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Nanomaterials have attracted the interest of tissue engineers for the last two decades. 
Their unique properties make them promising for de novo fabrication of bio-inspired 
hybrid/composite materials with improved regenerative properties, including, for exam-
ple, the capacity for electric conductivity and the provision of antimicrobial properties. 
However, to this day, the use of such materials in medical applications is rather limited and 
most of the studies have only reached the archetypical proof-of-concept stage. Herein, 
we present a review on the use of nanomaterials in tissue engineering for regenerative 
therapies of heart, skin, eye, skeletal muscle, and nervous system. The advantages and 
limitations of nano-engineering materials are presented in this review alongside with the 
future challenges and milestones nanotechnology must overcome to make an impact in 
biomedical applications.
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iNTRODUCTiON

In the early 2000s, it seemed that materials with improved regenerative properties would come 
from the combination of biocompatible platforms and nanometric materials (size scale 10−9 m) 
(Morrow et al., 2007). However, to this day, a relatively small number of materials based on or 
containing nanoparticles (NPs) are being used in medicine (Morrow et al., 2007; Etheridge et al., 
2013). Some examples of nanomaterials used in the clinic are listed in Table 1. For example, the 
Nanotechnology Characterization Laboratory (NCL) in a joint effort with two pharmaceutical 
companies (AstraZeneca and Pfizer) (Pan, 2015) has supported the development of new nano-
technologies for cancer therapeutics (Morrow et  al., 2007). However, despite the considerable 
improvement in product manufacturing practices over the past years, safety concerns for human 
use remain the biggest obstacle for effective translational applications. One of the main reasons for 
this is the limited amount of reliable, and sometimes contradictory, scientific literature regarding 
the toxicity of nanomaterials in living organisms, which is due in part to:

•	 Poor standardization for NP production, which in turn limits reproducibility and scale-up pro-
duction, particularly in batch-to-batch consistency (Franca et al., 2013).

•	 Limited knowledge of long-term effects of nanomaterials in living organisms (Buzea et al., 2007; 
De Jong and Borm, 2008; Bondarenko et al., 2013).
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TABLe 1 | Selected nanotechnologies in development or approved for use in clinical applications.

Category in development Currently approved

Cardiovascular 
system

 – ReZolve, ReZolve2, and Fantom scaffolds  (O’Brien et al., 
2015) (bioresorbable stent, phase I/II)

 – NOX-E36: L-RNA with 3′ PEG aptamer (Keefe et al., 2010) 
(type II diabetes, phase I)

 – Stratus® CS System (Nanjwade et al., 2009) (in vitro cardiac marker 
detection)

Epidermis/surface 
applications

–  – Acticoat (Westaim Biomedical Corp., Fort Saskatchewan, AB, Canada) 
(Yin et al., 1999) (wound dressing with antimicrobial properties 
containing silver)

Neurological 
applications

 – CNTF-producing cells encapsulated in polymers (Orive 
et al., 2009) (macular degeneration, Huntington disease)

 – NeuraGen and NeuroMatrix (Seil and Webster, 2010; Daly et al., 2012) 
(collagen type I – peripheral nerve repair)

 – Neurolac (Daly et al., 2012) (PCLC – peripheral nerve repair)

Skeletal muscle 
reconstitution

 – SIS and UBM ECM scaffolds (Grasman et al., 2015) (VML 
defect recovery, small clinical study)

 – Vitoss (Ventola, 2012; Etheridge et al., 2013) (scaffold for bone 
regeneration)

Ocular therapeutics  – Nanoceria (CeO2 NPs) injection (Walkey et al., 2015) (anti-
inflammatory activity, SOD mimic)

 – Nanoemulsions (Chaurasia et al., 2015) [Restasis (2002), Durezol (2008)]
 – Pegaptanib/Macugen (Morrow et al., 2007; Keefe et al., 2010) (RNA-

aptamer therapy for age-related macular degeneration)

Non-specific 
diagnosis/imaging

 – Nanochips (Morrow et al., 2007; Ventola, 2012; Etheridge 
et al., 2013) (biomarker detection)

 – Implantable devices (Morrow et al., 2007; Ventola, 2012) 
(point-of-care detection/in vivo regulation)

 – Quantum dots (Morrow et al., 2007; Ventola, 2012; 
Etheridge et al., 2013) (diagnostic imaging/targeted delivery)

 – Iron oxide NPs (Morrow et al., 2007; Ventola, 2012; 
Etheridge et al., 2013) (MRI contrast agents)

 – Omniscan (Ventola, 2012) (NP MRI contrast agent)
 – Combidex (Morrow et al., 2007; Ventola, 2012) (NP MRI contrast agent, 

approved: Europe, pending: U.S.)
 – Verigene (Morrow et al., 2007; Ventola, 2012) (functionalized gold NPs, 

diagnostics)

Non-specific 
therapeutics

 – DEP™ docetaxel (Nanjwade et al., 2009) (cancer drug 
delivery, phase I)

 – Cationic liposomes (Smith et al., 2013) (immunostimulation/
vaccination)

 – Nanoemulsions: W805EC (Smith et al., 2013) (antimicrobial 
activity/adjuvant activity)

 – Cervarix/Gardasil (Smith et al., 2013; Herreros et al., 2014) (VLP vaccine 
for HPV)

 – Euvax B (Smith et al., 2013; Herreros et al., 2014) (VLP vaccine for 
Hepatitis B)

 – CellSearch (Morrow et al., 2007; Arya et al., 2013; Etheridge et al., 
2013) (NP-antibody detection for circulating tumor cells)

 – SilvaGard (Ventola, 2012) (AgNP coating for medical device sterilization) 
(Mehta et al., 2015) 
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•	 Most materials are mainly tested at the proof-of-concept 
stage in  vitro, and follow-up publications are rarely seen 
[see (Pedrosa et  al., 2015) for a specific discussion on gold 
nanoparticles (AuNPs)].

These issues have severely impacted the translation of nano-
engineered materials for clinical uses, where incorporation of 
NPs within the 3D structure, see Figure 1, of the scaffold could 
help overcoming some of the most important limitations of 
regenerative scaffolds and therapies that include:

•	 Enhancement, or modulation, of the mechanical properties of 
the template (Banquy et al., 2009; Gaharwar et al., 2014).

•	 Manufacturing of environment responsive scaffolds (pH, ionic 
strength) see review by Gaharwar et al. (2014).

•	 Support of electrical conductivity (Dvir et  al., 2011; Balint 
et al., 2014).

•	 Improved resistance to bacterial colonization (Alarcon et al., 
2015, 2016).

Despite the increasing number of publications using hybrid/
composite materials for biomedical applications seen in the 
past decade, the field is in its infancy in terms of understand-
ing the complexity of nanoscale interactions between biopoly-
mers and NPs. However, before we can fully understand, and 
eventually manipulate these interactions, we need to review 

the state-of-the-art on hybrid/composite materials for tissue 
engineering. Thus, herein, we discuss some relevant advances 
in regenerative materials/scaffolds that have employed nano- 
engineered components in their fabrication. We have further tar-
geted inorganic NPs, and peptides reported for use in regeneration 
of the following organs: heart (see Nano-Engineered Materials 
for Cardiac Tissue Regeneration), skin (see Nano-Engineered 
Materials for Skin Wound Healing), eye (Section Nanomaterial 
Therapeutics for Eye Regeneration), skeletal muscle (SM; see 
Nano-Engineered Materials for Skeletal Muscle Repair), and 
nervous system (see Nanomaterials for Peripheral and Central 
Nervous System Regeneration). Additionally, we focused our 
literature selection on studies that included in  vivo assessment 
of the materials, which we hope will help the reader to gain a 
more complete picture of the potential translational application 
of nano-engineered materials.

NANO-eNGiNeeReD MATeRiALS FOR 
CARDiAC TiSSUe ReGeNeRATiON

Nanoparticle-Based Materials for Cardiac 
Tissue and vascular Repair
Cardiovascular tissue engineering strategies have been investi-
gated in order to regenerate or repair scar tissue and/or hibernating 

http://www.frontiersin.org/Materials/
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FiGURe 1 | Diagram representation for the fabrication of hybrid regenerative templates (tissue scaffolds) containing nanoparticles. Note that this 
simplified representation does not consider covalent and non-covalent surface modification of the nanoparticle prior incorporation/preparation of the regenerative 
scaffold. Such scaffolds can be either applied in situ or used as an in vitro template. Incorporating nanoparticles within the scaffold can modify the mechanical–
physical properties, produce stimuli-responsive materials, boost the conductivity of the scaffold, and even provide protection against bacterial colonization. Such 
materials can be seen as tools for developing new, or de novo, therapeutics for regenerative medicine.
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myocardium following ischemic injury, in particular myocardial 
infarction (MI) (Pfeffer and Braunwald, 1990). Heart failure fol-
lowing MI continues to be a prevalent complication, in spite of 
current surgical revascularization techniques, due to the limited 
regenerative capacity of cardiac muscle (Sutton and Sharpe, 2000). 
Nanomaterials have been incorporated as critical components of 
experimental tissue engineering strategies for regeneration and 
repair of cardiac tissue (see Nguyen et al., 2015b). Nanomaterials 
can convey many benefits to cardiac tissue engineering and 
regeneration strategies including:

i. Metal NPs and carbon nanotubes (CNTs) can increase 
the conductivity of biomaterial scaffolds (Shin et  al., 2013; 
Shevach et al., 2014; Zhou et al., 2014).

ii. Nanofibers can be used to more closely mimic the nano-
topography of the cardiac extracellular matrix (ECM), which 
allows for better cell connections, differentiation and organi-
zation (Davis et al., 2005; Mukherjee et al., 2011).

iii. Some NPs have inherent antioxidant properties, which could 
be beneficial for cell survival under conditions of oxidative 
stress within the infarct region (Niu et al., 2007).

In this section, we will review some representative examples 
for the use of nanomaterials in cardiac regenerative therapeutic 
applications. Table 2 presents a summary of the main findings 
of the technologies discussed in this section and in Figure 2, we 
schematically depicted some of the technologies discussed in this 
review.

Iron oxide nanoparticles (IONP) occupy a special place in 
cardiovascular therapies as diagnosis agents; however, they 
have also recently sparked interest in the field of regenera-
tive therapies for cardiac tissue by allowing the manipulation 
of cells containing IONP with an external applied magnetic 
force (Ito et  al., 2005; Cheng et  al., 2010; Souza et  al., 2010). 
Several superparamagnetic IONP formulations (a.k.a. SPIO) 
(3–10 nm diameter) have been approved by the Food and Drug 
Administration agency (FDA) as magnetic resonance imaging 
(MRI) contrast agents for inflammatory diseases, as they are 

readily taken up by monocytes and macrophages following 
intravenous injection (Reimer and Balzer, 2003; Li et al., 2013). 
Pre-clinical and clinical studies have shown benefits of SPIO 
contrast agents in MRI-based detection of the infarct region 
post-MI (Yilmaz et al., 2012, 2013). The first application of SPIO 
in cardiovascular regenerative medicine therapies was to label 
exogenous stem cells in order track these cells after injection into 
the infarct region in rodent models of MI (Kraitchman et  al., 
2003). While several studies show that IONPs do not affect cell 
viability, phenotype or therapeutic potential (Au et al., 2009; Li 
et al., 2013), other studies have raised concerns on their safety 
(Mahmoudi et  al., 2011, 2012; Ge et  al., 2013). Furthermore, 
their ability to track transplanted cells by MRI is controversial 
as the uptake of IONP by resident macrophages in the advent 
of transplanted cell apoptosis results in false-positive signals 
of cell engraftment in the infarct (Amsalem et  al., 2007). In 
addition to their use in imaging studies, super-paramagnetic 
iron particles were used to reduce acute wash out of transplanted 
cells from the infarct region in a rat MI model by iron labeling 
cardiosphere-derived cells (CDCs) in  vitro and then apply-
ing a magnetic force over the infarct post-injection (Cheng 
et  al., 2010). This magnetic targeting technique was able to 
increase retention of CDCs in the infarct region, which lead 
to improve cardiac function, reduced ventricular remodeling, 
and reduced infarct expansion post-MI (Cheng et al., 2010). In 
tissue engineering applications, magnetic force has been used to 
successfully manipulate IONP labeled cells in culture to create 
3D tissue arrangements, including 3D small-diameter vascular 
grafts with three layers of cells containing IONP (endothelial, 
smooth muscle, and fibroblast cell layers) (Ito et al., 2005; Souza 
et al., 2010). A novel application of IONP by (Han et al., 2015) 
was to enhance the cardiac lineage differentiation of mesenchy-
mal stem cells (MSCs) prior to delivery to the infarct region 
post-MI in an effort to enhance cardiomyocytes regeneration. 
It was proposed that IONP triggered an intracellular signaling 
cascade, which enabled gap junctional coupling of IONP-
cardiomyocytes with MSCs, and further activated cross-talk 
between cells. In this study, a co-culture system of MSCs with 
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TABLe 2 | Nanoparticles in treatment strategies for heart failure prevention: effects on cardiac function and infarct repair in vivo.

Nanoparticle Application Dimensions Animal 
Model

Treatments Functional effects Mechanism Reference

Super-
paramagnetic 
microspheres 
(SPM), 
composed of 
iron oxides

Magnetic targeting 
of CDCs to the 
infarct region to 
improve retention 
of transplanted 
cells in cellular 
cardiomyoplasty

D = 900 nm WKY rats, 
F, 8 weeks 
old, MI:  
LAD  
ligation

IM post-MI surgery, 
1 × 106 CDC-SPM 
or CDCs alone 
±10 min magnet 
placed over apex, 
100 μL sample 
injected

3 weeks post-MI 
CDC-SPM+ magnet: ↑ 
LVEF, ↓ scar size, ↓ LV 
expansion, ↑ viable 
myocardium, ↑ infarct 
thickness compared 
to CDC, or CDC-SPM 
-magnet

↑ CDC retention due to magnetic 
targeting at 24 h and 3 weeks 
post-MI, ↑ α-SA+ myocytes both 
from CDCs and paracrine effects on 
endogenous precursors

Cheng 
et al. (2010)

Iron oxide 
nanocubes

Taken up by CMB 
cell line to prime 
MSCs to develop a 
cardiac lineage to 
improve regenerative 
potential for MI

Le = 22 nm SD rats, 
8 weeks  
old, MI:  
LAD 
ligation

IM 1 h post-MI 
surgery, 60 μL of 
PBS ± 1 × 106 
MSCs or IONP 
primed MSCs

2 weeks post-MI primed 
MSCs: ↑ EF, ↑ FS, ↓ 
LVIDd/s, ↓ fibrosis, ↓ infarct 
size as compared to MSCs 
or PBS

IONP-CM priming of MSCs: 
↑ JNK mediated Cx43 gap junction 
expression, ↑ βMHC, MLC2a/v 
expression, ↑ VEGF, HGF, bFGF 
secretion, ↓ apoptosis, ↑ capillary 
density

Han et al. 
(2015)

Cerium oxide 
nanoparticles

Free radical 
scavenger to reduce 
oxidative stress and 
prevent heart failure 
due to ischemic 
cardiomyopathy

D = 7 nm FVB/N mice 
with over-
expression 
of MCP-1 
in cardiac 
tissue

5-week-old WT or 
MCP-1 mice: IV 
injection of 100 μL 
PBS ± 0.15 mM 
CeO2 twice/week 
for 2 weeks

6 months: ↑ FS, ↓ LVEDD, 
↓ HW/BW, ↓ fibrosis in 
MCP-1 mice treated with 
CeO2 compared to PBS

↓ monocyte/macrophage infiltration, 
↓ apoptosis, ↓ pro-inflammatory 
cytokines (TNF-α, IL-1β, IL-6), 
↓ MCP-1 and CRP levels in plasma, 
↓ ROS, ↓ myocardial ER stress

Niu et al. 
(2007)

Reduced 
graphene 
oxide flakes 
(RGO)

Improve efficacy of 
MSC cell therapy 
for regeneration post-
MI by incorporating 
RGO into MSC 
spheroids

L = 2–5 μm BALB/c 
nude mice, 
M, 8 weeks 
old, MI: 
LCA ligation

IM 1 week post-MI: 
50 μL PBS ±5 μg/
mL RGO, 3 × 105 
MSC or both

2 weeks post-treatment 
RGO-MSC: ↑ EF, ↑ FS, 
↓ LVIDs, ↓ fibrosis 
compared to all other 
groups, LVIDd no change

↑ capillary density, ↑ Cx43 gap 
junction density, RGO ↑ MSC 
integrin β1-fibronectin interaction, 
↑ FAK and ERK signaling, and 
↑ VEGF, FGF2, and HGF secretion

Park et al. 
(2015a)

H = 1–2 nm

Graphene 
oxide (GO) 
flakes

Reduce MSC 
cell death due 
to ROS from I/R 
injury post-MI and 
improve regenerative 
benefits of cellular 
cardiomyoplasty

L = 1–6 μm SD rats, 
8 weeks 
old, I/R LAD 
ligation 1 h

IM after I/R: 60 μL 
of PBS ± 1 × 106 
MSCs alone or 
MSC +10 μg/
mL GO

14 days post-I/R: ↓ LVIDs, 
↑ EF, ↑ FS, ↓ fibrosis and 
↓ infarct area in MSC-GO 
group compared to all 
other groups

↑ number, ↓ apoptosis MSCs, 
↑ arteriole/capillary density, GO 
↑ survival and maintains VEGF/FGF2 
expression of MSCs subjected to 
ROS and loss of ECM attachment, 
↑ integrin β1-FAK inhibition of 
caspase 3

Park et al. 
(2015b)

H = 1.5 nm

CDC, cardiosphere-derived cells; D, diameter; WKY, Wistar Kyoto; LAD, left anterior descending coronary artery; MI, myocardial infarction; IM, intramyocardial; MSC, mesenchymal 
stem cells; CMB, cardiomyoblast; Le, edge length; SD, Sprague-Dawley; F, female; M, male; IONP, ion oxide nanoparticle; LCA, left coronary artery; MCP-1, monocyte 
chemoattractant protein; WT, wild type; IV, intravenous; PBS, phosphate buffered saline; H, height; I/R, ischemia reperfusion; LV, left ventricular; LVEF, left ventricular ejection fraction; 
EF, ejection fraction; FS, fractional shortening; LVIDd, left ventricular internal diameter at end diastole; LVIDs, left ventricular internal diameter at end systole; LVEDD, left ventricular 
end diastolic diameter; HW/BW, heart weight to body weight ratio; α-SA, alpha sarcomeric actin; JNK, c-jun N-terminal kinase; Cx43, connexin 43; βMHC, myosin heavy chain beta; 
MLC2a, atrial myosin light chain 2; MLC2v, ventricular myosin light chain 2; VEGF, vascular endothelial growth factor HGF, hepatocyte growth factor; bFGF, basic fibroblast growth 
factor; TNF-α, tumor necrosis factor alpha; IL, interleukin receptor; CRP, c-reactive protein; ROS, reactive oxygen species; ER, endoplasmic reticulum; FAK, focal adhesion kinase; 
ERK, extracellular signal related kinase; FGP, fibroblast growth factor.
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IONP-cardiomyoblasts was employed and the presence of IONP 
effectively increased cardiomyocyte (CM) markers, gap junc-
tions, and pro-angiogenic cytokine expression in MSCs (Han 
et  al., 2015). These primed MSCs were easily separated from 
the IONP-cardiomyoblasts via magnetic-activated cell sorting 
and had significantly greater therapeutic efficacy in a mouse MI 
model, in terms of preserved cardiac function, lower fibrosis, 
infarct scar area, and survival 2  weeks post-MI compared to 
unprimed MSCs (Han et al., 2015).

Gold nanoparticles (AuNPs) and gold nanorods (AuNRs) have 
been investigated in biomaterial scaffolds to boost conductivity in 
an effort to improve propagation of electrical signals through an 
engineered cardiac tissue, which will ultimately enhance in vivo 
integration. AuNRs were incorporated into alginate hydrogels 
to improve the electrical conductivity of the material and aid 
in the coupling of cardiomyocytes seeded within the scaffolds 

(Dvir et  al., 2011). The incorporation of the nanorods (NRs) 
improved the connection and alignment of seeded cardiac cells 
(cardiomyocytes and fibroblasts), and increased gap junction 
proteins and expression of proteins involved in contraction and 
electrical conductivity (Dvir et  al., 2011). AuNPs have been 
incorporated into decellularized omentum tissue scaffolds to 
decrease scaffold electrical resistance with the goal to produce 
autologous cardiac patches (Shevach et al., 2014). The incorpora-
tion of neonatal cardiac cells into these AuNP-conjugated scaf-
folds reduced the threshold required for contraction compared 
to the biomaterial alone, which was accompanied by greater 
gap junction protein expression, striation formation similar to 
cardiac muscle, and velocity of calcium of transients in response 
to electrical stimulation (Shevach et al., 2014). AuNPs have also 
been incorporated into thermo-responsive hydrogels of collagen 
nanofibers (Orza et al., 2011) and chitosan polymer (Baei et al., 
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FiGURe 2 | Schematic illustrating the properties of nanoparticles that can enhance the design and function of tissue engineering constructs, either 
injectable materials or cardiac patches, for cardiac regeneration. (i) metal oxide nanoparticles, including reduced graphene oxide (RGO) flakes have anti-
oxtdant properties to protect stem cells [e.g., mesenchymal stem cells (MSCs)] delivered to the infarcted myocardium from reactive oxygen species (ROS). In addition, 
nanoparticles can prime stem cells to improve therapeutic efficacy [modified with permission from Park et al. (2015b))]. (ii) Peptide nanotiber (NF) scaffolds, including 
RAD16-II hydrogels form microenvironments that can recruit endogenous stem cells or protect exogenous transplanted cells to improve cardiac repair post-injury. 
Peptide NFs can be functionalized with growth factors or stem cell recruitment ligands, such as stromal cell-derived factor 1 (SDF-1) [modified with permission from 
Davis et al. (2005) and Segers et al. (2007)]. (iii) Gold nanowires (NW) and carbon nanotubes [such as single-wall nanotubes (SWNTs)] have been incorporated into 
tissue-engineered cardiac tissue constructs to improve conduction through the scaffold and cardiomyocyte (CM) maturation [modified with permission from Dvir et al. 
(2011) and Zhou et al. (2014)]. (iv) Superparamagnetic microspheres (SPM) of iron oxide nanoparticles have been used to reduce post-injection loss ol cardiosphere-
derived cells (CDCs) by using a magnel to target the cell therapy to the infarct region [modified with permission from Cheng et al. (2010)].
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2016) with the objective of forming injectable formulations for 
minimally invasive delivery of cells to the infarct. In the study 
by Orza et  al., MSCs cultured AuNP-coated collagen fibers 
exhibited faster cardiac lineage differentiation after exposure to 
cardiac differentiation medium as compared to standard tissue 

culture substrate. Similarly, AuNPs enhanced the expression of 
cardiac lineage markers in MSCs cultured in chitosan hydrogels 
along with improving the conductivity of the material (Baei et al., 
2016). Furthermore, AuNPs have shown antifibrogenic activity 
in vitro, by decreasing the percentage of fibroblasts with activated 
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myofibroblast phenotype (Sisco et al., 2008). However, in spite of 
these advances in AuNPs scaffold development, no in vivo data 
are available to confirm a benefit of incorporating AuNPs into 
tissue-engineered scaffold on cardiac function post-MI in animal 
models. These in vivo studies will be necessary to determine if 
the injectable scaffold or cardiac patch can effectively propagate 
electrical signals in vivo without interfering with the directional 
signal propagation and cardiac contraction, which could produce 
arrhythmias.

The toxicity of AuNPs in vivo is controlled by many factors 
including: size, capping agents, and dosage (Khlebtsov and 
Dykman, 2011). A preliminary study by Spivak et al. indicated 
that spherical AuNPs of 30-nm diameter (3.19 g/mL metal con-
centration) could be intrapleurally delivered, which exhibited 
reduction in hydrothorax incidence and fibrosis in a doxorubicin 
induced rat model of heart failure similar to that of inotropic 
agent Simdax (Spivak et al., 2013). No appreciable toxicity due 
to AuNPs was noted over 6  months. Finally, another in  vivo 
application of AuNPs was to improve the mechanical properties 
of porcine aorta decellularized vascular grafts by crosslinking 
them to mercaptoethylamine functionalized spherical AuNPs 
(100 nm) (Ostdiek et al., 2015). The grafts were able to integrate 
into the aortic tissue in a pig model, with cellular infiltration into 
the graft, without signs of inflammation or stenosis.

Nanomaterial allotropes of carbon, in particular CNTs and 
graphene oxide (GO) sheets, have received interest in the 
design of tissue engineering strategies to regenerate functional 
myocardium following infarction due to their high conductiv-
ity. CNTs have been investigated in  vitro by Shin et  al. who 
incorporated CNTs into a gelatin methylacrylate (GelMA) 
cross-linked hydrogel (Shin et al., 2013). The authors observed 
that CNTs provided electrical connections, similar to native 
Purkinje fibers in the heart and allowed conduction in a 
material that previously was an insulator (Shin et  al., 2013). 
In addition, CM retention, viability, expression of contractile 
proteins, established striations, and functional gap junctions 
were enhanced on the scaffolds containing CNTs as compared 
to hydrogels alone. Furthermore, hydrogels containing CNTs 
were used as a substrate for the growth of 3D artificial tissues 
that exhibit beating under pulsatile stimulation (Shin et  al., 
2013). CNTs have also been investigated as a growth substrate, 
as they exhibit a topography similar to the native ECM with 
the ability to relay signals between myocytes (Martinelli et al., 
2012). Cardiomyocytes grown on CNT substrates had increased 
viability, entrance into the cell cycle, and more negative resting 
membrane potential as compared to standard culture conditions 
(Martinelli et al., 2012). In vivo evidence in mice indicated that 
therapeutically relevant concentrations of CNTs are non-toxic; 
thus, there is promise for further in vivo studies with this nano-
material (Schipper et  al., 2008). Lastly, an engineered cardiac 
tissue consisting of neonatal rat cardiac cells in a gelatin hydrogel 
with single-walled CNTs (SWNTs) allowed spontaneous con-
traction and action potentials in vitro in addition to maturation 
of cardiomyocytes (Zhou et al., 2014). After suturing the graft 
onto the infarct region in a rat model, with immunosuppression 
therapy, improved cardiac function 4  weeks post-application 
and increase in gap junction protein expression was observed 

(Zhou et al., 2014). It is noted in this study that there was local 
macrophage upregulation in SWNT-graft treated mice leading 
to incorporation of SWNTs into the infarct region. As this 
study is performed with immunosuppression therapy, further 
investigation of long-term effects of CNTs in vivo, in particular 
the activation of an immune response in model with healthy 
immune function, is still needed.

Graphene oxide (GO) sheets are an alternative carbon-based 
nanomaterial, which have shown biocompatibility with no 
acute toxic effects in vivo (Paul et al., 2014; Park et al., 2015b). 
GO sheets and flakes with a thickness on the nanometer scale 
and length in the area of 1–6 μm are not taken up by cells but 
can absorb ECM proteins from culture serum (Lee et al., 2011). 
Studies by Park et al. demonstrated the benefit of incorporating 
GO or reduced GO flakes into MSC culture, with the following 
observations: (1) GO adsorbed ECM components (fibronectin) 
from the serum and formed GO-cell and cell-ECM interactions, 
which activate both pro-survival pathways and pro-angiogenic 
cytokine secretion and (2) the conductivity of GO stimulated 
expression of cardiac specific makers and gap junctions (Park 
et al., 2015b). The result in vivo in a rodent MI model showed 
enhanced retention of the MSC + GO in the infarct, reduced 
sensitivity to oxidative stress following ischemia reperfusion 
injury, and improvement of heart function by cellular cardio-
myoplasty without an immune response to the GO material 
(Park et al., 2015a). Furthermore, polyehtylenimine functional-
ized GO sheets have been investigated as a transfection agent 
for gene therapy approaches to enhance angiogenic vascular 
endothelial growth factor (VEGF) gene expression using an 
injectable GelMA hydrogel (Paul et  al., 2014). In a rat MI 
model, delivery of the composite GO-VEGF hydrogel lead to 
increased capillary density and decreased infract scar size (Paul 
et  al., 2014). Injectable hydrogel formulations containing GO 
tethered VEGF plasmid were, therefore, an effective transfec-
tion system to enhance VEGF expression in the infarct region. 
Cerium oxide NPs act as free radical scavengers and have been 
shown to reduce pro-inflammatory cytokine expression due 
to reduction of endoplasmic reticulum (ER) activated reactive 
oxygen species (ROS) in a murine model of heart failure (Niu 
et  al., 2007). The NPs improved heart function and limited 
ischemic remodeling. These results have been replicated in 
in vitro systems, including cardiomyocytes exposed to cigarette 
smoke extract and cardiac progenitor cells in culture in which 
CeO2 enhanced survival and maintenance of multi-lineage 
differentiation (Niu et al., 2007; Pagliari et al., 2012).

Nanofibrous Materials for Cardiac Tissue 
Repairing
Injectable biomaterials composed of hydrated natural or syn-
thetic polymers solutions have been used as therapy for treating 
hearts post-MI (Christman and Lee, 2006). These hydrogels can 
limit wall stress that leads to pathological dilative remodeling 
of the ventricle as well as provide a protective environment to 
improve retention and function of transplanted cells (Johnson 
and Christman, 2013). Another ECM therapy approach is the 
fabrication of nanofiber matrices (Zhang, 2003). Nanofiber 
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diameter can be controlled so that it is to scale with that of native 
ECM fibers and can offer greater surface area for cell engraftment 
(Mukherjee et al., 2011). Several nanofiber meshes made from 
synthetic polymers functionalized with native ECM proteins 
have shown in vitro the ability to produce scaffolds with similar 
topology to heart tissue, with aligned rabbit cardiomyocytes 
that express mature CM contractile protein and gap junction 
markers as compared to traditional culture techniques (Kai 
et  al., 2011). Furthermore, nanofibers have been implemented 
in vascular grafts to provide a bioadsorbable scaffold and allow 
for neo-arteriogenesis and improved long-term graft patency 
(Pektok et al., 2008; Wu et al., 2012).

Peptide nanofiber injectable hydrogels have been used 
successfully for both cell and growth factor (GF) delivery 
in promoting regeneration post-MI (Hynesl et  al., 1995). 
Table  3 summarizes some studies that have shown increased 
cardiac function post-MI when using peptide nanofiber-
based tissue regeneration strategies. Nanofibers are formed 
by the self-assembly of short oligopeptides, with alternating 
hydrophilic and hydrophobic amino acid residues, when 
they introduced to neutral pH and osmolality (Zhang, 2003). 
Seminal in  vivo studies by Davis et  al., 2005, indicated that 
the porous hydrogel material from RAD16-II peptides (AcN-
RARADADARARADADA-NH2) could be injected into the 
healthy myocardium without eliciting an immune response. 
This material was biodegradable and provided a microenviron-
ment that recruited endothelial, smooth muscle and myocyte 
precursor cells (Davis et al., 2005). In MI animal models, peptide 
nanofibers, made from RAD16-II, have shown the capacity to 
increase exogenous cell retention in the infarct and facilitate 
the controlled release of GFs to prevent CM apoptosis or 
recruit endogenous precursor cells; all with the outcome of 
improving cardiac function (Davis et  al., 2006). Furthermore, 
a study by Lin et  al. concluded that in a porcine model the 
peptide nanofiber scaffold was not only a passive delivery 
vehicle but also improved diastolic function post-MI through 
reduction of fibrosis, neo-capillary formation and reduced 
ventricular remodeling (Lin et al., 2010). Similar studies in small 
animal models showed positive, yet non-significant, effects of 
nanofibers alone; however, combined with the incorporation of 
GFs or endogenous stem cell recruitment factors significantly 
improved cardiac function was achieved (Davis et  al., 2006; 
Lin et al., 2012). Peptide nanofiber-based scaffolds represent a 
bottom-up approach to fiber formation where small, chemically 
synthesized oligopeptides are the building blocks. A benefit of 
this approach is that the peptide building block sequence can be 
customized to the needs of the application, as seen in a study by 
Ban et al. in which amphiphilic peptides were synthesized with 
a matrix metalloproteinase-2 (MMP2) and integrin binding cell 
adhesion sequence to replicate native cues for CM attachment 
prior to material injection (Ban et al., 2014). Further work has 
aimed to enhance the angiogenic capacity of self-assembling 
peptides. Kumar et  al., for instance, developed a peptide 
sequence that incorporates a VEGF-165 mimicking peptide that 
enhanced angiogenesis in vivo without the need for delivery of 
exogenous GFs (Kumar et al., 2015). A drawback for many of 
these studies is that material injection must occur directly into 

the myocardium via an open chest procedure as the material 
gels instantly once exposed to native pH and osmolarity. Thus, 
to allow non-invasive delivery, Nguyen et  al. designed brush 
peptide polymer amphiphilic NPs with an MMP degradable 
peptide sequence. These NPs can be injected intravenously, 
accumulate through leaky vasculature in the infarct region and 
due to inflammatory protease activity, transition into a gel that 
is retained in the infarct (Nguyen et al., 2015a).

Future Directions for Cardiac and vascular 
Tissue Regeneration
In the future, nanomaterials for cardiac regeneration will continue 
to provide a novel opportunity to enhance the conductivity of 
biomaterial scaffolds but will require in vivo testing in small and 
large animal models to test for the possibility of arrhythmias. The 
development of nanofiber matrices has provided a bottom-up 
approach to create an ECM-mimicking environment to control 
cell growth and differentiation. Nanofiber scaffolds as biodegrad-
able vascular grafts could reduce the advent of restenosis and pro-
mote regeneration. Nanomaterials, in particular noble metal NPs, 
are increasingly becoming key components in tissue-engineered 
materials for cardiac and vascular regeneration in patients with 
MI, heart failure or coronary artery disease.

NANO-eNGiNeeReD MATeRiALS FOR 
SKiN wOUND HeALiNG

Skin is the largest organ in the human body, which is the natural 
barrier against external insults and regulates temperature and 
other vital functions. Wounded skin naturally heals, however, in 
cases where healing is impaired, as is the case of patients with 
deficient vascular supply (e.g., diabetic) or those with larger 
extents of damaged skin (e.g., burns), therapies intended to aid/
expedite wound closure are pivotal to reduce morbidity rates 
(Ulrich, 2014; Uckay et  al., 2015). In the following section, we 
will briefly describe the pathology and medical needs, alongside 
with the current therapies for two of the most common clinical 
cases where there is a high demand for regenerative skin scaffolds, 
which are diabetic foot and burn patients.

Diabetic Foot and Tissue engineering
Diabetic foot infections (DFI) are part of the pathological profile 
of diabetic foot ulcers (DFU), where factors, such as arterial 
insufficiency and immunological disturbances, contribute to 
their chronic nature (O’Loughlin et  al., 2010; Andrews et  al., 
2015). Statistics point to the fact that DFU and DFI are the 
major underlying causes for hospitalization and lower limb 
amputation (Uckay et al., 2015). The current guidelines for treat-
ing DFI include systematic antimicrobial therapy, which often 
does not work in moderate to severe cases (Lipsky et al., 2012; 
Uckay et al., 2015). This is combined with surgical procedures 
(Pinney et al., 2002; Mueller et al., 2003; Greenhagen et al., 2012; 
Colen et al., 2013; Cychosz et al., 2015), or revascularization, in 
combination with non-surgical wound care therapies, such as 
custom shoes and orthotics, which to this day remains unclear 
if they actually prevent the onset of DFU (Cychosz et al., 2015).
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TABLe 3 | Peptide Nanofibers in treatment strategies for myocardial infarction: effects on cardiac function and infarct repair in vivo.

Peptide Application Animal 
Model

injection Degradation Functional effects Mechanism Reference

RAD16-II, 1:100 
biotinylated:non-
biotinylated

Delivery of biotin-
IGF-1 (10 ng/mL) 
and rat nCMs to the 
infarct

SD rats, M, 
250 g, CA 
ligation

IM post-MI surgery, 
80 μL, 1% NF, 
IGF ± 5 × 105 nCMs

N/A, IGF-1 
release 
detected up 
to 2 months 
post-MI

21 days post-MI: ↑ 
FS, ↓ ventricle Δvol 
compared to cells, 
IGF-1 or NF alone

IGF-1 pro-CM survival 
signaling through Akt,  
IGF1-NF ↓ apoptosis, ↑ size

Davis et al. 
(2006)

RAD16-II, MMP-
resistant SDF-1 
[S-SDF-1(SV4)] 
linked to RAD16-
II (RAD)

Controlled release 
of non-degradable 
SDF-1 to recruit 
endogenous 
progenitor cells to 
the infarct

SD rats, M, 
200–230 g, 
LCA ligation

IM post-MI surgery, 
80 μL, 1% NF 
±30 nmol/L 
S-SDF-1(SV4)

SDF-1(SV4) 
+NF present 
up to 7 days 
post-MI

28 days post-MI: 
↑ EF, ↓ LVESV, ↑ 
CI compared to 
MI alone

↑ Capillary density, 
↑ CXCR4+/c-kit+/Flk-1+ 
endothelial progenitors

Segers 
et al. (2007)

RAD16-II 
conjugated to 
biotinylated IGF-1

Cell delivery, to 
improve engraftment 
and retention in 
infarct

Fisher 344 
rats, F, 
3 months 
old, LAD 
ligation

IM post-MI surgery, 
5 ng NF-IGF-1, 
±1 × 105 CPCs 5 μL 
each

N/A 1 month post-MI:  
↑ EF, ↑ +dP/dt,  
↑ −dP/dt, ↓ wall 
stress, ↑ mass/
chamber volume 
↓ infarct size, 
compared to PBS, 
NF or IGF-1 alone

↑ Number/volume of 
regenerated MC, ↑ arteriole/
capillary length density, 
IGF-1 ↓ apoptosis and 
↑ proliferation of remote 
EC/MC

Padin-
Iruegas 
et al. (2009)

RAD16-II Cell delivery, to 
improve engraftment 
and retention in 
infarct

Mini pigs, 
5 months 
old, LAD 
ligation

IM post-MI, 2 mL, 
1% NF ± 1 × 108 
BMNCs

NF still present 
28 days 
post-MI

28 days post-MI: 
↑ EF, ↑ IVS thickness, 
↓ LVESV/LVEDV, 
↑ ± dP/dt, ↑ AE

↑ BMNC retention, 
↓ necrotic tissue, ↓ fibrosis, 
↑ capillary density, NF 
alone ↑ scar thickness and 
↑ diastolic function

Lin et al. 
(2010)

PA with MMP2 
degradable and 
cell adhesive 
RGDS sequences

Cell delivery, 
improved 
engraftment and 
retention in infarct

Foxn1nu 
mice, M, 
LAD ligation

IM, post-MI surgery, 
PA ±2 × 105 
mESC-CMs

Limited 
amount of 
NF remain 
6 weeks 
post-MI

4 and 12 weeks 
post-MI: ↑ EF, ↑ FS, 
compared to mESC-
CM or NF alone, PBS

↑ CM retention, 
engraftment, mESC-CM 
express MC markers and 
gap junctions

Ban et al. 
(2014)

RAD16-II Controlled release of 
PDGF-BB to prevent 
CM apoptosis in the 
infarct. Limit diffusion 
of PDGF-BB from 
infarct to reduce 
risk of pulmonary 
hypertension

SD rats, M, 
250 g, LAD 
ligation

IM post-MI surgery, 
80 μL, 1% NF 
±100 ng PDGF-BB

Controlled 
release of 
PDGF-BB for 
14 days from 
NF, significantly 
greater than 
PDGF alone

1 day–3 months 
post-MI: ↑ FS; 
14 days–4 months 
post-MI ↓ EDV/ESV, 
4 months post-MI 
↑ −/+ dP/dt, ↑ τ, 
↑ EF; as compared to 
PBS only injection

↑ Akt activation in CM, 
↓ caspase 3 activity, 
↓ infarct size/volume, 
4 months post-injection/
MI ↑ capillary density/
blood flow, no evidence of 
pulmonary hypertension

Hsieh et al. 
(2006a,b)

RAD16-II Controlled release 
of VEGF-165 to 
the infarct region 
to stimulate 
angiogenesis 
post-MI.

(1) SD rats 
250 g, M (2) 
MerCreMer-
ZEG mice, 
(3) Lanyu 
mini-pigs 
(5 months), 
all LAD 
ligation

IM post-MI surgery, 
80 μL for rat/mice, 
2 mL for pigs, 1% 
NF ± 100 ng VEGF-
165 and for mice 
NF-VEGF ± 5 × 105 
BMCs

Controlled 
release of 
VEGF from NF 
up to 14 days, 
significantly 
greater than 
VEGF alone

28 days post-MI –rat/
pig: NF + VEGF ↑ FS, 
↓ EDV/ESV, ↓ scar 
length compared to 
PBS injection. -Pig: 
NF alone ↓ infarct 
length compared to 
PBS control

NF-VEGF ↑ artery/
arteriole density compared 
to VEGF/NF alone, NF 
and NF-VEGF ↑ smooth 
muscle cells recruitment, 
NF↑BMC retention through 
β-integrin attachment, 
NF-VEGF ↑ new cnTNI+ 
CM precursors, NF-VEGF 
↓ systemic vascular leakage 
compared to VEGF alone

Lin et al. 
(2012)

RAD16-II, (AcN-RARADADARARADADA-CNH2); IGF-1, insulin-like growth factor 1; MMP, matrix metalloproteinase; SDF-1, stromal cell growth factor; SD, Sprague-Dawley; 
M, male; CA, coronary artery; nCMs, neonatal cardiomyocytes; F, female; LCA, left coronary artery; LAD, left anterior descending coronary artery; IM, intramyocardial; MI, 
myocardial infarction; NF, peptide nanofibers; CPCs, cardiac progenitor cells; BMNCs, bone marrow mononuclear cell; mESC-CMs, murine embryonic stem cell-derived 
cardiomyocytes; FS, fractional shortening; EF, ejection fraction; LVESV, left ventricular end systolic volume; LVEDV, left ventricular end diastolic volume; CI, cardiac index; +dp/dt, 
rate of left ventricular systolic pressure increase; −dP/dt, rate of left ventricular diastolic pressure decrease; IVS, intraventricular septum; Akt, protein kinase-B, CXCR4, chemokine 
(C–X–C motif) receptor 4; Flk-1, fetal liver kinase 1; MC, myocyte; EC, endothelial cell; PDGF, platelet-derived growth factor; τ, arterial elastance; VEGF, vascular endothelial growth 
factor; BMC, bone marrow cells.
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Wound healing is a complex biological process that involves 
inflammation, chemotaxis, angiogenesis, and tissue remodeling 
(Singer and Clark, 1999; Baum and Arpey, 2005; Gurtner et al., 
2008). Chronic wounds are defined as lesions that present 

impaired (i.e., slow) wound healing (Kirsner and Eaglstein, 1993). 
Among possible causes for such impaired healing is the persistent 
inflammation within the actual wound, caused by bacteria colo-
nization, for example (Ehrlich, 1998; Fukai et al., 2005), which is 
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exacerbated in diabetic patients (Lookingbill et al., 1978; Madsen 
et al., 1996; Robson, 1997; Sibbald et al., 2000; Baltzis et al., 2014; 
Eming et al., 2014). This permanent inflammatory state results 
in early degradation of newly forming tissue, creating a never-
ending loop of wound healing (Rogers et al., 1995; Yager et al., 
1996; Kahari and Saarialho-Kere, 1997; Trengove et al., 1999; Liu 
et al., 2009). Furthermore, this scenario gets even more complex 
in the presence of bacteria capable of forming biofilms in diabetic 
foot wounds such as Pseudomonas aeruginosa (Uckay et al., 2015) 
and multidrug-resistant Staphylococcus aureus (Banu et al., 2015).

An assessment of the extent of DFU by a wound care expert 
is followed by debridement, and sequential revaluation of the 
wound site for surgical reconstruction. Particularly, soft tissue 
reconstruction can be as simple as letting the wound heal by itself, 
a.k.a. secondary intention, or healing assisted by microsurgical 
flaps. The use of skin substitutes (cadaver skin, xenografts, and 
artificial substitutes) has exponentially improved in quality and 
regenerative capacity. They offer, in most cases, a temporary 
solution, especially for large wounds with truncated geometries. 
Autologous grafting and/or flap transplantation also present 
some drawbacks since they require mechanical harvesting of 
donor skin, which causes morbidities, such as pain, risk of infec-
tion, discoloration, and scarring. Furthermore, most autologous 
grafts use only the epidermal coverage of the skin, which together 
with leaving a scarred donor site, does not provide a completely 
functional barrier to the wound (Tam et al., 2013).

Thus, over the past few decades, there has been a rise of the so-
called biocompatible healing products intended for skin regenera-
tion in the form of skin grafts and wound dressings (O’Loughlin 
et al., 2010). Amniotic membranes appear promising candidates; 
however, the risk of infection, as well as their limited availabil-
ity, makes their use unrealistic as a viable definitive treatment 
for DFU (Zelen et al., 2013; Lavery et al., 2014; Cychosz et al., 
2015). Thus, lab-made living-tissue-engineered products, which 
were originally designed to act as skin grafts, are now also being 
employed for filling of DFU, where the ECM of the engineered 
material promotes an angiogenic response within the wound, 
which in turn accelerates wound healing (Veves et  al., 2001; 
O’Loughlin et  al., 2010). Apligraf® (Novartis, Organogenesis, 
Inc.) and Dermagraft® (Advanced Biohealing, Inc.) are two of 
the most popular products for treating skin wounds, including 
DFU, in North America (Veves et al., 2001; Marston et al., 2003; 
O’Loughlin et al., 2010). Both are contraindicated in wounds with 
signs of infection. In addition, they are recommended for limbs 
with good blood supply, and in some cases several applications of 
the scaffold are required (Veves et al., 2001; Marston et al., 2003; 
O’Loughlin et  al., 2010; Holmes et  al., 2013). Other therapies, 
such as hyperbaric oxygen and negative pressure, have emerged 
also as potential non-surgical alternatives for treating DFU; how-
ever, clinical evidence does not fully support their use (Londahl 
et al., 2010; Dumville et al., 2013; Ma et al., 2013; Rhee et al., 2014; 
Cychosz et al., 2015).

Burns and Tissue engineering
Full-skin functional substitutes remain an elusive problem for 
skin tissue engineering in burn units. Depending on the burn 

degree and extent, the surgeon could decide on using split 
thickness autograft from the patient, which will result in non-
functional transplanted tissue (missing sweat glands) (Tam et al., 
2013). This treatment is only suitable when there are enough 
healthy donor sites in the patient. Thus, as similar to the above 
discussed for DFUs, laboratory engineered materials had been 
developed to fulfill the need for alternative strategies for wound 
covering and tissue regeneration in these patients (Ulrich, 2014). 
Furthermore, the control/prevention of nosocomial infections in 
burn patients is a pivotal factor for reducing hospital stays and 
morbidity (Norbury et al., 2016).

In the following sections, we will highlight the progress made 
regarding nanomaterial use for skin regeneration. Table 4 sum-
marizes some representative examples of hybrid/composites that 
were tested in vivo for dermal skin tissue regeneration. Figure 3 
displays a representative summary of the technologies presented 
herein.

Nanomaterials as Therapeutic Agents 
for Skin Regeneration
Silver as an Antimicrobial and Anti-Inflammatory 
Agent for Skin Regeneration
When thinking about antimicrobial agents, silver should be 
considered. The history of silver in medicine as antimicrobial 
agent goes back over 100 years when silver nitrate (a.k.a. ionic 
silver) was used in eye drops for newborn babies to prevent gon-
orrheal ophthalmia (Credé, 1884; Roe, 1915) and micosomal 
infection in burn patients (Klasen, 2000). However, due to the 
toxic side effects, such practices were abandoned (Alexander, 
2009; Lansdown, 2010; Aziz et  al., 2012). During recent dec-
ades, however, the alarming rise in the number of antibiotic and 
multidrug resistant, a.k.a. super-bugs, bacteria strains (Tenover, 
2006), has triggered the search for new, more effective, therapies 
for bacterial infection control, such as nanoparticulated silver 
(AgNP) (Varner et al., 2010; Rai et al., 2012; Griffith et al., 2015). 
Despite some studies suggesting that AgNP can present health 
risks similar to those of ionic silver (Eckhardt et al., 2013; De 
Alwis Weerasekera et  al., 2015), growing evidence indicates 
otherwise (Asharani et al., 2008; Travan et al., 2009; Moulton 
et  al., 2010; Trickler et  al., 2010; Bouwmeester et  al., 2011; 
Stoehr et al., 2011; Alarcon et al., 2012, 2013; Lu et al., 2012b; 
Simpson et al., 2013; Vignoni et al., 2014).

Functional tissue regeneration requires a balanced orches-
tration of all the players (e.g., cytokines, macrophages, matrix 
remodeling) (Eming et al., 2007), to transition from an inflam-
matory to wound-healing environment. Failure to do so can have 
possibly irreversible consequences, including tissue scarring, 
chronic inflammation, and infection (Guirao and Lowry, 1996; 
Martin, 1997; Branton and Kopp, 1999; Wahl, 1999; Dunn et al., 
2001; Eming et al., 2007). Recent in vitro and in vivo work has 
pointed toward the unprecedented ability of AgNP to reduce 
inflammatory macrophage and neutrophil infiltration, to inhibit 
the production of inflammatory cytokines, and to regulate the 
expression of metalloproteinases (Wright et al., 2002; Bhol and 
Schechter, 2007; Tian et al., 2007; Wong et al., 2009; Liu et al., 
2010; Zhang et al., 2014). Thus, it stands that the incorporation 
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TABLe 4 | Nanoparticles in treatment strategies that significantly improved dermal wound healing in vivo.

Nanoparticle Dimensions Animal Model Treatments Functional effects Mechanism Reference

Cerium oxide 
nanoparticles

D = 3–5 nm C57BL/6 mice, M, 
3–4 months old, two 
dorsal full thickness skin 
wounds D = 4 mm

10 μL of 10 μM 
CeO2 nanoceria 
or water control, 
applied daily for 
13 days post-
wounding directly 
to wound

↑ Wound closure, 
CeO2 treated fully 
healed in 8 days vs. 
control not fully closed 
in 13 days, ↓ wound 
diameter due to CeO2 
treatment at 1–13 days 
post-wounding

↑ Migration and proliferation of KC, 
FB, and VECs, ↑ myoFB, MIC and 
blood vessel density in wound as 
compared to control 5 days after 
injury, ↓ HNE protein adducts and 
↓ nitrotyrosine in wound due CeO2 
ROS scavenging

Chigurupati 
et al. (2013)

Nitric oxide-
silane glass/
PEG-chitosan 
hydrogel 
nanoparticles 
(NO-np)

D = 10 nm Balb/c mice, F 
6–8 weeks old, one 
dorsal full thickness 
wound D = 5 mm, 
inoculated ±107 SA 6498 
an MRSA S. aureus in 
PBS

5 mg of lypholized 
NO-np, np 
without NO or 
untreated control, 
treatment applied 
1 and 72 h 
post-injury

7 days post-injury: 
↓  scar size in NO-np 
treated wounds ±MRSA 
wounds compared to np 
and untreated controls

↓ MSRA CFU in NO-np treated 
mice compared to controls, 
↑ bacterial lysis and ↓ in MRSA-
mediated collagen degradation, 
↓ inflammatory cell infiltrate

Martinez 
et al. (2009)

Gold 
nanoparticle, 
EGCG, and 
ALA antioxidant 
ointment

D = 5 nm BALB/c mice, 8 weeks 
old, two linear 1 cm full 
thickness dorsal wounds

1 mg/g EGCG 
+30 mg/g ALA 
(EA) ±0.07 mg/g 
AuNPs (AuEA) or 
vehicle daily for 
7 days

7 days post-injury: ↓ 
wound area, length and 
width AuEA vs. vehicle, 
↓ wound area for EA 
only treated wounds 
compared to control

↑ FB and KC proliferation, 
↑ VEGF, Ang-1 cytokines, ↓ CD68 
macrophages, ↑ SOD1 to reduce 
ROS in AuEA treated wounds 
7 days post-injury compared to 
vehicle treated mice

Leu et al. 
(2012)

Citrate 
capped silver 
nanoparticles

D = 5–15 nm C57BL/6N mice, 
6–8 weeks old, single, full 
thickness, dorsal wound, 
A = 1.5 cm × 1.5 cm

Post-injury 
AgNP-coated 
dressing, 1% SSD 
cream, (30 mg 
Ag in both), or 
untreated

↑ rate of wound closure 
as of 9 days post-injury, 
↓ day of full wound 
closure in AgNP vs. SSD 
or untreated mice

↑ KC proliferation and epithelial 
tongue migration in AgNP-treated 
mice, ↓ FB proliferation, maintained 
viability ↑ α-SMA+ contractile 
myoFB, wound closure

Liu et al. 
(2010)

Nanosilver 
dressing (Anson 
Nanotechnology)

D = 14 ± 9.8 nm (1) BALB/C mice, M, 
20 weeks old, 10% 
of body SA, partial 
thickness thermal injury 
70°C 35 s; (2) C57BLKs/
J-m+/db, db/db diabetic, 
or non-diabetic control, 
full thickness exicision 
(1 cm × 1 cm)

Dressing 
(4 cm × 3 cm) 
coated with AgNP 
(0.04777 mg), 
SSD (0.1502 g) 
cream (equivalent 
Ag content) 
or untreated; 
changed daily

AgNP vs. SSD and 
untreated mice: ↑ rate of 
wound closure, ↓ day of 
wound closure, limited 
scarring, thin epidermis 
and hair follicles in all 
models of injury

Slower onset of bacterial growth 
(7 days post-injury), ↑ wound 
closure compared to antibiotic 
dressing, ↓ IL-6 (1–30 days), ↓ TGF-
β (7–30 days);↑ IL-10, IFN-γ and 
VEGF (1–30 days), ↓ neutrophils 
(7 days) and earlier resolution of 
acute injury-phase proteins HPG, 
HPx, and SAP

Tian et al. 
(2007)

Titanium dioxide 
nanorods, 
pectin-chitosan 
dressing

L = 20–40 nm Albino rats, M, 
140–180 g, 2 cm × 2cm 
dorsal excision wounds 
full thickness

TiO2-chitosan-
pectin 
nanodressing, 
chitosan only or 
gauze

Nanodressing treated 
mice ↑ wound closure 
rate days 3–14 post-
injury vs. chitosan and 
gauze treated

Nanodressing shows limited 
scarring, regenerated dermis and 
epidermis, full healing 14 days post-
injury, antibacterial activity gram 
±bacteria

Archana 
et al. (2013)

PEG, polyethylene glycol; EGCG, epigallocatechin gallate; ALA, α-lipolic acid; D, diameter; L, length; M, male; F, female; A, area; SSD, silver sulfadiazine; MRSA, methicillin-resistant 
Staphylococcus aureus; KC, keratinocytes; FB, fibroblasts; MIC, mononuclear inflammatory cells; HNE, 4-hydroxynonenal; ROS, reactive oxygen sepecies; CFU, colony forming 
units; VEGF, vascular endothelial growth factor; Ang-1, angiopoietin-1; SOD1, superoxide dismutase-1; ↑ α-SMA, alpha-smooth muscle actin; IL, interleukin; TGF-β, transforming 
growth factor β; IFN, interferon; HPG, haptoglobin; Hpx, hemopexin; SAP, serum amyloid protein component P.

10

Mclaughlin et al. Nano-Engineered Biomaterials for Tissue Regeneration

Frontiers in Materials | www.frontiersin.org June 2016 | Volume 3 | Article 27

of AgNP in biomaterial dressings is expected not only to add 
an antimicrobial element to the scaffold but also to further 
improve wound healing (Lu et al., 2012a; Neibert et al., 2012; Fan 
et al., 2014; Herron et al., 2014). For example, a chitosan-AgNP 
dressing by Lu et al. significantly increased the healing rate of 
dermal wounds 10% of the body surface area in a rat model 
as compared to silver sulfadiazine or chitosan film alone while 
the percentage of silver dissemination away from the area of 
injury was lower for AgNP (Lu et al., 2012a). Recently, our team 
reported reduced levels of interleukin-6 and other inflammation 
markers in mice that received subcutaneous implants of type 
I collagen hydrogels containing AgNP (Alarcon et al., 2015).

Other Nanomaterials for Skin Tissue Regeneration
Nitric oxide (NO) plays an important role in the immune 
response as well as the proliferation/regeneration phase of wound 
healing. Friedman et al. developed a NO-releasing nanoparticle 
(NO-NP) platform from a glass/hydrogel NPs, which contain 
antimicrobial polysaccharide chitosan (Friedman et  al., 2008). 
These NPs successfully reduced wound closure time, increased 
wound epithelization, and reduced the burden of methicillin-
resistant S. aureus (MSRA) in a murine model of wound infection 
(Martinez et  al., 2009). NO-NP treatment enhanced the secre-
tion of pro-inflammatory cytokines in wounds including IL-6, 
TNF-α and MCP-1, as well as TGF-β which increased fibroblast 
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FiGURe 3 | Schematic representing advances in nanoparticle and nanofiber-based strategies to reduce infection and enhance wound healing 
following skin injury. Nanoparticle and nanofibrous wound dressing have demonstrated antibacterial and anti-inflammatory properties that can improve traditional 
wound dressing to expedite healing with minimal scarring. (i) Metal nanoparticles, such as gold nanoparticles (AuNP) can be capped with antimicrobial ligands, such 
as surfactin <SFT) and dodecanethiol (DT) to provide a potent antimicrobial wound dressing [modified with permission from Chen et al. (2015)]. (ii) Nanoparticles can 
be embedded in polymer based dressing for antibacterial activity, such as TiO2 nanorods (NRs) in a pectin/chitosan hydrogel, which effectively enhanced wound 
closure rates of full thickness skin wounds [modified with permission from Archana et al. (2013)]. (iii) Nanofibers embedded with silver nanoparticles (AgNPs) can be 
used as an alternative wound dressing with both antimicrobial and anti-inflammatory properties to improve wound healing and reduce infection. A handheld 
electrospinning device was constructed for easy fabrication and delivery of the dressing material [modified with permission from Dong et al. (2016)]. (iv) Nitric oxide 
(NO) releasing nanoparticles made from a hydrogel/glass mixture have been used to safely deliver to skin wounds improving inflammation resolution and 
angiogenesis. These nanoparticles have also shown antibacterial activity [modified with permission from Martinez et al. (2009)].

11

Mclaughlin et al. Nano-Engineered Biomaterials for Tissue Regeneration

Frontiers in Materials | www.frontiersin.org June 2016 | Volume 3 | Article 27

proliferation, migration and wound closure. Thus, a cumulative 
reduction in bacterial-based collagen degradation in the wound 
by NO-NP-mediated bacterial lysis was observed (Han et  al., 

2009, 2012). Furthermore, NO-NP treatment of dorsal wounds in 
a diabetic mouse model was more effective at promoting wound 
healing than topical therapies for NO release (Blecher et al., 2012).

http://www.frontiersin.org/Materials/
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


12

Mclaughlin et al. Nano-Engineered Biomaterials for Tissue Regeneration

Frontiers in Materials | www.frontiersin.org June 2016 | Volume 3 | Article 27

Gold nanoparticles coated with the antimicrobial peptide 
surfactin provided a synergistic platform to reduce bacterial 
burden and enhance wound healing in a rodent model of [MRSA 
infected wounds (Chen et al., 2015)]. AuNPs have been shown 
to have synergistic effects in platforms with α-lipolic acid/epi-
gallocatechin gallate antioxidants and hydrocolloid membrane 
dressings for promoting wound healing through the reduction 
of oxidative stress and inflammation, and by enhancing angio-
genesis in rodent models of cutaneous wounds (Leu et al., 2012; 
Kim et al., 2015). Cerium oxide NP dressing application alone 
was shown to have antioxidant and pro-wound-healing effects 
in rodent models, in part through keratinocyte and fibroblast 
proliferation and reduction in nitrated protein end products due 
to ROS (Chigurupati et al., 2013). In addition, carbon allotrope 
nanomaterials have been applied successfully to enhance wound 
healing in at least pilot studies in rodent models, including AgNP-
loaded graphene hydrogel dressings (Fan et al., 2014), graphene 
quantum dots that enhance bactericidal effects of hydrogen 
peroxide (Sun et al., 2014) and a graphene–chitosan nanofiber 
material that possessed both antibacterial as well as enhanced 
wound-healing properties with minimal scarring in both mice 
and rabbits (Lu et  al., 2012a). Finally, titanium oxide NPs in 
combination with chitosan and pectin enhanced antibacterial 
activity in vitro as well as enhanced wound closure and epithelial 
regeneration in a mouse model (Archana et al., 2013).

Further advancements in nanofiber development have led 
to new GF and drug eluting dressings for wound healing. For 
example, epidermal GF immobilized on PCL/polyethylene glycol 
(PEG) nanofibers enhanced epithelization of a wound in mice 
(Choi et  al., 2008b), and metformin, an anti-hyperglycemia 
medication, eluted from poly(lactic-co-glycolic) acid (PLGA) 
nanofibers improved wound closure in a diabetic mouse model 
(Lee et  al., 2014). In addition, chitosan electrospun nanofibers 
have been developed and applied to skin wounds in mice leading 
to enhanced closure of the wound and epidermal regeneration 
through fibroblast proliferation and angiogenesis (Tchemtchoua 
et al., 2011). Specialized construction of nanofiber scaffolds and 
application methods in recent years have lead to the development 
of a hand-held electrospinning device that can efficiently apply a 
PCL-AgNP gel to full thickness skin wounds to improve healing 
and reduce infection (Dong et al., 2016). Fragmented PLLA scaf-
folds that adhere to uneven surfaces of burn wounds in mice were 
shown to provide an effective barrier to infection while promoting 
healing (Okamura et al., 2013). Patterned scaffolds of nanofiber-
bioactive glass with controlled micro- and nanotopography 
(Xu et al., 2015) have been shown to increase pore size for fluid 
distribution in dressings while mimicking the natural topography 
of the ECM for cell growth and enhanced wound healing in mice 
through re-epithelialization, angiogenesis, and collagen deposi-
tion, which were superior than non-patterned scaffolds.

Future Directions for Skin Tissue 
Regeneration and Nanomaterials
The outstanding advancements in nanomaterial therapies for 
skin regeneration are bringing us closer to the availability of new 
multi-functional materials that provide multiple wound-healing 

properties. For example, the incorporation of stable nanosilver to 
provide anti-inflammatory and antimicrobial properties to any 
given template presents an interesting and appealing strategy. 
However, better understanding on the nanoscale interactions 
between biopolymers and nanomaterials is required to allow 
de novo engineering of tissue scaffolds for tissue engineering.

NANOMATeRiAL THeRAPeUTiCS FOR 
eYe ReGeNeRATiON

The human eye is a highly organized and complex sensory organ. 
The structural and functional features of the eye components 
cooperatively capture, direct, and process light with a fascinating 
degree of efficiency and clarity, relayed to the central nervous 
system (CNS) for interpretation. The tear film, comprised of 
aqueous, mucin, and lipid layers, consistently nourishes the 
surface of the eye (Rai et al., 2015). Ocular function is variable 
between individuals, often corrected with optometric methods 
(e.g., glasses, contact lenses), yet ophthalmological diseases 
are relatively common around the world. Physical abrasions 
or trauma in eye injuries, typical in sports, and ocular surface 
infections can lead to long-term vision problems; conjunctivitis 
is frequently a problem that can escalate without treatment or if 
reoccurrence is common. The aging population is at significant 
risk of age-related macular degeneration (Rosenthal et al., 2012), 
cataracts, glaucoma, and dysfunction by hypertension and type 
II diabetes. Nanotechnology opens a new venue for alternative 
treatments. The unique characteristics of nano-based materi-
als, such as bioactivity, shape and size, mobility, and delivery 
potential, are of interest for ocular therapy (Sharaf et al., 2014; 
Rai et al., 2015). Furthermore, biocompatible scaffolds and NPs 
minimize immunological reaction and irritation, which supports 
long-term recovery. In particular, the intrinsic properties of noble 
metal NPs have substantial success (Jo et al., 2015). The following 
section will cover nanomaterials and nanoparticulate structures 
for corneal and retinal treatments, focused on regeneration and 
vision restoration. Table 5 summarizes the main findings for the 
technologies herein discussed, while Figure 4 is a selected sum-
mary for the technologies here discussed.

Corneal Regeneration or Replacement 
Using Bioactive Materials
The cornea is a transparent layer on the anterior surface of 
the eye, which overlaps the anterior chamber. In addition to 
the cornea, the iris, pupil, and lens focus light onto the pig-
mented interior layer. The human cornea mainly comprises 
many collagen layers organized to ensure full clarity of light. 
Furthermore, there are no blood vessels on the corneal epithelial 
in support of its transparency. However, it is vulnerable to many 
physical and environmental dangers due to its forefront position. 
A prominent issue is found with dry eye disease, which directly 
interferes with corneal function due to tear film imbalances 
and surface inflammation. Direct damage to the cornea, minor 
or significant, can have a tremendous effect on vision; thus, a 
leading cause of blindness, affecting ≈4.9 million individuals 
who are bilaterally blind, and another ≈ 23 million who are 
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TABLe 5 | Nanomaterials for corneal and retinal regeneration: functional effects on eye structure regeneration and potential mechanisms.

Nanomaterial Application Animal Model Administration Degradation Functional effects Mechanism Reference

Peptide-
modified LPD 
nanoparticles, 
peptides: 
(NLS) + (TAT)

LPD complexes 
act as a gene 
delivery system 
(Rpe65) for 
treatment of 
blindness

BALB/c mice, 
conditions: 
non-injection 
−/−Rpe65 +/+ 
w/t

Subretinal injection 
5 weeks after 
birth, 1:20 ratio 
liposomes to DNA 
optimal

GFP-labeled LPD 
NPs remained for 
over 3 months

Injections in −/− Rpe65: 
functional ↑; fundoscopic 
+ GFP expression, ↑ scotopic 
b-wave signal, + histological 
signal for Rpe65 Ab

Delivery of 
recombinant chicken 
Rpe65 (↑ enzymatic 
activity), ↑ availability 
of 11-cis-retinal 
(photochemical for 
vision)

Rajala et al. 
(2014)

Structural ↑; cone plasma 
membrane preserved, Vision 
improvements proportionate to 
viral alts (AAV/lentivirus)

Different 
shapes of 
nanosilver 
with surfaces 
modified and 
anchored 
to collagen 
matrices

Anti-infective 
corneal 
replacements

BALB/c mice Subcutaneous 
implants for 
assessing 
inflammatory 
response

N/A Materials did not produce 
any inflammation or silver 
leakage. The materials 
while biocompatible for 
human corneal cells showed 
remarkable ↑ antimicrobial 
properties against 
Pseudomonas aeruginosa

Antimicrobial 
mechanism is not 
known, but the total 
silver concentration 
required to produce 
it was orders of 
magnitude smaller 
than ionic silver

Alarcon 
et al. (2016)

Albuminated 
PLGA NPs, 
loaded with 
bevacizumab 
(Avastin)

Retinal and 
choroidal 
neovascularization 
(CNV) treatment

New Zealand 
albino rabbit, 
2–2.5 kg, 
sacrificed at 4 h, 
1, 3, 7, 21, 42, 
and 56 days 
(n = 3/condition)

Intravitreal injection 
(vitreous and 
aqueous humor), 
Avastin–NPs 
(1 mg) and Avastin 
(1 mg)

Half-life: vitreous 
humor – 8.42 min; 
aqueous 
humor – 7.79 min

Release: ↑ AUMC and ↑ MRT 
for injected NPs in vitreous 
and aqueous humors, 
toxicity: no sig. difference in 
electroretinography over 3, 21, 
and 56 days, Avastin conc. 
>500 ng mL−1 over 8 weeks

↑ Avastin (anti-
VEGF) leads to 
↓ angiogenesis 
but persistence is 
low, however NPs 
↑ distribution and 
↑ availability

Varshochian 
et al. (2015)

Lacritin 
modified 
ELP diblock 
copolymer 
(LSI-NPs)

Corneal wound 
healing (corneal 
epithelium)

Female NOD 
mice, circular 
abrasion (right 
eye) of ~2 mm, 
sacrificed at 24 h 
(n = 4/condition)

Topical eye drops, 
5 μL of 100 μM 
LSI applied at 0 
and 12 h

N/A – dimensions 12 h/24 h post-wound:  
LSI – ↓ Pct Area > LS96, 
No treat – ↑ Pct Area

Thermo-responsive 
self-assembly 
↑ LSI-NPs, lacritin-
specific membrane 
binding ↑ mitogenic 
and cytoprotective 
properties

Wang et al. 
(2014b)

LSI self-assembly superior to 
LS96 (lacks response)

PA nanofiber 
scaffolds 
modified with 
YIGSR or RGD 
sequences

Corneal tissue 
regeneration 
(corneal 
opacification)

New Zealand 
albino rabbit, 
2.5–3 kg, corneal 
stromal pockets 
~7–8 mm, 
sacrificed 3 and 
7 weeks later

Intrastromal 
injection, 1 wt.% 
PA-YIGSR or 
PA-RGD/animal

Both PA 
nanofibers persist 
in rabbit cornea for 
7-week analysis

3 weeks: YIGSR-PA: 
↑ keratinocyte migration, 
↑ regeneration; RGD-PA: 
keratinocyte migration, 
regeneration

Presence of PA 
scaffold with 
YIGSR ↑ migration, 
accumulated 
keratinocytes form 
lamellar stroma from 
scaffold, bioactive 
epitope determines 
efficiency of PA 
regeneration

Uzunalli 
et al. (2014)

7 weeks: YIGSR-PA: 
↑ keratinocyte migration, 
↑ regeneration; RGD-PA: 
keratinocyte migration, 
↑ regeneration

Gold 
nanoparticles 
(GNPs)

Treatment 
for retinal 
neovascularization, 
retinopathy of 
prematurity (ROP)

Functional: OIR 
model mice, 
begins P 14 with 
sacrifice at P 17, 
toxicity: C57BL/6 
mice, sacrificed 
7 days later

Intravitreal 
injection, 
functional: 1 μM 
GNPs, toxicity: 
5 μM GNPs

N/A – dimensions Functional: GNPs 
↓ neovascularization, with 
sig. ↓ neovascular lumens 
compared to control, Toxicity: 
GNPs no sig. difference in 
retinal thickness, inflammatory 
markers, or cell death

↑ GNPs suppresses 
VEGFR-2 signaling 
pathway, blocks ERK 
1/2 activiation (in vitro 
assessment5)

Kim et al. 
(2011)

RGD-coated 
PGLA NPs 
modified 
with Flt23k 
intraceptors 
(RGD.Flt23k.-
NR.NP)

Retinal and 
choroidal 
neovascularization 
(CNV) treatment

sFlt-1 
knockdown 
murine, 4 weeks, 
laser-induced 
CNV mice, 
2 weeks, laser-
induced CNV 
monkey, 4 weeks

Systemic 
intravenous 
injection

Majority of NPs 
eliminated 30 days 
post administration

RGD.Flt23k.NR.NP ↓ CNV and 
↓ fibrosis volumes in all three 
models, murine model NPs 
↓ secondary CNV lesions and 
↑ visual acuity post 2, 4, and 
6 weeks of treatment

NPs deliver Flt23k 
plasmid for VEGF 
suppression, RGD-NP 
size and target-
specific properties 
allow for ↓ number 
of injections and 
accumulation in CNV 
lesions

Luo et al. 
(2013)

Toxicity: NPs no sig. difference 
in morphology, inflammatory 
markers, or cell death after 
30 days

LPD, liposomes–protamine–DNA; NLS, nuclear localization signaling; TAT, transactivator of transcription; Rpe65, retinal pigment epithelial protein 65; PLGA, poly(lactic-co-glycolic) 
acid; AUMC, area under the first moment concentration; MRT, mean residence time; ELP, elastin-like polypeptide; NOD, non-obese diabetic; LS96, lacritin ELP w/o thermal 
mediation; PA, peptide amphiphile; YIGSR, peptide sequence (laminin binding cell-adhesive); RGD, peptide sequence (ECM cell-adhesive); VEGFR-2 - vascular endothelial growth 
factor receptor 2; ERK, extracellular signal-regulated kinases; Flt23k, anti-VEGF intraceptor plasmid.
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FiGURe 4 | Overview of the versatile nanomaterial applications for corneal and retina defects, established by safe, efficient, and long-term 
rejuvenation of vision, (i) biosynthetic corneal substitute as an alternative to allogeneic tissue for vision restoration. Recombinant human collagen III is 
cross-linked (EDC/NHS), shaped (patient-match), and implanted (10–0 mattress sutures) onto damaged host tissue. The structural and lunctional properties of the 
nanomaterial elicit bioactive regeneration [reproduced with permission from Fagerholm et al. (2010)]. (ii) Hybrid nanoparticles show promise for accelerated corneal 
regeneration. Polyethylimine-conjugated gold nanoparticles (PEI2-GNPs) transfer bone morphogenelic protein 7 (BMP7) as a gene therapy for corneal fibrosis 
(Sharma et al., 2011; Tandon et al., 2013) [reproduced with permission from Chaurasia et al. (2015)]. The nanoparticle vector exhibited success in a rabbit model of 
laser ablation-induced corneal fibrosis. Thermo-responsive lacritin modified elastin-like polypeptide nanoparticles (LSI-NPs) infiltrate the corneal epithelium to 
facilitate ocular surface wound healing (Wang et al., 2014b). The self-assembly nanoparticles deliver lacritin within the epithelium swiftly and safely. (iii) Schematic of 
non-viral, nanoparticulate (polymeric micelles, liposomes, dendrimers, AgNPs, AuNPs, CeNPs) advantage for penetrance of the blood retina barrier (Chaurasia et al., 
2015). (iv) Gene therapy for retinal defects is one of many methods for regeneration using nanomaterials (inflammatory pathways or reactive oxygen species), and 
the application of RGD.FH23k.NR.NP in primates and murine models is a prominent case. This method displays the performance of NP vectors with site-specific 
targeting at a systemic scale, which suppressed retinal angiogenesis and fibrosis after 4 weeks in primates [adapted with permission from Luo et al. (2013)].
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unilaterally blinds (Oliva et al., 2012). The surgical replacement 
of the damaged cornea by transplantation from a cadaveric 
donor remains as the gold standard treatment. The severe 
shortage of donors in most countries, particularly in develop-
ing countries, has motivated the search/research for man-made 
corneal substitutes. Currently, refractive eye surgeries and 
synthetic corneal replacements (keratoprostheses) are applied 
to combat this issue but are limited in several ways. Primarily, 
post-operative complications, such as infection, are rampant for 
many patients (Griffith et  al., 2012). Furthermore, synthetics 

are incompatible at times depending on the individual and are 
at risk of biological rejection and induction of further ocular 
problems (Griffith et al., 2012).

Biocompatible and bioactive nanomaterials can possibly 
minimize complications associated with corneal regeneration. 
Intrastromal injection of peptide amphiphile (PA) nanofiber 
scaffolds modified with YIGSR (fibronectin peptide) or RGD 
(laminin peptide) sequences, into rabbit cornea were applied 
for corneal wound healing. Analysis after 3 and 7  weeks post-
injection with RGD displayed significant migration of stromal 
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keratinocytes and enhanced regeneration of the damaged cornea 
(Uzunalli et al., 2014). Furthermore, the opacity of the cornea was 
unaffected by the treatment. Also, the incorporation of nanosilver 
into collagen hydrogels can produce collagen mimetic matrices 
with antimicrobial properties (Alarcon et al., 2016).

Sometimes point-specific corneal healing is insufficient and 
replacement is necessary. As appealing as natural scaffolds are 
for replacement, the structural limitations associated with the 
size of the material (prone to degradation and fracture) remain 
a problem. Furthermore, the replacement must ensure full 
compatibility with the surrounding tissues (nerve and muscle) 
with acceptable refractive transparency. Fagerholm et  al. per-
formed a phase I trial of corneal replacement treatment using 
biosynthetic recombinant human collagen (rHC) type III. This 
10% (w/w) rHC type III is EDC/NHS cross-linked within an 
appropriately sized corneal mold. The assessment over a 2-year 
period reported no signs of transplant rejection, infection, or 
immunological reaction. Visual acuity among patients was simi-
lar to normal cornea function across the study (Fagerholm et al., 
2010). Furthermore, sufficient nerve regeneration and stromal 
repopulation was found in patients over a 4-year period following 
the original study (Fagerholm et al., 2014). The long-term safety 
and efficacy denoted in these studies is promising for future 
applications.

NP structures, such as liposomes, can also improve the 
effectiveness of antimicrobial drugs (Chaurasia et  al., 2015). 
Furthermore, NPs and NP structures are excellent drug and 
gene carriers that can promote site-specific delivery and bioavail-
ability to corneal epithelium (Attama et al., 2009; Sharma et al., 
2011). In addition, metal NPs integrated on surface scaffolds 
are highly effective antimicrobial agents that can reduce post-
operative complications (Santoro et  al., 2007). Scaffolds made 
of natural (chitosan) and synthetic (PCL) components are well 
received in eye transplants for ocular inflammation treatment 
(Zarbin et al., 2013).

Nanomedicine impact on Retinal 
Dysfunction and Associated Blindness
The retina is an expansive neural network, consisting of two 
layers: a pigmented layer for light absorption and a neural layer 
dense with photoreceptors. The retinal layers are vital for sensory 
integration, feedback, and processing of all visual information 
via chemical and electrical signals. This information is guided 
by the optic nerve to the brain. Retinal complications are very 
serious and often are associated with AMD and glaucoma. In 
addition, genetic abnormalities in photoreceptor function, pig-
mented cells, and ganglion density can contribute to congenital 
blindness. A major challenge with current therapies is pen-
etrance of the blood–retina barrier and site-specific distribution 
of bioactive agents.

Neovascularization of the subretinal space leads to loss of 
visual acuity. This is treated with continuous intravitreal injec-
tions of inhibitors (anti-VEGF) to minimize vascular expansion 
and thus improve vision. However, the injections are quite costly 
and invasive. Also many patients experience minimal recovery 
or vision loss continues to diminish. In a study by Luo et  al. 
(2013), a single injection of RGD-coated PGLA NPs with Flt23k 

(anti-VEGF plasmid) transcripts was applied to an AMD primate 
and choroidal neovascularization (CND) murine model. This 
systemic intravenous injection minimized the administration 
risk and the NP solution was biocompatible in both animal 
models. It was found that ~86% of mice displayed a 12.2 ± 5.2% 
improvement to visual acuity (Luo et  al., 2013). Furthermore, 
CND and fibrotic scar volumes were reduced in both animal 
models (Luo et al., 2013). In another study, bare titanium diox-
ide (TiO2) NPs were injected into mice with oxygen-induced 
retinopathy (Jo et  al., 2014). Interestingly, the TiO2 NPs had 
a low toxicity profile in the trial with signs of reduced retinal 
neovascularization. There are many proposed nanomaterial 
scaffolds and drug-carriers that are protective and regenerative 
for retinal photoreceptors and neurons (Zarbin et al., 2013; Lin 
et al., 2015; Varshochian et al., 2015).

Degeneration associated with AMD is one of the major 
causes of blindness in the world. Dry AMD is characterized by 
gradual loss of vision as drusen accumulates between retinal 
pigment epithelial and Bruch’s membrane (Cai and McGinnis, 
2016). There are many factors associated with this progression, 
including biochemical and molecular mechanisms. Most thera-
peutic methods focus on inflammatory pathways or cell-based 
rejuvenation of tissue. Cerium oxide NPs (CeNPs), commonly 
known as nanoceria, have antioxidant catalytic activity similar 
to endogenous defense enzymes. In a study by Kong et al., low-
dose nanoceria was systemically injected into mice with retinal 
defects to observe retinal function and the effects on ROS levels. 
The nanoceria reduced concentration of ROS in the subretinal 
space, and preserved photoreceptor integrity by the upregulation 
of pro-survival genes and downregulation of apoptotic signals 
(Kong et  al., 2011). This work has been assessed in different 
injury models, including the latest example by Wong et al. (2015). 
Single-dose CeNPs catalytic activity was consistent over a 7-day 
period, with a decline by day 14, which was able to prevent 
photoreceptor degradation in a retinal degeneration rodent 
model (Wong et al., 2015).

Dramatic Changes in Ocular Treatment 
Closer than ever
The advances in ophthalmological nanomedicine are staggering, 
and few challenges seem to remain before the advent of major 
innovations. The application of biocompatible, biofunctional 
materials for corneal regeneration or replacement holds great 
promise. As described, corneal fibrotic scarring and neovascu-
larization are reversible using various methods, or combinations, 
of nanomaterials, metal NPs, or nanoparticulate structures. 
A major advantage provided by noble metal or polymeric NPs, 
dendrimers, and liposomal nanotechnologies is mobility across 
the blood retina barrier, allowing for accumulation and sustained 
bioactivity or release of anti-inflammatory and antivascular 
drugs (Chaurasia et  al., 2015; Jo et  al., 2015). In addition, the 
composition and size of NPs elicit minimal immunological reac-
tion. Ocular therapeutics is more manageable compared to other 
organ/tissue targets, specifically in terms of administration, cost/
utility of materials, and structural penetrance and localization. 
However, the benefits attributed to ocular nanotechnologies are 
not without its flaws. Beyond improving therapeutic outcomes, 
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further long-term assessment of NPs distribution and eventual 
clearance is required to fully evaluate toxicity, bioavailability, 
and stability (Chaurasia et  al., 2015). Nanoemulsions and 
cell-based therapies for ocular diseases are prime candidates 
for clinical phase trials (Ramsden et al., 2013; Chaurasia et al., 
2015). Nonetheless, it is expected that ocular nanomedicine will 
cause a shift in translational practices (Etheridge et  al., 2013). 
The number of viable, novel therapeutics will expand consider-
ably following further elucidation of nanomaterial regenerative 
mechanisms. Furthermore, the technological advances in design 
tools and integrated nanomaterial components will match this 
movement. This will guide approaches into a clinical perspective, 
such as hybrid diagnostic/therapeutic systems, targeted drug 
systems, and quite possibly gene delivery.

NANO-eNGiNeeReD MATeRiALS FOR 
SKeLeTAL MUSCLe RePAiR

Nanomaterials for Skeletal Muscle injuries
Skeletal muscles are responsible for the majority of the active 
movements in the body that keep everyone in motion. The 
SMs are organized as bundled (fascicles), layered muscle fibers 
(myofibers) integrated with connective tissues, nerves, and blood 
vessels (Grasman et  al., 2015). Contraction of these muscles 
requires substantial energy, and the SM plays a structural (sup-
port soft tissues, posture) and functional (temperature regulation, 
skeletal movement) role in the body. SM hypertrophy is essential 
to growth/development and lifelong fitness; and these tissues 
regularly undergo regeneration (Grasman et al., 2015; Wolf et al., 
2015). However, recovery from medical problems dictated by 
atrophy, nerve dysfunction or significant volumetric muscle loss 
(VML) is limited and typically results in irreversible scar forma-
tion (Grasman et al., 2015; Wolf et al., 2015). The application of 
nanomaterials in tissue engineering is expected to fulfill many 
niches in SM tissue regeneration and restoration. Key charac-
teristics necessary for the translation of novel materials include: 
biocompatibility, biodegradability, conductivity, and promotion 
of cell alignment, vascularization, and innervation. The physical 
and chemical features of nanomaterials determine functionality, 
which is often modulated by the addition of GFs, pharmacologi-
cal drugs, and NPs. The following sections will cover the current 
nanomaterial progress and challenges in SM tissue regeneration 
with a focus on in vivo application. Table 6 summarizes the main 
findings for the literature presented in this section.

Natural/Synthetic Hybrid/Composites 
Biomimetic Materials
Nanomaterials intended for SM tissue regeneration are often 
categorized as natural or synthetic scaffolds. Currently, sig-
nificant interest is placed on novel hybrid/composite scaffolds 
implementing the best features of both types. Natural-based 
scaffolds comprise essential ECM proteins, such as collagen, 
fibrin, and hyaluronic acid or decellularized tissue complexes 
(Wolf et al., 2015). The ECM maintains healthy organ function; 
thus, scaffolds of this origin are biocompatible, biodegradable, 

and bioactive for regenerative uses (Kin et  al., 2007; Klumpp 
et al., 2010; Sicari et al., 2014). Furthermore, the inherent nature 
of these materials can enhance cell-based therapies. However, 
preparation inconsistencies and material degradation (Koning 
et  al., 2009; Sicari et  al., 2014) are frequent issues, in addition 
to human translational limitations for animal-based natural scaf-
folds. These materials are manufactured primarily as 2-D sheets 
from their natural constitutes, designed for external applications. 
In addition, hydrogel soft materials can develop unique 3D 
shapes that can be further manipulated with cross-linkers or 
non-covalent bonding. In a study on in situ muscle regeneration, 
Ju et al. observed Pax7-positive cells (SCs) infiltrate gelatin-based 
scaffold implanted in the tibias anterior (TA) of mice (Ju et al., 
2014). Myogenic-inducing factors (SDF-1α, HGF, IGF-1, bFGF) 
were added to separate scaffolds during production. The release 
of myogenic factors facilitated cell accumulation. In particular, 
IGF-1 scaffolds showed significant fiber growth, prompted 
by myogenic differentiation of infiltrated cells, after a 2-week 
implantation (Ju et al., 2014).

Synthetic scaffolds are reputable for their customization 
of physical and chemical features and ease of manufacturing 
process. Nonetheless, these materials are often toxic to cells 
in  vitro and require modifications (coatings, surface proteins) 
to promote biocompatibility (Grasman et al., 2015; Wolf et  al., 
2015). Common examples include poly(lactic acid) (PLA), PEG, 
and poly(ϵ-caprolactone) (PCL). The choice of material deter-
mines the capacity of its function, yet difficulties are found in 
all types for promoting long-term vascularization and myofiber 
growth (Grasman et al., 2015; Wolf et al., 2015). The production 
control over synthetic materials allows for an array of configura-
tions. Meshes are designed to maximize surface area and provide 
incredible structural support. Foams and hydrogels are highly 
porous, elastic materials capable of interior storage and in  situ 
polymerization. Fiber-based scaffolds are thin, interwoven sheets 
fabricated typically by electrospinning methods. Fiber length, 
thickness, and alignment can be predetermined by set electro-
spinning parameters that allow for abundant choice in design 
(Grasman et al., 2015; Wolf et al., 2015). Nanofibrous scaffolds can 
mimic macromolecular sizes to enhance material–ECM interac-
tions (Grasman et al., 2015; Wolf et al., 2015). Furthermore, fiber 
orientation can promote myoblast adherence and proliferation 
(Chen et al., 2013). A novel approach in coaxial electrospun scaf-
folds explored by McKeon-Fischer et al. involves two-layered fib-
ers that induce movement similar to muscle myofibers. The inner 
core of the fibers comprises PCL and conductive multi-walled 
carbon nanotubes (MWCNT) and the outside is coated with 
polyacrylic acid (PAA)/polyvinyl alcohol (PVA) hydrogel that 
act as an ionic polymer gel (IPG). Following the implantation of 
these scaffolds into injured vastus lateralis (VL) muscle, myogenic 
growth was observed at the site (McKeon-Fischer et al., 2014).

Composite scaffolds integrating natural/synthetic proper-
ties are showing promise for SM tissue regeneration. These 
materials are developed with a combination of the individual 
methods discussed above, usually represented by dual-layered 
fiber scaffolds or interior/exterior interplay. ECM-derived 
surface coatings can minimize the foreign body reaction by 
synthetics. In addition, incorporated PEG or PCL polymers 
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TABLe 6 | Nanomaterials for skeletal muscle regeneration: functional effects on SM regeneration and potential mechanisms.

Nanomaterial Application Animal Model Administration Degradation 
Dimensions

Functional effects Mechanism Reference

PFC NPS 
loaded with 
rapamycin 
(RNPs)

Duchenne 
Muscular 
Dystrophy 
or skeletal/
cardiac 
muscle repair

Male mdx 
mice, forelimb 
str measured, 
sacrificed 4 h for 
histology and 2, 
12, 24 h for 19F

1 mL emulsion/
kg body mass, 
inj. into lateral tail 
vein (~0.002 mg 
rapamycin) or oral 
treatment

200 ± 25 nm, 
181.3 ± 40.7 min 
half-life by median 
distribution

↑ Grip str attributed to 
RNPs treatment (> 30%), 
↓ pS6 and ↑ LC3B-II levels 
w/RNPs

NPs and RNPs stimulate 
autophagy pathway in 
knockout mice, both 
treatments enhance cell 
function in varied aged 
mice

Bibee et al. 
(2014)

RNPs penetrate muscle 
tissue and distribute 
nominally

PCL-MWCNT-
PAA/PVA 
(83/17 or 
40/60) scaffolds

Skeletal 
muscle 
regeneration

Male SD mice, 
VL incision, 
sacrificed 7, 14, 
21, and 28 days 
after treatment

Scaffold segments 
placed in muscle 
cavity during VL 
procedure

5 mm × 3 mm size, 
no degradation after 
28 days period

↑ cell attachment 
to scaffold, ↑ 
neovascularization with 
40/60 vs. 83/17 scaffolds, 
↑ inflammation by 7 days, 
but ↓ inflammation by 
28 days

Electrospun 
scaffolds – inner core 
of PCL-MWCNT with 
a PAA/PVA polymer 
sheath, conductive 
core allows uniform cell 
alignment

McKeon-
Fischer 
et al. (2014)

PEG-fibrinogen 
(PF)-based 
hydrogel w/
MPs

Skeletal 
muscle 
regeneration

Male 
RAG2/ychain 
immunocompro-
mised mice, 
incision injury, 
sacrificed 30d

PF w/1.5 × 106 
MPs implanted 
subcutaneously 
into animal back

N/A – 100 μL of PF 
molded in cylindrical-
shaped silicon

↑ Myogenic capability 
w/young or aged MPs, 
+MyHC staining and 
formation of blood vessels 
at implant, ↑ cellular 
organization at implant

PF establishes viable 
environment for muscle 
rejuvenation w/young or 
aged MPs

Fuoco et al. 
(2014)

PLLA and 
Gelatin-based 
scaffolds 
w/loaded 
myogenic 
factors

In situ 
muscle tissue 
regeneration

SD mice, TA 
muscle injury, 
scaffolds 
collected at 1, 2, 
3, and 4wks

PLLA and 
Gelatin (w/or w/o 
myogenic factors) 
implanted via 
incision at TA

150 μm diameter, 
50–100 μm pore size, 
sig. degradation after 
4 weeks

↑ Pax-7 positive cell 
infiltration into scaffold, sig. 
↑ cell infiltration and fiber 
growth w/IGF-1 scaffolds 
vs. other factors

PLLA or Gelatin scaffolds 
reliably provides 
safe environment for 
host cells inducing 
proliferation and 
differentiation

Ju et al. 
(2014)

Shape memory 
alginate 
scaffold w/
myoblasts 
and GFs 
(VEGF + IGF-1)

Skeletal 
muscle 
regeneration

Male C3H/6J 
mice, myotoxin 
and TA muscle 
injury, sacrificed 
2 and 6 weeks

Scaffold implanted 
w/syringe and 
inj. of 0.5 × 106 
myoblasts and GFs

13.5 mm × 2.6 mm × 
1.1 mm dimensions, 
complete degradation 
after 4–6weeks

↓ Fibrotic area w/
scaffold, +cells/GFs, 
↑ fiber diameter and ↑ 
neovascularization (CD31) 
w/scaffold +GFs

Biodegradable, highly 
porous scaffold 
promotes cell survival 
and attachment in 
microenvironment

Wang et al. 
(2014a)

PFC, perfluorocarbon; S6-PCL, poly(ϵ-caprolactone), MWCNT, multi-walled carbon nanotubes; PAA, polyacrylic acid; PVA, polyvinyl alcohol; SD, Sprague-Dawley; VL, vastus 
lateralis; MPs, muscle-derived pericytes; MyHC, anti-myosin heavy chain; PLLA, poly(L-lactic acid); TA, tibialis anterior; VEGF, vascular endothelial growth factor, IGF-1, insulin-like 
growth factor 1.
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enhance mechanical durability for degradable natural polymers. 
An electrospun PCL/collagen composite scaffold, seeded with 
human SM cells, was biocompatible and promoted cellular adhe-
sion and proliferation. In addition, the orientation of scaffold 
fibers influenced the alignment of muscle cells and facilitated 
myotube formation (Choi et  al., 2008a). As a follow-up, Zhao 
et  al. used the same PCL/collagen scaffold implanted in  vivo 
to resolve diaphragm defective mice over a 6  months period. 
The material promoted cell migration and adhesion, showing 
alignment and subsequent tissue formation within and around 
the scaffold. Physical characteristics of the material matched 
normal diaphragm tissue, and the implant did not invoke a host 
response or herniation (Zhao et  al., 2013). A PEG-fibrinogen 
(PF) hydrogel scaffold, with young or aged muscle-derived 
pericytes, was found to improve myogenic differentiation 
and angiogenesis (Fuoco et  al., 2014). Furthermore, aged 
pericytes seeded on the scaffold had rejuvenated function that 
matched young pericytes. This transformation is influenced 
by the features of the scaffold, which mimic ECM mechanical 
and functional properties (Fuoco et  al., 2014). The capability 
for hybrid/composite scaffolds to specifically match certain 

applications by varying a number of parameters on the natural 
and synthetic components allows for a greater improvement 
against the challenges of SM regeneration.

Nanoparticle-Based Carriers and Active 
Agents in Regeneration
There is a relatively expansive outlook on the role NPs can play 
in SM tissue regeneration. However, the majority of studies are 
confined to physical/chemical characteristic assessments and 
in vitro display of biocompatibility, release-kinetics, and cellular 
functional response. Nonetheless, progress is apparent as our 
understanding of the structural and functional features these 
NPs contribute is elucidated. NPs are frequently used as imaging 
agents (Fang and Zhang, 2009; Adriana et al., 2015) and carri-
ers for GFs or drugs (Arvizo et al., 2012), though this has been 
limited so far for SM tissue applications. Bibee et al. developed 
rapamycin-loaded perfluorocarbon NPs that increased physical 
performance, specifically forelimb grip strength, of both young 
and old mice. The NPs accumulated at sites of inflammation, 
where rapamycin induced autophagy that promoted muscle 
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recovery (Bibee et al., 2014). The concentration of drug within 
NPs, injected via the lateral tail vein, required for this effect is 
10 times less than is required with oral supplementation. This is 
an example where nano-therapeutics can replace existing treat-
ments (corticosteroids, physical therapy) or offer a novel means 
to promote recovery at a biochemical and molecular level.

Notably, noble metal NPs impart electrical conductive and 
catalytic functions useful for enhancing nanomaterial effective-
ness (Arvizo et al., 2012). However, conductive properties par-
ticular to noble metals in SM scaffolds are rarely applied, though 
the use of multi-walled CNTs has been successful (Quigley 
et al., 2012; McKeon-Fischer et al., 2014). Parameter changes in 
pre- and post-production readily alters physical characteristics, 
such as size, shape, and composition (Arvizo et al., 2012). Metal 
NPs are usually produced via chemical reduction, followed by 
downstream purification processes (Arvizo et al., 2012). An area 
continuously under study is the compatibility of metal NPs in 
specific tissues, which is heavily focused on NPs concentration 
and distribution. McKeon-Fischer and Freeman developed 
electrospun PLLA-AuNPs composite scaffolds with three varying 
concentrations of AuNPs (7, 13, and 21%) to enhance the healing 
process (McKeon-Fischer and Freeman, 2011). The proliferation 
of cells was minimal, yet interestingly the lowest concentration 
of AuNPs conferred relatively similar results compared to the 
higher concentration variants. Structural integrity was stable over 
4 weeks and the AuNPs did not show signs of toxicity. In regard 
to coating, metal NPs are capable of promoting cellular interac-
tions and maintaining cell presence at the scaffold surface, which 
enhances their functional ability (Ishizaki et al., 2011).

The majority of studies on SM regeneration focus on physi-
cal injury and loss of SM tissue; however, it may be beneficial 
to aim at biochemical and molecular dysfunction as well. The 
role of AuNPs in oxidative stress for exercised-induced muscle 
damage was evaluated in rats over a 21-day period. Inflammation 
is active in the presence of ROS, which contributes to SM dam-
age. Phonophoresis (ultrasound-guided delivery) of AuNPs 
was found to reduce inflammation, denoted by a decrease in 
many pro-inflammatory markers and oxidative stress mark-
ers (superoxide and NO), and an increase in total glutathione 
levels (Zortea et al., 2015). In addition, it was found that a gold 
embedded, decellularized porcine diaphragm scaffold promoted 
fibroblast proliferation and attachment, yet high Au concentra-
tion increased free radical levels (Cozad et  al., 2011). It would 
be interesting to see a follow-up involving AuNPs release from 
hybrid/composite scaffolds for in vivo SM regeneration.

It seems that NPs in SM regenerative applications are in the 
early stages of development in terms of their potential. The 
coming years will show how valuable metal NPs features are to 
modulating scaffold functions and influencing physical/chemical 
characteristics when based on their extensive foundational study.

Future Directions for Skeletal Muscle 
Regenerative Materials
Key functional effects prioritized in recent SM regeneration stud-
ies include cell migration into/onto nanomaterials, alignment 
of neighboring cells or newly proliferative cells, and electrical 

stimulation of scaffolds. Furthermore, elucidation of material–
cell–tissue interactions in vivo is vital for facilitating the transition 
from proof-of-concept design to pre-clinical or FDA-phase trials 
(Grasman et  al., 2015; Wolf et  al., 2015). Currently, an incred-
ible variety of nanomaterials are available, yet few boast truly 
significant in  vivo compatibility and regeneration in long-term 
studies. In part, this is due to limitations in the animal models 
for SM regeneration. Popular methods of injury include lac-
eration, ischemia, and weighted-trauma. If the induced injury is 
minimally disruptive, normal SM regeneration takes precedence 
over potential effects from scaffolds. Furthermore, if the basal 
membrane remains after injury it can act as a template for satel-
lite cell migration (Wolf et al., 2015). By contrast, VML injuries 
remove considerable muscle tissue but consistency is difficult to 
maintain across animal models and injury site (Grasman et al., 
2015). Sometimes toxins are introduced to permanently limit SM 
function. It will be important to fully describe such methods in 
practice for studies aimed at translational applications.

Skeletal muscle regeneration is a multifaceted endeavor. 
In order to meet this demand, substantial tissue replacement/
healing must be induced by facilitated proliferation and dif-
ferentiation of neighboring SM cells. Furthermore, promotion 
of axonal growth and innervation will improve communication 
with damaged peripheral nerves. In addition to SM regeneration, 
it will be necessary for nanomaterials to promote both angiogen-
esis and neurogenesis. Noble metal NPs show promise; however, 
steps need to be taken to elaborate on their effects in vivo. This 
advancement will likely involve hybrid/composite materials 
associated with metal NPs and progenitor cell delivery.

NANOMATeRiALS FOR PeRiPHeRAL AND 
CeNTRAL NeRvOUS SYSTeM 
ReGeNeRATiON

A Gap Bridged by Nanomaterials for 
Peripheral and Central Nervous System 
Repair
The nervous system is essential to the functional relay and 
processing of information outside and within the human body. 
It is categorized by two divisions: the CNS, which includes the 
brain and spinal cord, and the peripheral nervous system (PNS) 
that comprises all other neural tissue in the body (Goldberg and 
Barres, 2000). The basic neural unit, the neuron, is capable of 
receiving and sending signals at rapid speeds. The CNS integrates, 
processes, and coordinates sensory and motor information to 
enable a functional response. The PNS primarily sends signals 
to the CNS, via the spinal cord, and delivers signals to other cells 
within the body (Goldberg and Barres, 2000). However, the nerv-
ous system is susceptible to acute or chronic damage alike to the 
other tissues in the body. People of all ages suffer from neural 
complications, induced by infection, physical trauma, toxins, and 
hypoxic conditions. Furthermore, neurodegenerative diseases 
are prominent in the elderly population. Commonly, neural deg-
radation is associated with a diminished neuron population or 
severed neuron-tissue connections. Clinical therapies for neural 
regeneration range from successful, PNS axonal gap connections 
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TABLe 7 | Nanomaterials for peripheral and neural nervous system: functional effects on NS regeneration and potential mechanisms.

Nanomaterial Application Animal Model Administration Degradation 
Dimensions

Functional effects Mechanism Reference

Gold 
nanoparticle-
silk-fibroin 
nanofiber 
(GNP-SF) w/
Schwann cells 
(SCs)

Treatment 
for peripheral 
nerve 
injuries or 
neuromuscular 
defects

Sub-adult SD 
rats, right sciatic 
nerve gap 10 mm, 
5 conditions – 
sacrificed 9 and 18 
months

NC bridged 
gap of proximal 
and distal nerve 
stumps, sutured 
closed

NC were 
structurally intact 
after 18 months 
in trials

Post 9 and 18 months: 
↑ NCV and CMAP, 
normal measure of MUP, 
and enhanced SFI w/
gold-silk composite and 
SCs. No signs of toxicity, 
immunogenicity, or irritation 
in animals

Severed axonal 
connection → SF scaffold 
promotes growth over 
material

Das et al. 
(2015)

Incorporation of 
GNPs enhances 
conductivity – 25-fold ↓ 
electrical resistance w/
GNPs

Nanofiber 
guidance 
channels (PCL 
and PGLA) with 
SAPs

Chronic spinal 
cord injuries

Adult SD female 
rats, T10 weight-
drop trauma, post-
4 weeks animals 
were sacrificed at 
24 weeks

Scar tissue 
removed, 
insertion of 
10–13 tubes 
per animal, 
G1 – w/SAPS 
and G2 – w/
SAPS + GF

Fiber: 
D = 592 ± 225 nm, 
L = 2/3 mm, 
degradation sig. in 
24 weeks

↑ Growth tissue basement 
membranes, ↑ vascular 
network; G1/G2 +detection 
of markers for nerve fibers; 
G1/G2 ↑ BBB analysis 
and spinal and cortical 
responses improved

Imp. axonal growth and 
myelination over proximal/
distal sites of recovering 
nerve; biomimetic nature 
of material promotes 
nerve excitability

Gelain et al. 
(2011)

SAPNS 
monitored by 
MEMRI

Axon 
regeneration 
in CNS injury 
(real-time 
in vivo 
measurement 
system)

Young adult Syrian 
hamsters, OT injury 
– BSC transection, 
injury (105 days) w/
treatment 45 days, 
sacrificed at end

30 μL of 1% 
SAPNS inj. at 
BSC site, 2 μL of 
0.2 M MnCl2 inj. 
in eye virtuous 
chamber

N/A – fiber images 
included in study

MEMRI – initial scans 
indicate clear disruption of 
BSC via OT; post-SAPNS 
↑ wound healing and 
minimal regeneration
BA – pre-/post-SAPNS 
indicate disconnection
Histology – post-SAPNS 
fully closed gap and ↑ axons 
in LGN and lesion area

Toxic NCA – refinement 
of choice imaging agent; 
SAPNS treatment 
promotes regeneration, 
but fiber density low, 
robust real-time feedback 
method valuable to future 
studies

Liang et al. 
(2011)

SAPNS-NC Treatment 
for peripheral 
nerve injuries

Adult SD female 
rats, right sciatic 
nerve gap 10 mm, 
cnds: NNC, ENC, 
N/T – sacrificed 2 
and 16 weeks

NC bridged 
gap of proximal 
and distal nerve 
stumps (~1 mm 
insertion), 
sutured closed

N/S – SAPNS 
degrade in vivo as 
natural l-amino 
acids

Post-treatment indicates 
sig. ↑ myelination, ↑ SC 
migration, ↑ axon growth 
(on NC and distal nerve); 
SAPNS ↑ locomotion in hind 
limb and ↑ NCAP signal

SAPNS conduit 
bridged 10-mm gap, 
remyelination and 
axonal connections 
demonstrated by 
behavioral measure

Zhan et al. 
(2013)

NNC/NC, nanofiber nerve conduit; SD, Sprague-Dawley Rats; NCV, nerve conduction velocity; CMAP, compound muscle action potential; MUP, motor unit potentials; SFI, 
sciatic functional index; PCL – poly(ϵ-caprolactone); PGLA – poly(lactic-coglycolic acid); SAPs, self-assembling peptides; BBB, Basso, Beattie, Bresnahan scale; SAPNS, self-
assembling nanofiber scaffold; MEMRI, manganese enhanced magnetic resonance imaging; OT, optic tract; BA, behavioral assessment; LGN, lateral geniculate nucleus; NCA, 
nano contrast agent.
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<5.0  mm, to non-treatable, many neural degenerative diseases 
(Orive et  al., 2009; Cunha et  al., 2011). Nanomaterials are 
expected to revolutionize novel therapies and provide improve-
ments to current cell-based or immunological therapies. The 
following sections will cover current nanomaterial compositions 
demonstrating CNS and PNS regeneration, and representative 
examples for those materials are summarized in Table 7 and some 
of them depicted in Figure 5.

Self-Assembly Peptide Scaffold, 
Nanoparticles, and Nanofiber Composite 
Scaffolds for Nerve Regeneration
The nervous system is vulnerable to injury, yet it is surrounded 
by impressive structural defenses. The skull and surrounding 
cerebrospinal fluid (CSF) protects the brain from trauma, and 
the blood–brain barrier (BBB) semi-permeable membrane 
guards against ROS and pathogens. The spinal vertebrates encase 
the vital nerves and provide structural support. The peripheral 

nerves lack the same protective measures, but have intrinsic 
regenerative capabilities (Cunha et  al., 2011). Nonetheless, the 
CNS is at serious risk when its defenses are overwhelmed and 
peripheral nerve regeneration is unreliable in moderate-severe 
destruction. Most cell-based therapies are limited by poor cell 
engraftment and survival (Orive et al., 2009). Nanofiber scaffolds 
can establish an environment suitable for cell proliferation and 
survival, and promote proper neurite and axonal architecture 
(Ellis-Behnke et  al., 2009; Orive et  al., 2009). Neuroprotective 
drugs that are intended to minimize inflammation are ineffective 
via systemic injections due to the BBB and non-specific tissue 
distribution. The physical characteristics, primarily size and 
shape, of metal NPs and nano-structures confer penetrance of the 
BBB. Furthermore, metallic NPs are chemical stable and readily 
modifiable for surface functionality (Jo et al., 2015; Paviolo and 
Stoddart, 2015). Nanotechnology is demonstrating its potential 
to maximize cellular regeneration and minimize complications 
attributed to current methodologies (Orive et al., 2009; Cunha 
et al., 2011; Paviolo and Stoddart, 2015).
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FiGURe 5 | Summary illustration of nanomaterials for central nervous system (top) and peripheral nervous system (bottom) regeneration involving 
restored structure and function. Top: regenerative medicine for CNS recovery often follows the Four P. (Preserve, Permit, Promote, and Plasticity) as guidelines in 
developing novel nanomaterials (Ellis-Behnke, 2007). The importance of these guidelines depends on variables of treatment time and severity of injury, which 
contribute to themes of maximal cellular regeneration and minimal complication. Current pharmaceuticals intended for neural regeneration are associated with novel 
drug delivery platforms (polymeric nanoparticles, dendrimers, liposomes) that can modulate dose and target specificity within the CNS, without consequence (Orive 
et al., 2009). The design flexibility of nanoparticles allows for diverse application, dependent on uses for cellular uptake, dispersion, target binding, penetrance, and 
bioactivity modified from (Jo et al., 2015). Top-Left: spinal cord injuries have numerous complications that are possibly overcome using hybrid scaffolds with growth 
factors. The implantation of this nanomaterial melds within the damaged region, providing tissue reconstruction and neural regeneration [adapted with permission 
from Gelain et al. (2011)]. Top-Right: delivery platforms are garnering heightened attention, yet scaffolds can accelerate regeneration in specific cranial regions. For 
long-term treatment, hybrid scaffolds or SAPNS interact with the microenvironment conferring a biocompatible, biodegradable platform. Porosity, surface 
dimensions, and fibrous orientation contribute to positive material–cell interactions [reproduced with permission from Liang et al. (2011)]. Bottom: the majority of 
peripheral nerve injuries are associated with severed neural regions, with limited axonal growth and myelination. Highlighted, nerve guidance conduits are inspired to 
create a stable structural bridge between nerve gaps while promoting cellular growth and initiating electrical stimulation [adapted with permission from Daly et al. 
(2012)]. Bottom-Left: representative image of the implantation (a) and post-16 weeks (b) of a nerve conduit for sciatic nerve repair in rats followed by the increase in 
axon growth across the conduit dimensions [adapted with permission from Zhan et al. (2013)]. Bottom-Right: example of the incorporation of nanohybrid materials 
(gold nanoparticle-silk-fibroin nanotiber.Ai GNP-SF) for peripheral nerve regeneration. The nerve conduit preparation is completed using a sheet rolling method. 
Importantly, the GNP-SF shows that GNPs enhance nerve conductance as measured by compound muscle action potential over the study period in rats [adapted 
with permission from Das et al. (2015)]. Figures used in illustration are referred by use in caption, except generic brain/spine image.
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Peripheral nerve dysfunction is usually gradual, starting 
with pain sensations that progress to inconsistent coordination, 
which can lead to paralysis. In a study by Zhan and colleagues, a 
self-assembly peptide nanofiber scaffold (SAPNS) with an artery 
conduit sheath was implanted on the proximal and distal nerve 
stumps to bridge a 10 mm gap in adult rats (Zhan et al., 2013). It 
was found that after 16 weeks, the artificial nerve graft promoted 
myelination, satellite cell migration, and axonal growth over the 
conduit. In addition, assessment of the injured hindlimb motor 
function displayed significant improvement just after 6  weeks 
and followed throughout the 15-week period (Zhan et al., 2013). 
SAPNS have been of interest for axon regeneration over the last 
decade, initiated by Ellis-Behnke and colleagues (Ellis-Behnke 
et  al., 2006, 2009). The self-assembly peptide hydrogels resolve 
the architectural issue associated with the degraded tissue 
environment, suitable for CNS and PNS repair. The dynamic 
features of self-assembling peptides have been shown to induce 
functional recovery in different CNS injury models (Sang et al., 
2015). Modifications to SAPNS are currently being investigated 
to enhance their regenerative potential (Cunha et  al., 2011). 
A nanofiber guidance channels comprised PCL/PLGA with SAPs 
were implanted into cysts of mice with spinal cord injury. The 
assessment after 6 months displayed new tissue formation, com-
prising nerve fibers, ECM, and a vascular network. Furthermore, 
the motor function had improved in the animals after the pro-
cedure. The neuro-prosthetics was positively received with and 
without the addition of GFs, and inflammatory response was 
decreased during the period (Gelain et al., 2011).

The implications of NPs and NP structures (dendrimers, 
liposomes) on neural regeneration are showing great promise 
(Provenzale and Silva, 2009; Paviolo and Stoddart, 2015; Vidal 
and Guzman, 2015). NPs are very flexible in design ranging from 
solid or hollow cores, varying shapes and sizes, and different 
compositions (Jo et al., 2015). It is this leniency in parameters that 
allows for a certain type of NP to function in a particular manner 
(Provenzale and Silva, 2009; Jo et al., 2015). Metallic NPs, specifi-
cally gold, have intrinsic bioactivity promoting angiogenesis and 
cell differentiation (Paviolo and Stoddart, 2015). Furthermore, 
AuNPs have bioelectric functionality providing modulation of 
action potentials and ion channels in nerves (Zhang et al., 2012; 
Paviolo and Stoddart, 2015). In a study by Das et  al. (2015), a 
composite scaffold comprised AuNPs and silk-fibroin nanofibers 
(GNP-SF) was implanted into the sciatic nerve of Sprague-Dawley 
rats to bridge a 10 mm gap. The GNP-SF scaffolds, seeded with 
Schwann cells, provided significant improvements to motor func-
tion and electrical stimulation in 9- and 18-month studies. The 
scaffold was biocompatible and structurally stable over the study 
period, exemplary based on the sciatic nerve index (SNI) analysis 
(Das et al., 2015). Alternatively, polymeric NPs and liposomes are 
excellent carriers for drugs, genes, and GFs for CNS/PNS treat-
ments (Paviolo and Stoddart, 2015; Takeda and Xu, 2015). The 
surface–environment interactions, modified or unmodified, with 
these materials are suitable for membrane penetrance, targeted 
tissue distribution, and biofunctional activity. Encapsulation 
of neuro-regenerative contents is in parallel with the material 
fabrication, making the procedure relatively straightforward. 
In addition, NPs are modifiable for in vivo monitoring, which is 

beneficial for assessing material regenerative potential or distri-
bution in long-term studies.

Methods for CNS and PNS neural regeneration share a com-
mon goal, but the differences in complexity and injury severity 
between systems leads to divergence in applicable nanoma-
terials. Most PNS injury models involve precise incision and 
removal of segments in sciatic and peroneal nerves (Siemionow 
et  al., 2010). Nanomaterials are designed as nerve conduits or 
artificial prosthetics that bridge the gap and propagate cellular 
proliferation, migration, and differentiation at the treated site 
(Siemionow et al., 2010; Cunha et al., 2011). CNS injury is far 
more diverse depending on the associated cause(s). For spinal 
cord injuries, dorsal vertebrate trauma (1–2 vertebrate at most) 
is common in animal models. Anatomical and functional 
analysis is prioritized with scaffolds employing properties that 
establish neo-tissue environments. Brain injury depends on the 
treatment, varying in degree with hypoxia-induced models or 
severance of specific neural circuits and cell populations (Orive 
et  al., 2009). Primarily in brain injuries, nanotechnologies are 
used for sustained delivery of neurotrophic drugs or ECM-
mimetic scaffolds for localized cell populations (Orive et  al., 
2009; Mishra et al., 2014; Jo et al., 2015). Regenerative solutions 
for severe spinal injury and widespread degradation of neuronal 
cell populations in the brain are the most challenging tasks. 
This movement will be facilitated in the presence of new tools 
and techniques that interplay with intercellular and extracellular 
mechanisms involved in axonal growth and extension afflicted 
by disease.

Challenges in Nervous Tissue 
Regeneration and Upcoming Approaches
Treatment for structural and functional nervous tissue restora-
tion is a massive undertaking. There is still much to learn from 
the biochemical, cellular, and genomic/proteomic mechanisms 
involving neural regeneration. This is a clear limitation in under-
standing nanomaterial-tissue interactions. Future studies need to 
elaborate on the endogenous mechanisms at play on the material 
interface to properly assert regenerative significance (Orive et al., 
2009). Essentially, this understanding can perpetuate the novelty 
of nanomaterial designs to mimic these mechanisms. In addition, 
hybrid/composite nanomaterials can hopefully exploit bioelec-
tric cell features and reestablish the myelin sheath. Nonetheless, 
nanomaterials under in vivo investigation are already complying 
with necessary properties for clinical translation; biocompat-
ibility, biodegradation, low toxicity and immunogenicity, and 
functional surfaces/interiors are key for advancing model cases 
into treatment options.

The progression in nanomedicine for CNS/PNS regeneration 
is exciting and substantial, yet realistically the gains only permit 
small-scale clinical relevance. At this time, encapsulated cell-
based therapies with neurotrophic factors or GFs are in clinical 
phase trials for CNS disorders (Orive et al., 2009). Biomaterial 
nerve guidance conduits for PNIs are clinically approved and in 
phase trials, yet most are quite short or are quickly degradable 
(Daly et al., 2012). The foundation for nanotechnology is being 
built everyday, and eventually their unique features will be fully 
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understood and applied in next generation nervous system 
therapies.

CONCLUDiNG ReMARKS

The rationale integration of nanomaterials to the current thera-
pies for tissue engineering will bring unprecedented strategies 
for tissue regeneration. Some examples of the actual potential, 
and impact, of that engineered materials were discussed in this 
review for heart, skin, eye, SM, and nervous system. In cardiac 
regeneration, enhancing the biomaterial conductivity upon 
incorporation of the nanomaterial presents a unique venue of 
NPs. However, in vivo testing in animal models capable to evalu-
ate cardiac tissue regeneration, including onset for arrhythmias, 
is required. For skin regeneration, the use of multi-functional 
materials where by incorporating NPs produce materials with 
anti-inflammatory and antimicrobial are appealing strategies 
for the next generation of tissue scaffolds. The use of biocompat-
ible materials for corneal regeneration including noble metal, 
polymeric NPs, dendrimers, and liposomal nanotechnologies 
will allow mobility across the retina barrier, which could act as 
a reservoir for anti-inflammatory and antivascular drugs. For 
SM, promotion of axonal growth and innervation are pivotal 
for improving communication with damaged peripheral nerves. 
Finally, central and PSS would be benefited from the fabrication 
of biodegradable scaffolds capable to rapidly integrate within the 
lesion and promote cell angiogenesis and tissue regeneration. It 
has to be recognized, however, that better understanding on the 
nanoscale interactions between biopolymers and nanomaterials 
is required to more effectively harnessing and de novo engineer-
ing regenerative templates. Additionally, other aspects that to this 
day still hinder use of nanomaterials in the clinic are:

 I. Lack, or little, regulatory standards to assure stability of engi-
neered nanomaterials prior clinical evaluation. This should 
also account for evaluating the impact of batch-to-batch 
variability in the preparation of the nanomaterial. Assuring 
stability of nanocomposites and/or materials containing them 
in biological systems is pivotal to assess with precision the 
regenerative potential of the new materials.

 II. Almost non-existing standards for animal models to be used 
for assessing the bioactivity of nanomaterials, including 
biodistribution and accumulation of the nanomaterial. This 
becomes even more critical for cases where a specific medical 
lesion/injury has to be mimicked, as the case of MI or corneal 
wounds. Without clear standards or guidelines, inadequate 
choice of the in vivo assays in animals can lead to misleading 
data interpretation.

Although there is still a long way to go to better understand-
ing the real impact of nanotechnology, a elucidating nanoscale 
interactions, including dynamics of surface oxidation, capping 
agent replacement, and formation of supramolecular structures 
of nanomaterials in living organisms will pave the future of tissue 
engineering. Where macroscopic materials will be engineered 
from the nanoscale. Thus, once we fully understand those phe-
nomena, we will be able to better design the next generation of 
tissue scaffolds, or even artificial organs, a Scientific legacy will 
redefine the field of regenerative medicine.
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