This methodology was validated on a system of
dispersant dosed concentrated MgO suspension, which acted as
a non-setting model of cement. Building upon previous work,
HML was successfully utilized to designed a superplasticizer
tailored specifically for metakaolin-portland blend cement
blends (Menon et al., 2018).

In this work, HML was applied to a system of linear
and crosslinked polyurethanes modeling mechanical responses:
stress-at-break, strain-at-break, and Tan δ with system variables
which are polymer structure, molecular weights and densities
of the reactants (diisocyanates, polyols), chain length of
polyol and isocyanate: alcohol (NCO:OH) index. Intermediate
variables utilized for predicting mechanical responses were
chosen to simplistically represent intermolecular, interchain and
crosslinking behaviors in the system. The input dataset of 18
synthesized polymers was split into a training set of 14 and test
set of 4 data points. A model was developed on the training set
and validated against the test set. Finally, a comparison of the
HML algorithm was performed with a random forest (RF) model
(Breiman, 2001; Pedregosa et al., 2011) that directly predicted
mechanical properties based on composition using the same
training set.

TRAINING DATASET

Materials
The oligomers and monomers used to build the training
set, poly(tetramethylene ether) glycol(PTMEG) (Mn =

1,000), polycaprolactone triol (PCL) (Mn = 900), toluene-
2,4-diisocyanate (TDI), hexamethylene diisocyanate (HDI),
isophorone diisocyanate(IPDI), were purchased from Sigma-
Aldrich, as well as the catalyst used for the polymerization
reaction, dibutyltin dilaurate (DBDTL). Dichloromethane was
acquired from EMD Millipore. All of the materials were used
as received.

Polymer Synthesis
The training set consisted of 18 samples, all of which were
prepared by reacting a bifunctional diisocyanate with either a
bifunctional or trifunctional polyol at NCO:OH indices of 1.0,
1.2, or 1.5, as shown in Supplementary Table 1. The reactions
were carried out at room temperature in 8ml of dichloromethane
as a solvent under the presence of DBTDL as a catalyst. Films
were cast from the synthesized polymers and were left to dry at

FIGURE 1 | Schematic of sol, danglers, elastic links, and core gel

components modeled over 300 monomers using Monte Carlo simulations.
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FIGURE 2 | Schematic depicting the three layers in the Hierarchical Machine Learning approach.

room temperature for 24 h and then again dried in a vacuumoven
for 24 h at 60◦C to remove any residual solvent.

Measurements
Stress-at-break and strain-at-break were measured for all
polymers in a universal testing machine (Instron). Gage width,
parallel section width and thickness for each sample tested were
12mm, 4mm, and 2mm, respectively. Tan δ for all polymers
was measured via a frequency sweep in a Discovery HR-2
rheometer (TA instruments) and the value at 1Hz was used as
the characteristic system response in this study. FT-IR analysis
was performed on 2mm thick film specimens in a Frontier
Spectrometer (PerkinElmer) in the standard wavenumber range
(4000–700 cm−1).

Monte Carlo Modeling
Monte Carlo simulations of step growth polymerization were
performed in R (R Core Team, 2018). We focused on parameters
which would provide insight into the crosslinking tendency
of polymer chains due to polyfunctionality in either the
polyisocyanates or the polyol reactants. These parameters were
determined through a Monte Carlo simulation of a spatially
homogeneous chemical ensemble of monomers; for these
simulations we used 200,000monomers. The algorithm performs
an event-based stochastic process analogous to the approach
described by Mikes and Dusek (1982), then repeats the stochastic
process until all of the limiting reactive group are consumed,
which in our simulations was the OH group. For the recipes with
NCO:OH index of 1, the simulation is at this point complete.
For the recipes with index 1.2 and 1.5 we further simulate for
moisture cure. Moisture cure refers to the reaction of some of the
remaining unreacted—NCO react with ambientmoisture to form
to—NH2 with further reactions with—NCO to form urea bonds.
In these cases, once all the -OH is consumed, the appropriate
amount of water is added to the ensemble and the stochastic
process is continued until no more bonds can be formed. The
simulation provides parameters that describe the connectivity

for all monomers in the post-gel thermoset. For our analysis,
we identify and quantify three type of molecular configurations,
shown in Figure 1: Sol-which are the oligomers that are not part
of the infinite network formed during polymerization, Elastic
link—which are the effective links formed between the reactive
groups and form part of the crosslinked core gel component
and Dangler—which are the pendant groups that are attached to
the infinite network and are also known as tethered plasticizer
and ineffective links. The parameters which are relevant are the
effective crosslinks per kg of polymer (nEff) calculated using
Miller and Macosko’s recursive method (Miller and Macosko,
1976), the averagemolecular weight of the elastic links weighed as
a percent of total polymer weight (elastic_link_mtw), the average
molecular weight of the core gel component weighed as a percent
of total polymer weight (Mtw), the percentage of sol present in
the synthesized polymer (sol_pctWgt) and the percentage of core
gel component in the synthesized polymer (Core_pctWgt).

HML MODELING

HML modeling was performed in Python (Rossum, 1995)
using the Scikit learn library (Pedregosa et al., 2011) for
machine learning estimators. HML modeling has been used
with multiple systems now; in all of these systems, the top
layer will represent a complex system response that has to
be either predicted or optimized with respect to a bottom
layer which consists of simple experimentally tunable variables.
However, there is an intermediate middle layer which consists
of physical or chemical factors parameterized from the variables
in bottom layer through surrogate physical measurements and
existing physical/chemical relationships pertaining to the specific
material system. The algorithm can be better understood with the
scheme shown in Figure 2.

The bottom layer of input or experimental variables in the
model for PU consisted of the repeating unit in the synthesized
polymer split into chemical structural units per kg of polymer,
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FIGURE 3 | Chemical structures of reactants used in the training set (A) hexamethylene diisocyanate (B) isophorone diisocyanate (C) toluene diisocyanate (D)

PTMEG 1000 and (E) polycaprolactone 900.

molecular weights and densities of the diisocyanates and polyols,
the NCO:OH indices and the estimated chain length of polyols,
assuming a PDI of 1. The chemical structures of the diisocyanates
and polyols used in the training set are depicted in Figure 3.
Each of the 18 polymers synthesized from these reactants have
been categorized into a vector of structural units per kg of
polymer (c, ch, ch2, ch3, c6h6, co, nh, o, nh2) calculated from the

groups present in the reactants—the diisocyanates and polyols,
the NCO:OH index, chain length of polyols and the total weight
of the polymer synthesized.

The middle layer or the intermediate physical/chemical
variables have been grouped into three categories: the first
will probe into the intermolecular interactions and absorption
characteristics of the synthesized polymer molecule through

Frontiers in Materials | www.frontiersin.org 4 May 2019 | Volume 6 | Article 87

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Menon et al. Machine Learning Model of Polyurethanes

FIGURE 4 | Mechanical responses measured for the training set of 18 polymers.

FIGURE 5 | Lattice plot depicting the relation between various mechanical properties.
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FT-IR spectroscopy (Siesler, 1980). The presence of spectral
features in specific regions of the spectrum is indicative of
certain functional groups which have vibrational modes with
large displacements and are minimally affected by the presence of
other functional groups or atoms (Griffiths and de Haseth, 2007).
For our study on polyurethanes, the wavenumbers exhibited by
CO and NH groups as well as the ratio of absorbance values of
NH to CO groups for each sample, are of particular importance
and will provide better correlation to mechanical responses. It
has been observed before that the CO stretching vibration and
NH stretching vibration show different wavenumbers depending
on the degree of H-bonding as well as crosslinking occurring
due to trifunctional hydroxyl group polyol which significantly
impact mechanical properties of such polyurethanes (Tsai et al.,
1998). It is expected that a particular amount or degree of
these factors, h-bonding and crosslinking, which results in the
optimal mechanical response suited to a particular end-user
application. The degree of H-bonding is also influenced through
the symmetry of chemical structure of the reactants and presence
of even/odd number of atoms (Caracciolo et al., 2009), making
these variables highly significant for model prediction. These
variables have been parameterized with respect to all the bottom-
layer variables using a Gaussian regression-based framework
using the scikit learn—ML library in Python (Williams and
Rasmussen, 1996; Pedregosa et al., 2011). The FT-IR variables
were then recalculated using the predict function from the
Gaussian process models to be used with the top-layer variables.

The second set of middle layer variables consists of
intermolecular chain interactions and properties pertaining to
polyurethane polymer system. Hard segment (HS%) and soft
segment (SS%) were easily calculated by mass of diisocyanate
and polyols with respect to the total mass of the polymer.
Similarly, % aromatic and % cyclic (non-aromatic) nature was
calculated based on mass of respective structural units with
respect to total mass of polymer. The solubility parameter
and cohesive energy density (CED) was calculated using molar
attraction constant, molar volume and cohesive energy of
the polymer repeating unit using a group additivity-based
approach on the structural units present in the bottom layer.

The values for group contributions to the molar attraction
constant, molar volume and cohesive energy are easily available
in literature and have been extensively used before, for other
polymer systems.

The third set of middle layer variables were the predictions of
chain architecture from Monte Carlo simulations as described
in the section above. Based on existing literature, these
three categories of variables sufficiently model the main
forces and interactions that govern the mechanical behavior
of polyurethanes—the microstructure consisting of soft
and hard domains which control permanent deformation,
high modulus and tensile strength, hydrogen bonding
between neighboring polymer chains control the elasticity
as well as strain deformation behavior whereas simulation of
chemical crosslinking addresses the mechanical behavior due to
network formation.

Finally, the top layer, which consists of system responses
(stress-at-break, strain-at-break, and Tan δ) have been modeled
with the middle-layer variables using a random forest regression-
based model from the scikit-ML library in Python. Random
forest regression is an ensemble learning technique based on
multiple decision trees learned from the provided variables.
One of the advantages of a random forest model is its use of
bagging or bootstrap aggregation where each decision tree is
modeled on a subset of the input set but by drawing samples
with replacement the subset has the same size as the original
input set. Then, averaging is performed on all the decision trees
to improve the prediction accuracy and to control overfitting.
The number of decision trees used in our training set is equal to
100 and the max depth of trees was unrestricted since modeling
was performed on a sparse dataset and are not concerned
about memory consumption or computational efficiency, thus
leading to better predictive power for the model. The estimator
used from scikit -ML library is a “RandomForestRegressor”
with the following attributes: bootstrap = True,
criterion = “mse,” max_depth = None, max_features = “auto,”
max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, min_samples_leaf = 1,
min_samples_split = 2, min_weight_fraction_leaf = 0.0,

TABLE 1 | Training and test scores for GP model between FTIR variables and bottom layer variables.

ML framework CO_W NH_W NH_A per CO_A

Train score Test score Train score Test score Train score Test score

Gaussian processes regression 0.89 0.63 0.99 0.92 0.97 0.96

TABLE 2 | Training and test scores for HML and Random Forest modeling of mechanical properties as a function of composition.

Strain at break Stress at break Tan δ

Train score Test score Train score Test score Train score Test score

HML 0.92 0.94 0.93 0.92 0.85 0.85

Random forest 0.87 0.50 0.85 0.58 0.80 0.24

HML provides significantly greater accuracy through embedding domain knowledge in the algorithm, allowing it to build predictive models from small datasets.
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FIGURE 6 | Feature importance plots from the trained Random Forest model for each of the mechanical responses measured.
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n_estimators = 100, n_jobs = 4, oob_score = False,
random_state = 0, verbose = 0, warm_start = False. Each
of these attributes are well described at the scikit learn website
for random forest regression:

https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestRegressor.html

and the code is available with Supplementary Files.

RESULTS AND DISCUSSION

Figure 4 shows the mechanical responses for the training set. In
general, Tan δ and strain-at-break are expected to decrease and

FIGURE 7 | Predicted vs. actual values for all mechanical responses from the

HML model.

stress-at-break is expected to increase with increasing NCO:OH
index associated with the transition from rubbery toward a glassy
state (Petrović et al., 2002; Levine et al., 2012) due to the presence
of increasing urea linkages in the polymer network frommoisture
cure of excess NCO content. Furthermore, similar trends are
expected with a general replacement of a bifunctional polyol with
a higher functionality polyol, owing to crosslinking and network
formation (Dušek and Dušková-Smrčková, 2000). Crosslinking
also occurs either physically through hydrogen bonding between
hard urethane segments or chemically through allophanate
linkages due to excess NCO content during the polymerization
reaction (Kontou et al., 1990). We see that even though some of
our samples show expected behavior, others behave differently in
either different response metrics or in all of them. In Figure 5, it
can be observed that there is poor correlation between the various
responses under a wide range of attained measurements. The
diagonal grid represents the one-dimensional spread of values
for single responses whereas the top right section represents the
scatter plot correlation between response pairs and the bottom
grid represents the two-dimensional spread as well as density of
values for the response pairs. This suggests that there are multiple
factors controlling these responses that may be competing.

In order to deconvolute the relationship between these
mechanical responses and the variables in the bottom layer
of the model, the middle layer variables of our algorithm
were parameterized in terms of the variables in bottom layer.
Here, CO wavenumber, NH wavenumber and the ratio of NH
absorbance per CO absorbance were modeled with a Gaussian
Process regression using a train/test split to ensure accuracy
and predictive capability. The train and test scores for the three
variables are shown in Table 1. The IR values were regenerated
from the learned GP model to be used further in the next
training step.

The solubility parameter and the cohesive energy density for
the polymers were calculated using group contribution methods
(Van Krevelen and Te Nijenhuis, 2009) using the equation (1) for
solubility parameter

δ =

∑
Fi/

∑
Vm,i (1)

where Fi is the molar attraction contribution and Vm,i is the
molar volume contribution for the ith structural unit in the
bottom layer and the equation (2) for cohesive energy density is

ecoh =
∑

Ecoh,i/
∑

Vm,i (2)

where Ecoh,i is the cohesive energy contribution for the
ith structural unit in the bottom layer. HS%, SS%, nEff,
elastic_link_mtw, Mtw, sol_pctWgt, and core_pctWgt were
calculated and simulated as mentioned in the previous section.

After generating the set of middle layer variables, a random
forest regression model was fitted between the latter and
the mechanical responses (stress-at-break, strain-at-break, and
Tan δ), and the train/test scores for all responses are shown in
Table 2. The feature importance values from the RF model are
shown in Figure 6, the predicted vs. test values are shown in
Figure 7 and the ensemble averaged trees are shown in Figure 8.
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FIGURE 8 | Ensemble averaged decision tree from Random Forest model trained to predict (A) strain-at-break (B) stress-at-break, and (C) Tan δ.

Interestingly, the most important features for prediction of
strain-at-break from the trained model were CO wavenumber,
NH absorbance per CO absorbance, cohesive energy density,
and NH wavenumber. This could be due to the vibrational

shift in the CO and NH bands, which relate to the chemical
environment obtained with different reactant combinations
(polyols and diisocyanates) whereas the ratio of carbonyl peak
absorbance to amide peak absorbance may indicate the effect
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FIGURE 9 | Predicted vs. actual values for all mechanical responses from the

Random Forest model, using a black-box approach.

of NCO:OH index. The shift in frequencies is an indication of
hydrogen bonding strength between polymer chains, primarily
due to interactions between CO andNHgroups. Strong hydrogen
bonding between the groups will make the bond within the
carbonyl and NH groups weaker, for e.g., HDI and PTMEG 1000
exhibit strong hydrogen bonding, thus higher strain at break
as the CO wavenumber is ∼1,683 cm−1 and NH wavenumber
is ∼3,318 cm−1. Similarly, between HDI and PCL 900, weaker
hydrogen bonding reduces strain at break where the CO

wavenumber is ∼1,732 cm−1 and NH wavenumber is ∼3,380
cm−1. Cohesive energy density is a proxy for intermolecular
forces within polymer chains, and as such strongly links to forces
required for mechanical deformation of a polymeric material.
CED is also notable as a property prediction tool for calculating
relative strain at failure for similarly networked chains i.e., under
presence of moderate chemical crosslinking, CED can improve
toughness of chains during large strain deformation (Safranski
and Gall, 2008). Other parameters in our model such as %
cyclic and Mtw (average molar weight of core gel component
as a percentage of total polymer weight) also have smaller yet
influencing behavior on strain.

Apart from the FTIR derived variables, the model for stress
shows a reliance on hard segment %, core_pctWgt (percentage
of core gel component) and % aromatic behavior. This makes
sense as the hard segment in a polyurethane is the load
bearing component under mechanical deformation and as a
result, induces most of the elastic response in the system. At
higherHS%, urethane—urethane hydrogen bonding in particular
is also increased. The core gel component represents the
crosslinked structure in a polyurethane which again corresponds
to mechanical strength and load bearing nature of the polymer.
It is interesting that the model identified % aromatic behavior
as an important feature: it impacts mechanical strength due to
much more efficient hydrogen bonding and pi-stacking between
aromatic groups in neighboring chains. Aromatic groups in
isocyanates account for stiffer chains and result in a higher
melting point polyurethane as well.

Tan δ represents the damping behavior in the mechanical
performance of a viscoelastic polymer, i.e., the ratio of plastic
behavior to elastic behavior. Thus, it was not surprising
to observe both hard segment % and soft segment %
as important features, however % cyclic behavior has an
interestingly significant impact on Tan δ. Even though cyclic
groups correspond to stiffness and rigidity, they contribute less
than aromatic groups due to the possibility of configurational
isomerism as well as non-planar structures. This might explain
the ability of these groups to absorb more energy while
mechanical stress is applied and provide a good balance between
elastic and plastic performance. Other crucial features which
were identified in the model were the CO wavenumber, cohesive
energy density, and mer solubility parameter.

Each random forest model shown in Figure 8 represents an
averaged decision tree from an ensemble of decision trees, for
each mechanical response. The random forest classifier from
Python scikit learn uses bootstrap aggregating in which multiple
decision trees are modeled on subsets of training data, chosen
randomly with replacement. Each predictor or feature is learned
and is split for values based on a mean squared error reduction
scheme, which is continued until all the data is split till the last
node. Bootstrap aggregation is an excellent stochastic method of
avoiding overfitting in the trained model and reduces variance in
result without increasing the bias of themodel. In random forests,
this allows for an out-of-bag (OOB) error estimate to measure
prediction error of a trained decision tree on the subset of data
not used in that tree, thus negating the need of an independent
validation dataset.
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In order to evaluate the prediction efficiency on the sparseness
of the training set, a standard big data approach was taken
where the same random forest framework was applied on a
training set containing the mechanical responses and our tunable
formulation variables namely, polyol choice, diisocyanate choice,
and NCO:OH index. As expected, the model converged with
significantly lower test scores as shown in Table 2 and the
predicted responses vs. test data can be seen in Figure 9.

If compared with other approaches, this methodology mainly
benefits from the planned surrogate physical and chemical
measurements, and existing scientific literature to embed domain
knowledge with statistical learning to strongly improve predictive
capability. In traditional material industries, high throughput
data for a single product family with specific end user application
is hard to collect; it requires huge investment in time, effort, and
cost. Thus, computational techniques relying on big data will
not be beneficial for shortening the research and development
cycle in such industries as shown earlier. Analytical approaches
are better in some respects as they have physical laws and
chemistry as underpinnings for property prediction however
most of the approaches are highly complex to practically
apply in an industry setting and highly sensitive to lack of
required data/measurements. Design of experiments offers an
accepted method for predicting structure-property relationships
for small datasets, yet it does not provide insight into how
the underlying forces interact with each other to achieve a
specific system response since it is purely statistical in nature
andmay not accurately predict synergies between variables. HML
aims to learn from the shortcomings as well as advantages of
the previous mentioned approaches by utilizing and building
upon the existing scientific domain expertise with much lesser
measurements, providing a tool for not only property prediction
but also to elucidate upon the nature of physical and chemical
interactions that shape a system response.

CONCLUSION

Using HML algorithm, mechanical responses of a training set
of polyurethanes were as a function of monomer chemistry,
index, and chain architecture. The accuracy was compared
against a random forest model and it was found that HML
produced significantly better predictions of the test data. This
was attributed to integration of an intermediate layer of variables
comprising domain knowledge based physicochemical factors
which significantly improved the model relating experimental
formulation variables and mechanical responses of the cured
elastomers. Some of the advantages of this approach are
(a) the possibility of modeling categorical and qualitative
responses of polyurethane products to formulation and
processing variables and (b) predicting the properties of novel
monomers, such as bio based materials. In future work, we
intend to model such responses and also test our model by
substituting polyols and diisocyanates to further investigate
the predictive nature and capability of the HML algorithm on
polymer systems.
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