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The fast-growing interest in smart textiles for wearable electronics or sensors is stim-
ulating considerable activity in the development of functional fibers and fabrics that 
incorporate graphene, due to its outstanding electrical, mechanical, and thermal prop-
erties, among others. This paper provides an overview of the current state-of-the-art of 
research in this field, and a perspective on the factors decisive to its growth, in particular 
the polymer–graphene interphase.
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iNtrODUctiON

Smart textiles is a broad generic term for materials that have been woven like typical fabrics but can 
integrate advanced functions such as energy storage and conversion (Weng et al., 2016), sensors (Lee 
et al., 2016), color change (Gauvreau et al., 2008), drug release (Yetisen et al., 2016), or can deliver 
responses to external stimuli, among others. Smart textiles are fabricated by the incorporation of 
functional components into conventional textile regimes (Hansora et al., 2015) offering platforms 
sensitive to mechanical, electrical, thermal, optical, or magnetic stimuli. Graphene can be consid-
ered an interesting candidate as the functional component in smart textiles due to its outstanding 
properties (electrical, mechanical, thermal, optical, etc.), and its incorporation into synthetic and 
natural textiles could help pave the way for the preparation of multifunctional textiles for wider 
implementation. The introduction of graphene-based smart materials in the market will depend 
fundamentally on the methodologies developed to incorporate graphene into textile devices. In this 
respect, there has been much research directed toward the fabrication of graphene fibers (GrFs) 
(Meng et al., 2015; Xu and Gao, 2015), which exhibit very high-electrical conductivities, but have the 
drawback of poor and unreliable mechanical performance. Thus, combination of graphene with the 
polymer fibers is an alternative approach to enhance mechanical strength, toughness and flexibility 
during use, and deformation.

In this perspective, we will focus on smart textiles based on polymer/graphene composite fib-
ers considering the two main approaches employed to form these materials. These are based on 
the incorporation of graphene before and/or after processing of the polymeric material, and are 
divided into (i) mixing graphene with polymers followed by fiber formation (pre-processing) and 
(ii) graphene (polymer) coating/impregnation of processed polymer (graphene) fibers and fabrics 
(post-processing).

It is our view that this topic has not yet been addressed from a molecular standpoint and there 
is very little information available on the nanomaterial/polymer interphase. The absence of strong 
interactions between the fibers and graphene leads to an inevitable deterioration of the target 
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function before the projected end of life of the product. This can 
be due to a difference in the elasticity coefficient between the 
polymer and graphene, leading to crack formation via twisting, 
stretching, or bending during use and laundering. In fact, one of 
the main challenges of the smart textile industry relates to current 
methodologies used to functionalize the fibers without detri-
ment to the conductivity (Yetisen et  al., 2016). Thus, the main 
motivation for this perspective is to highlight the importance of 
designing strategies to enhance the interphase strength in gra-
phene/polymer composite fibers in order to retain the imparted 
functionality during its lifetime. In this respect, the advances 
in smart textiles composed of natural and synthetic fibers with 
functional materials will progress alongside developments in the 
polymer nanocomposite field.

cUrreNt reseArcH stAtUs

Smart textiles based on natural and synthetic fabrics and gra-
phene have been prepared mostly either by mixing graphene with 
polymers and subsequently forming the fiber or by coating or 
impregnating already-processed polymer fibers and fabrics with 
graphene.

Polymer/Graphene composite Fiber 
Formation (Pre-Processing Methods)
An emerging approach for the preparation of smart textiles 
consists in mixing an insulating polymer with functional com-
ponents like conducting polymers (Seyedin et al., 2015), metal 
nanowires (Yoon et  al., 2015), or carbon nanostructures (Liu 
et al., 2015; Di et al., 2016) and their subsequent integration into 
fabrics. However, the rigid polymer backbone of conducting 
polymers makes their processing difficult, resulting in poor long-
term stability, whilst the addition of metals can present toxicity 
issues and adds weight to the fabrics. On the other hand, the 
addition of graphene can impart flexibility, high modulus, and 
electrical conductivity, without the disadvantage of additional 
weight. Different strategies have been used to integrate graphene 
with polymers during the manufacturing of the fibers. The main 
objective is to simultaneously attain both the mechanical and 
electrochemical properties required for a particular smart textile 
application.

The simplest fabrication method comprises the incorporation 
of graphene into the polymer solution or melt phase and then the 
preparation of composite fibers by wet spinning, electrospinning, 
or melt spinning. Polyvinyl alcohol (PVA)/pristine graphene 
fibers prepared by electrospinning, using an aqueous solution of 
polyvinylpyrrolidone to stabilize the graphene dispersion, dem-
onstrated extraordinary enhancements in modulus (Das et al., 
2013). Improved mechanical performance was also obtained for 
polycaprolactone (PCL)/graphene oxide (GO) and PCL/reduced 
GO (rGO) electrospun nanofibers in which orientation played 
an important role (Ramazani and Karimi, 2015). Conducting 
nanofibers of polyaniline/polyethylene oxide with non-covalently 
functionalized graphene, also fabricated by electrospinning 
exhibited two orders of magnitude enhancement in electrical 
conductivity (Moayeri and Ajji, 2015). Wet spinning has been 

applied to elastomers, and both conducting and insulating 
polymers have been prepared using mainly GO as an additive, 
followed by post-spinning reduction (Ding et  al., 2014; Chen 
et al., 2016; Seyedin et al., 2016). PVA/rGO and polypyrrole/rGO 
fibers prepared by this method showed excellent electrochemical 
performance for use in lightweight supercapacitors (Ding et al., 
2014; Chen et  al., 2016). Melt spinning was used to fabricate 
conducting textile fibers of polypropylene (PP) with hybridized 
graphite nanoplatelets, carbon black filler, and amine functional-
ized graphene/polyamide 6 fibers (Nilsson et al., 2013; Hou et al., 
2014).

A major challenge in this field is to develop wearable energy 
storage and conversion devices, with fiber-based supercapacitors 
being ideal candidates for this purpose. Most of the research in 
this area has been undertaken by infiltrating GrFs with polymers. 
Meng et  al. fabricated flexible core-shell graphene/conducting 
polymer fibers using a simple and efficient strategy (Meng et al., 
2017). The GrFs were initially prepared via a one-step hydrother-
mal strategy, and subsequently poly(3,4-ethyledioxythiophene) 
(PEDOT) was incorporated into the GrFs via in situ interfacial 
polymerization. These fibers showed excellent electrochemical 
properties and sufficient modular flexibility to be woven into 
cloth-like structures. In addition, when incorporated into a solid-
state fiber supercapacitor, they showed better capacitive behavior 
and higher current densities compared with those based on GrFs 
alone. A fiber supercapacitor with higher energy density was 
fabricated based on hollow rGO/[PEDOT:poly(styrenesulfonate) 
(PSS)] composite fibers (Qu et al., 2016). The hollow structure 
was prepared using a solution of GO, PEDOT:PSS, and vitamin 
C to reduce GO in which the rGO sheets formed lyotropic 
nematic crystals. A recent advancement has been the develop-
ment of a stretchable and self-healable supercapacitors produced 
by wrapping rGO-based composite fibers with an outer shell of 
carboxylated polyurethane (Figures 1A–F) (Wang et al., 2017).

However, all these pre-mixing methods, which include efficient 
graphene dispersion and alignment into the fibers and, in some 
cases, chemical, or thermal reduction, result in a complicated 
manufacturing process that ultimately limits their industrial 
viability (Yun et al., 2017).

Post-Processing coatings
An approach to avoid the problems associated with pre-mixing 
consists in impregnating or coating the surface of commercial 
fibers or textiles with graphene or its derivatives from disper-
sions and inks. This route is essentially simpler and easier to 
implement, involving low-temperature processes (especially 
when pristine graphene dispersions are used), is economically 
more feasible at an industrial scale, and is an adopted technology 
already employed.

Due to its better solubility than graphene, GO has been used 
to form coatings on polymeric fibers and fabrics from water and 
organic solvents, followed by conversion to rGO. This protocol 
was employed to produce rGO-based textiles by coating nylon, 
cotton, and polyester fabrics (Yun et al., 2013). The nylon fabrics 
were initially covered with bovine serum albumin, which acts 
as an adhesive, improving the adsorption of GO by electrostatic 
interactions, and rGO was obtained by chemical reduction with 
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FiGUre 1 | (A–F) Self-healing properties of reduced graphene oxide-based composite fibers with polyurethane. Photographs of the fiber electrode within a circuit 
with a LED (A,c,e) and electrical resistance (B,D,F) of the fiber electrode before breaking, after breaking, and after healing. Adapted with permission from Wang 
et al. (2017) with permission from The American Chemical Society. (G,H) Scheme of laser-patterning process to fabricate monolithic sandwich supercapacitor on 
non-woven polypropylene (PP)-GO (G) and photograph of the PP-GO supercapacitor (H). Adapted from Pan et al. (2017) with permission from The American 
Chemical Society. (i) Variation of resistance during bending cycles with bending radius of 5 mm for PP fabrics covered with monolayer (PP2 + G) and few-layer 
graphene (PP2 + FLG). Adapted from Neves et al. (2017) with permission from Nature Publishing Group.
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hydroiodic acid (HI). The materials manifested electrical con-
ductivity that is stable after several cycles of mechanical deforma-
tion, bending, and washing. A similar approach has been recently 
reported, where melt blown PP non-woven fabrics are coated 
with GO from N,N-dimethylformamide dispersions, followed by 
reduction with HI (Pan et al., 2017). The non-woven composites 
formed showed good electrical conductivities and could be 
used to prepare sandwich supercapacitors via laser-patterning 
(Figures  1G,H). Similar strategies have also been used to add 
metal particles to the polymer fibers conducting layer (Pu et al., 
2016; Babaahmadi et al., 2017).

However, chemical reduction is not appealing from an appli-
cation point of view and as such, thermal reduction has also been 
proposed. Torrisi et al. (Ren et al., 2017) infiltrated cotton fabrics 
with GO dispersions by vacuum filtration and then reduced them 
by hot pressing at 180°C. The produced textiles maintained their 
conductivity after a few washing cycles and also demonstrated 

potential as strain sensors, retaining this property for more than 
400 bending cycles.

Due to the poorer properties of rGO compared with graphene 
and the disadvantages of additional reduction steps, non-oxidized 
graphene derivatives, which in principle are harder to process, 
are proposed. In this context, cotton fabric was covered with gra-
phene nanoribbons (GNR) by dipping it into a water/surfactant 
GNR dispersion (Gan et al., 2015). The fabric showed improved 
thermal stability, mechanical properties, and electrical conduc-
tivity after 200 bending cycles. Another approach consisted in 
transferring monolayer and few-layer graphene, obtained by 
chemical vapor deposition (CVD) onto PP, polyethylene, Nylon, 
and poly(lactic acid) (Neves et al., 2017). The materials showed 
very high-surface conductivity, which remained stable after 1,000 
cycles of bending (Figure 1I). However, this strategy is not ideal 
for commercial production of smart textiles due to specific equip-
ment requirements. Also, a CVD-grown graphene mesh has been 
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FiGUre 2 | The effect of the functionalization of graphene with polymer brushes on the properties of its nanocomposites. (A) Schematic representation of the 
polymer/graphene interphase for graphene modified with polymer brushes. (B) Electrical percolation of graphene/polyethylene nanocomposites (Castelaín et al., 
2013a), reproduced by permission of The Royal Society of Chemistry. (c,D) Electromechanical behavior of nanocomposites of graphene with poly (styrene-b-
ethylene-co-butylene-b-styrene) (SEBS). Reproduced from Enrique-Jimenez et al. (2017) with permission from Elsevier.
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used to cover polymers to form transparent and flexible touch 
sensors (Kang et al., 2017). Nevertheless, this adds significantly 
to the cost and is environmentally questionable due to the extra 
process steps needed to prepare CVD graphene, and the need 
for harsh chemicals to remove the metal, respectively. In addi-
tion, effective transfer of CVD-grown graphene onto the fabric 
is inherently conditioned by poor adhesion due to the roughness 
of the substrate.

Beyond the examples described, other strategies based on 
layer-by-layer self-assembly (Tian et al., 2016; Li et al., 2017), or 
printing have also been employed (Amr et al., 2017; Gao et al., 
2017), the latter to a lesser extent, probably due to crack forma-
tion where the structure deforms and to the porous nature of 
textiles (Jin et al., 2017).

tHe rOLe OF cHeMistrY tO 
MODULAte tHe iNterPHAse

In graphene-based polymer nanocomposites containing com-
ponents with very different but complementary properties, the 
principal factor to obtain materials with superior performance 
resides in the nature of the polymer/graphene interphase. The 
stronger the interphase the better the transfer of properties 

between components. Therefore, much effort has been devoted to 
control the graphene/polymer interphase. Polymer nanocompo-
sites have evolved from the initial simple mixing of components 
to the implementation of complex chemical routes and processing 
strategies that have resulted in near optimal transfer of the filler 
properties of toughness, electrical conductivity, thermal stability, 
etc., whilst maintaining the versatility and ease of processing of 
the chosen polymer. Thus, we are convinced that the field of smart 
textiles based on polymer fibers and graphene is likely to advance 
in parallel with the polymer nanocomposites field. In this respect, 
it is important to point out that the latter is still in an early stage 
of progress and substantial advances and developments can be 
envisaged in the coming years. Among these, the most effective 
improvements will stem from further understanding and precise 
control of the graphene/fiber interphase.

It is also suggested that research and production of polymeric 
textiles coated with conductive graphene layers can take advantage 
of the molecular-level design of bulk polymer nanocomposites, 
particularly with a view to property retention after mechanical 
deformation (strain, bending, and even twisting) and washing 
cycles. To the best of our knowledge, to date only a couple of exam-
ples of chemical functionalization of graphene and its derivatives 
for smart textiles and wearable electronics have been reported 
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