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Innovative breakthroughs in fundamental research and industrial applications of 
graphene material have made its mass and low-cost production as a necessary step 
toward its real world applications. This one-atom thick crystal of carbon, gathers a set 
of unique physico-chemical properties, ranging from its extreme mechanical behavior 
to its exceptional electrical and thermal conductivities, which are making graphene as a 
serious alternative to replace many conventional materials for various applications. In this 
review paper, we highlight the most important experimental results on the synthesis of 
graphene material, its emerging properties with reference to its smart applications. We 
discuss the possibility to successfully integrating graphene directly into device, enabling 
thereby the realization of a wide range of applications, including actuation, photovoltaic, 
thermoelectricity, shape memory, self-healing, electrorheology, and space missions. The 
future outlook of graphene is also considered and discussed.

Keywords: gas-phase growth, graphene material, smart applications

introduction

Graphene material is considered as the first lab-made 2D atomic crystal. Because of their unique 
physical and chemical properties – such as mechanical stiffness, strength and elasticity, and extremely 
high electrical and thermal conductivity (Geim and Novoselov, 2007a; Geim, 2009) – graphene is 
described to be a serious alternative to replace many conventional materials in various applications, 
and could enable many disruptive innovation and potentially existing markets. For example, the 
combination of optical transparency, electrical and thermal conductivities, and mechanical elasticity 
will find application either in flexible electronics and/or transparent coatings, and the list of such 
combinations is continuously growing (Figure 1). Basically, graphene is a single 2D layer of carbon 
atoms, with a typical thickness of 0.34 nm. It is sp2 hybridized, where carbon atoms are covalently 
bonded to three other atoms in a hexagonal lattice structure (Geim, 2009; Layek and Nandi, 2013). 
Recently, graphene has been extensively investigated, both in terms of fundamental research and 
R&D applications. Graphene was isolated for the first time by Novoselov et  al. (2004) what was 
worth to them the 2010 Nobel Prize in Physics for their groundbreaking work. Their unprecedented 
structural and physico-chemical properties (especially its mechanical and electrical behaviors) 
in addition to its carrier mobility –  the highest know to date, at room temperature – makes the 
research on graphene one of the most important topics in all materials science fields (Basu and 
Bhattacharyya, 2012). On the other hand, graphene’ structure serves as the basic shape of almost all 
other carbonaceous materials, including fullerene (Muge and Chabal, 2011), single and multi-walled 
carbon nanotubes (Hassan, 2012), and even graphite, which is simply a multiple layers graphene 
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(Basu and Bhattacharyya, 2012). Literature survey shows that 
graphene material has numbers of potential applications, includ-
ing nanoelectronic like-devices, gas sensors, hydrogen storage, 
and polymer-based nanocomposites (Boukhvalov et  al., 2008; 
Ponnamma et al., 2010; Schwierz, 2010; Casolo et al., 2011), and 
could serve as an ideal prototype to investigate the properties of 
many other 2D nanosystems, such as 2D silicon and silicon car-
bide (2D-SiC), zinc oxide, boron nitride, and germanium (Elias 
et al., 2009; Bekaroglu et al., 2010; Houssa et al., 2010; Tang and 
Cao, 2010; Voon et al., 2010; Zhang et al., 2010a).

Experimentally measured properties of graphene have not only 
exceeded those obtained in any other material but also reached 
very often its theoretically predicted limits. A typical example is 
its room-temperature carrier mobility, of 2.5 × 105 cm2/Vs, which 
is found to be very close to the theoretical limit of 2 × 105 cm2/Vs 
(Mayorov et al., 2011). Many other representative examples could 
be found in the relevant literature, just to cite a few: a Young’s 
modulus of 1 TPa very close to that predicted by theory (Liu et al., 
2007; Lee et al., 2008; Morozov et al., 2008); a thermal conductivity 
of 3000 W mK−1 (Balandin, 2011); an optical absorption of 2.3% 
in the infrared (Nair et al., 2008); its property to be completely 
impermeable to gases (Bunch et al., 2008); its ability to carry one 
million time higher densities of electrical current than copper 
(Moser et al., 2007), and its potential to be chemically function-
alized (Elias et  al., 2009; Loh et  al., 2010; Nair et  al., 2010). It 
is worth noting that the majority of these properties have been 
experimentally measured for a high-quality graphene samples, 
deposited on specific substrates, such as hexagonal boron nitride 
(Dean et al., 2010; Mayorov et al., 2011). However, similar proper-
ties have not been observed so far on graphene material prepared 
using classical techniques, although these conventional processes 
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are continuously improving (Neto et al., 2009; Sarma et al., 2011). 
We conclude then that the challenge related to find markets of 
graphene applications is mainly related to the real progress real-
ized in its mass production with appropriate characteristics.

The number of publications related to the graphene material 
is continually growing has increased dramatically especially in 
last years (from about 4000 in 2010 to more than 14,000 in 2014) 
(Choi et al., 2010). Figure 2 shows how the number of refereed 
articles dealing with graphene material has steadily increased 
since 2004, based on data collected from the Engineering Village 
web-based information service.

The same tendency is also recorded with patents applications, 
which have downright doubled within 2  years only [i.e., from 
2010 to 2012 with a total of 8416 patents worldwide by February 
2013 (Zhang et al., 2013)].

In the recent years, there have been many review works, related 
either to theoretical and/or experimental studies, discussing the 
topics of synthesis and application of graphene material. To cite 
just few recent works, Neto et al., (2009) reviewed the electrical 
properties of graphene, and then focused on its electronic trans-
port properties (Neto et al., 2009). Other experimental reviews 
included detailed discussions of synthesis (Zhang et al., 2010a) 
and Raman spectroscopy processes of transport mechanisms (Ni 
et al., 2008; Avouris, 2010; Giannazzo et al., 2011), related to elec-
tronic applications graphene, including transistors like-devices, 
bandgap engineering (Loh et  al., 2010), and optoelectronic 
technologies (Bonaccorso et al., 2010; Schwierz, 2010). However, 
among all the published articles on the matter, only 18 review 
works have been conducted on the smart applications of the 
graphene materials (Figure 3), and to the best of our knowledge, 
only one review-article has been published on 2015. In sum, along 
with the increase in the number of publications in this area comes 
a need for a comprehensive review article, and the objective of 
this paper is to address this need. The literature is indeed lacking a 
comprehensive review of the recent experimental advancements 
on graphene material and its smart applications. This is the aim 
of our article. However, due to the huge number of various works 
that are involved, and often the unavailability of access to many 
conference proceedings, the emphasis of this paper was on the 
most accessible refereed journal articles. Obviously, it was not 
possible and practical to cover all of these articles, especially since 
a lot of them had already been covered by previous paper review; 
an attempt was made to select representative articles in each of the 
relevant categories. This review should be particularly well suited 
to graduate students who desire an introduction to the study of 
graphene that will provide them with many references for further 
reading.

Graphene Scalable Synthesis Perspectives

Initially discovered by micromechanical exfoliation of graphite 
(Geim and Novoselov, 2007b), graphene has generated wide-
spread interest as a smart material. However, for graphene 
to make a significant impact within industry, it is important 
to develop methods for scalable synthesis of high-quality 
graphene. The current common production methods for gra-
phene include liquid exfoliation, ultrahigh vacuum processes, 
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annealing of silicon carbide (SiC), and obviously, chemical 
vapor deposition (CVD). Other methods, which could be used 
for scalable graphene synthesis, include plasma enhanced CVD, 
flame synthesis, and pulsed laser deposition (PLD). These meth-
ods will be discussed in this review with a focus on identifying 
processes that can be translated for commercial production of 
graphene. This review does not cover methods for the produc-
tion of graphene oxide.

Micromechanical exfoliation
Micromechanical exfoliation involves peeling highly ordered 
pyrolytic graphite (HOPG) using adhesive tape (Novoselov et al., 
2005). Since each layer of graphene is bonded to the other layer by 
van der Waals bonding, it is feasible to cleave HOPG. Normally, 

the peeling is performed several times. This process can also be 
used to produce few layers graphene (FLG). While this is the sim-
plest method for the production of graphene and is commonly 
used in laboratory experiments, the production method is not 
scalable for large-scale graphene growth.

Liquid-Phase exfoliation
Liquid-phase exfoliation (LPE) involves using a solvent to exfoli-
ate graphite by ultrasonication (Hernandez et  al., 2008; Lotya 
et al., 2009). Commonly used solvents include acetic acid, sulfuric 
acid, and hydrogen peroxide (Singh et al., 2011). The ultrasonica-
tion time is typically 60 min with a power of 250–500 W. Green 
and Hersam (2009) reported the use of sodium cholate as a 
surfactant for the exfoliation of graphene. Moreover, they were 
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able to separate the sheets by density gradient ultracentrifugation, 
which enabled the isolation of graphene from FLG. LPE can be 
used for the production of graphene nanoribbons (GNRs) (Li 
et al., 2008), where the width is <10 nm. While LPE represents a 
scalable method for the production of graphene, large scale film 
growth remains really challenging.

Chemical vapor Deposition Based Synthesis
Chemical vapor deposition of graphene involves the use of tran-
sition metals, where nickel (Ni) (Reina et al., 2008; Chae et al., 
2009; Kim et al., 2009; Losurdo et al., 2011) and copper (Cu) (Li 
et al., 2009; Bae et al., 2010; Guermoune et al., 2011; Suk et al., 
2011; Wang et al., 2011) are suitable for large scale production 
of graphene.

Graphene growth based on CVD has shown exceptional device 
properties (Figure 4) (Bae et al., 2010), with electron mobility of 
7350 cm2 V−1s−1 (Novoselov et al., 2005). In addition, large scale 
production of 30″ graphene films was demonstrated using roll-
to-roll CVD (Mattevi et al., 2011). The graphene obtained from 
this process was of high quality, with a sheet resistance of ~125 Ω/
square and 97.4% optical transmittance.

Graphene growth using CVD is fairly straightforward, where 
a copper or nickel substrate is placed in a reactor at temperatures 
normally around 1000°C. The initial step in the process is to 
introduce hydrogen in the reactor. This step is critical to elimi-
nate any oxide layer present in the metal, for the case of Cu this 
will reduce any native layers of CuO and Cu2O. The hydrogen 
atmosphere also enables the growth of grain boundaries (Mattevi 
et  al., 2011), which is necessary for the growth of high-quality 
graphene. Afterwards, a hydrocarbon gas (typically methane) is 
added to the reactor. The hydrocarbon gas provides the necessary 
carbon species used in the growth of graphene. The hydrocarbon 
gas to hydrogen ratio plays an important role in the growth of 

graphene. If insufficient hydrogen is present, this could result 
in oxidized metal layers being present, which can lead to a 
disordered graphene structure. By contrast, excess hydrogen has 
shown to etch away graphene. On polycrystalline substrates, the 
graphene flakes tend to have different lattice orientations.

Using CVD, graphene is grown onto transition metals, which 
enables a low-energy pathway by forming intermediate com-
pounds for the growth of graphene. The first row of transition 
metals Fe, Co, Ni, and Cu is of great interest due to their low 
cost and high availability. The difference in the carbon solubil-
ity between these metals impacts the growth quality, where Fe 
has the highest and Cu has the lowest carbon solubility. For this 
reason, Cu is an ideal metal for growing single layer graphene. 
When using Ni and Co it is common to get up to 10 layers of 
graphene. Similarly, on Fe it is common to have FLG.

Most practical applications of graphene require that the 
underlying surface be insulating. For this reason, graphene must 
be transferred to an insulating surface, such as SiO2 (Bhaviripudi 
et  al., 2010). Additionally, this transfer is required to measure 
the optoelectronic properties of the synthesized graphene. The 
commonly used process to transfer graphene is to first deposit 
and cure poly (methylmethacrylate) (PMMA) on the metal sheet. 
Afterwards, etch the Cu metal sheet using iron chloride. This 
gives a floating sheet of PMMA and graphene, which is rinsed in 
deionized water. Subsequently, transfer this layer to an insulating 
surface and use acetone to remove the PMMA layer.

Plasma enhanced Chemical vapor Deposition 
Synthesis
Plasma enhanced CVD (PECVD) is another method used for 
the synthesis of graphene that is comparable to the thermal CVD 
process (Zhu et al., 2007; Yuan et al., 2009; Kim et al., 2011; Bo 
et al., 2013). PECVD is based on a number of plasma sources, 

A

B C D

FiGURe 4 | (A) Schematic of the roll-to-roll production of graphene films grown on a copper foil. (B) Roll-to-roll transfer of graphene films from a thermal release 
tape to a PET film at 120°C. (C) A transparent large-area graphene film transferred on a 35″ PET sheet. (D) An assembled graphene/PET touch panel showing 
mechanical flexibility. Reproduced with permission of Bae et al. (2010). Copyright 2010, Nature Nanotechnology.
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such as microwave (MW) (Malesevic et al., 2008), radio frequency 
(RF) (Wang et  al., 2004), and direct current (dc) arc discharge 
(Krivchenko et  al., 2012) have been utilized in the growth of 
graphene. Copper and nickel are typically used as the substrate 
for PECVD graphene growth; however, a number of additional 
substrates have also been used (Dato et al., 2008; Bo et al., 2013). 
A particularly exciting technique is a substrate free method based 
on the decomposition of ethanol in MW-based PECVD reactor 
(Guermoune et al., 2011). Such methods provide can be used for 
scalable production of graphene powder. Typical growth condi-
tions of PECVD graphene on a substrate are 5–100% CH4 in H2 
with a substrate temperature of 500–800°C (Singh et al., 2011; Bo 
et al., 2013). The power of the plasma is 900 W. Such processes can 
enable the growth of graphene at lower temperatures and shorter 
duration (<5 min). However, the quality of the graphene film is 
typically lower when compared to thermal CVD.

The growth of graphene films at low temperature is important 
for a number of applications. For instance, fabrication of graphene 
for high-performance display glass has to be at a temperature 
lower than 660°C (Ren et al., 1998; Bo et al., 2013). Furthermore, 
production at lower temperature can provide new manufacturing 
opportunities in the area of flexible electronics based on plastics 
(Tung et al., 2009). Critical challenges still need to be overcome, 
as at lower temperatures the graphene film tends to have a higher 
disorder.

Flame Synthesis
Flame synthesis is extensively used to produce commercial 
quantities of nanoparticles. Of the most widely used nanopar-
ticles, carbon black, fumed silica, and titania, flame synthesis 
is the dominant method in the production of these materials. 
Volumetric production of the flame synthesis industry is on the 
order of 100 metric tons per day (Kammler et al., 2001). A key 
advantage of flames is that it readily provides the high tempera-
ture necessary for gas-phase synthesis along with a carbonizing 
or oxidizing environment.

With respect to graphene, flame synthesis is not as commonly 
studied when compared to CVD, but it offers several important 
advantages, such as scalability and cost effectiveness. The most 
commonly used flame types include premixed, normal diffusion, 
inverse diffusion, and co-flow (Inoue et al., 2010; Memon et al., 
2013). Since early 2000s, a number of researchers have focused on 
the use of flames for CNT synthesis (Inoue et al., 2010). However, 
the development of flame synthesis for graphene is still in its early 
stage. In addition to flame type, other parameters including tem-
perature, species concentration, and velocity impact the growth 
process. Graphene being a two-dimensional material requires 
large-scale production across a substrate. Due to the temperature 
and species gradients that occur in most flames it is difficult to 
scale the growth of graphene across an entire substrate. Moreover, 
a reduced environment with carbon rich species, which is neces-
sary for graphene growth, is difficult to achieve in most flames. 
Nevertheless, flame synthesis has the potential to economically 
enable the mass production of graphene.

Similar to earlier CNT flame synthesis papers, where the 
growth of CNTs was observed near the soot region of a premixed 
flame, carbon particles containing graphene were observed in 

Bunsen (propane) flame (Ossler et al., 2010). These particles were 
collected by placing a transmission electron microscopy grid 
2 cm above the tip of the burner. The grid was held within the 
flame for 10–50 ms. The graphene films were several hundreds of 
nanometers in size.

In an attempt to grow graphene on copper, Li et al. (2011b) 
investigated the growth of graphene using an ethanol burner. 
The substrate was placed within the flame at a temperature 
of 550–700°C and the flame was extinguished using a cap 
to prevent the oxidation of the copper foil. The growth of an 
amorphous carbon film was observed on the substrate and XPS 
confirmed the formation of sp2, sp3, and C–O bonded atoms. 
Graphene was not observed due to the low temperature and the 
presence of oxygen within the flame. In a different experiment,  
Li et al. (2011a) were able to synthesis graphene successfully on 
nickel. The process utilized two different burners (burner 1 and 
burner 2), with the substrate situated within the interior region 
of the flame structure itself (Figure 5). Burner 1 (alcohol burner) 
surrounded the substrate for the entire time, where it prevented 
air oxidation and served as the carbon source. Burner 2 (butane-
fueled Bunsen burner) provided the additional heating of the 
substrate and served as the carbon source for graphene growth. 
The flame was extinguished using a cap. There are still numerous 
challenges in using flame synthesis for the growth of graphene, 
specifically in developing methods that result in higher quality 
graphene.

epitaxial Growth on Silicon Carbide Substrate
Yannopoulos et al. (2012) have investigated the thermal decom-
position of SiC surface, which was providing an epitaxial growth 
of graphene material (Figure 6). They reported a new process 
using a CO2 laser as the heating step for a fast and one-step 
growth process of large uniform graphene film on SiC. This 
method can control the stacking order of epitaxial graphene 
and is cost-effective since it does not involve any pretreatment 
step or high-vacuum process. The decomposition operated at 
low temperature and proceeded in the second time scale, thus 
providing a means to engineering graphene patterns on SiC by 
focused laser beams.

Pulsed Laser Deposition
The PLD process is definitely considered as one of the most ver-
satile growth approaches. Since the laser energy source is located 
outside the deposition chamber; the use of either ultrahigh 
vacuum or ambient gas becomes possible (Krebs et  al., 2003). 
Combined with a stoichiometry transfer between ablated target 
and substrate where the material is deposited, this flexibility 
allows depositing theoretically all possible kinds of materials, 
including polymers or fullerenes (Eason et al., 2006). This tech-
nique was first employed by Smith et al. (1965) (Krebs et al., 2003) 
in 1965 to elaborate semiconductors and dielectric thin films. 
In 1987, it was then fully developed by Dijkkamp et al. (1987) 
for the deposition of high-temperature superconductors. Their 
work allowed to define the main characteristics of PLD, namely, 
the stoichiometry transfer between target and deposited film 
(Smith et al., 1965; Dijkkamp et al., 1987; Chrisey and Hubler, 
1994; Eason et al., 2006). Since the work of Dijkkamp et al., the 

http://www.frontiersin.org/Materials/archive
http://www.frontiersin.org/Materials/
http://www.frontiersin.org


FiGURe 5 | Different configurations used for the flame synthesis of graphene, (A) dual flame configuration, (B) multiple inverse diffusion flames, (C) 
flame spray pyrolysis and (D) microcombustor. Reproduced with permissions from Luechinger et al. (2008), Li et al. (2011b), Memon et al. (2011), and  
Kellie et al. (2013).

September 2015 | Volume 2 | Article 586

Aïssa et al. Progress in the growth and applications of graphene

Frontiers in Materials | www.frontiersin.org

Ar gas flow

SiC

CO2 laser beam
Au coated focusing 

mirror

Optical
Pyrometer

5 mm

Quartz 
tube

SiC
wafer

EG on SiC Copper Jet

SiC

EG

2

12μm

A B

FiGURe 6 | (A) Schematic diagram of the CO2 laser induced epitaxial growth of graphene on SiC wafers. (B) SEM micrograph showing the formation of epitaxial 
growth graphene (Zone 1) on 6H-SiC (0001). Reproduced with the permission from Yannopoulos et al. (2012). Copyright 2012, Wiley-VCH.

http://www.frontiersin.org/Materials/archive
http://www.frontiersin.org/Materials/
http://www.frontiersin.org


FiGURe 7 | Schematic of a representative laser deposition tool.

YBa2Cu3O7
BiSrCaCuO

PMMA 
TiN

TlBaCaCuO
SiO2
SiC

Diamond-like carbon C
C60

Ferroelectric materials
30 alloys/multilayers

FeNdB
MgB2

Multiferroic Bi2FeCrO6
Ruthenium Grubbs catalyst

Material

Year of PLD deposi�on

[Dijkkamp et al., 1987]

Reference

[Hansen and Robitaille, 1988]
[Foster et al., 1990]
[Biunno et al., 1989]
[Foster et al., 1990]
[Fogarassy et al., 1990]
[Balooch et al., 1990]
[Martin et al., 1990]
[Curl et al., 1991]
[Kidoh et al., 1991]
[Kerbs et al., 1993]
[Geurtsen et al., 1996]
[Shinde et al., 2001]
[Nechache et al., 2006]
[Aïssa et al., 2012]

19
87

19
88

19
89

19
90

19
91

19
93

19
96

20
01

20
06

20
12

FiGURe 8 | List of the materials deposited for the first time by PLD after 1987.

September 2015 | Volume 2 | Article 587

Aïssa et al. Progress in the growth and applications of graphene

Frontiers in Materials | www.frontiersin.org

deposition technique has been extensively used for all kinds of 
oxides, nitrides, carbides and also for preparing metallic systems 
and even polymers or fullerenes (Krebs et al., 2003). During PLD, 
almost all experimental parameters can be adjusted to control 
the film growth, and ranging from the laser parameters (Fluence, 
wavelength, pulse-duration, and repetition rate), to the deposi-
tion conditions (target-to-substrate distance, temperature, nature 
of the gas, pressure, etc.).

A representative schematic diagram for PLD (Krebs et  al., 
2003) is shown in Figure 7. Inside the vacuum chamber (ultrahigh 
vacuum, UHV), targets of elementary or alloy elements are struck 
at an angle of 45° by a high energy focused pulsed laser beam. 
The atoms and ions ablated from the target(s) are then deposited 
directly on the substrate (Krebs et al., 2003). In the majority of the 

cases, the substrates are attached with their surfaces parallel to the 
target(s) surfaces at a distance of 2–10 cm.

To the benefit of the reader, Figure 8 summarizes the main 
first-deposited materials since the introduction of PLD in 1987, 
with respect to the year for deposition and corresponding 
reference.

As mentioned earlier, in the PLD process, one of the main 
advantages is the fact that during deposition, the stoichiometry 
of the deposited material is very close to the target (Krebs et al., 
2003). Consequently, it is possible to prepare stoichiometric thin 
films from a single alloy bulk target (Krebs et al., 2003).

In the context of the graphene growth, and in parallel to the 
CVD deposition method, physical vapor deposition has also been 
reported for the growth of graphene (Koh et al., 2010; Zhang and 
Feng, 2010b). In UHV, PLD chambers graphite is normally used 
as the target with a transition metal as the substrate (Figure 9). 
A substrate temperature of 1300°C was reported for 1–2 layers 
of high-quality graphene (Figure  9) (Zhang and Feng, 2010b). 
No carbide formation occurs at the interface of graphene and the 
metal (Zhang and Feng, 2010b). While numerous metals can be 
used as a catalyst, nickel appears to be the most promising for low 
temperature growth. Numerous parameters, such as the cooling 
rate and laser power, impact the quality of graphene films (Koh 
et al., 2010).

Laser-Based Chemical vapor Deposition
A continuous wave (CW) laser is utilized for laser-based CVD 
in an enclosed chamber (Figure  10A) (Park et  al., 2011). The 
precursor gases used include methane and hydrogen, with Ni 
foil as the substrate. The synthesis mechanism is based on a 
vapor–liquid–solid that only takes nanoseconds to picoseconds. 
The spectra of the Raman spectroscopy showing the different 
graphene layers are illustrated in Figure 10B. A key advantage 
of this process is that it can be used for graphene lithography, 
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FiGURe 10 | (A) Schematic of the laser induced CVD process, and (B) 
mea-sured Raman as a function of the number of graphene layers. Reprinted 
with permission from Park et al. (2011). Copyright 2011, American Institute of 
Physics.
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FiGURe 9 | Graphene deposition by means of PLD. Measured Raman 
spectra with respect to the growth temperature. Reproduced with permission 
from Zhang and Feng (2010b). Copyright 2010, Elsevier.
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where the laser can be scanned on specific areas of a metal catalyst 
enabling direct growth.

Laser Growth Directly on Silicon and Quartz 
Substrates
Sun et  al. (2010) produced graphene on Cu and Ni film using 
PMMA. Due to the existence of the metal films, the graphene 
films need be transferred to other substrate using polydimethyl-
siloxane (PDMS) or PMMA (Kim et al., 2009; Reina et al., 2009; 
Sun et al., 2010). Silicon wafer is the most important single-crystal 
substrate used for semiconductor devices and integrated circuits 
(ICs). Suemitsu et al. (2010) produced epitaxial graphene on Si 
substrate. In their approach, a SiC film of about 100 nm-thick was 
deposited on the Si wafer before growth, so graphene was grown 
on the SiC surface. Direct growth of graphene on bare Si substrate 
without any other material is very attractive. Graphene films can 
form a Schottky junction with Si, which can produce a built-in 
electric field and realize electron-hole separation, and has been 
used to fabricate solar cells (Li et al., 2010a; Gunst et al., 2011; 
Karamitaheri et al., 2011).

Wei and Xu (2012) have demonstrated the growth of FLG 
directly on a silicon substrate using a laser irradiation. Silicon sub-
strates were coated with PMMA, which was then evaporated using 
a CW laser beam. The laser beam also melts the silicon surface and 
carbon atoms from PMMA separates from the silicon upon cooling 
to form FLG. A substrate of 1 cm × 2 cm p-type (111)-oriented Si 
wafer was used to grow graphene. The silicon wafer was first cleaned 
and the native oxide layer was removed in buffer hydrofluoric acid 
(HF) solution to form H-terminated silicon surface. A PMMA 
layer was coated on the Si surface by spin coating, then covered by 
a quartz wafer of the same size, and then fixed on a sample stage 
using two spring clamps. The purpose of using the quartz wafer is 
to maintain a high enough concentration of carbon after PMMA 
is evaporated and dissociated by laser irradiation. The growth was 
conducted in a vacuum chamber using a CW that was directed on 
the Si surface to melt the surface of the Si wafer.

For the synthesis of graphene on metal, two main growth 
mechanisms were proposed. On Ni, graphene was produced via 
carbon dissolution and precipitation (Yu et  al., 2008). On Cu, 

the growth can be explained by surface-catalyzed process, which 
involves carbon nucleation on the Cu surface, and the growth 
of graphene with the addition of carbon to the edges (Wei and 
Xu 2012). However, both of these growth mechanisms cannot 
explain the graphene growth on Si. Cu or Ni maintains solid in 
the graphene growth process. They found that if the laser power 
was below the melting point of silicon, there was no graphene 
grown on the silicon surface.

Similar work has been achieved by Wei et al. (2013), who grow 
FLG (2–3 layers) on quartz substrate by using a continuous-wave 
laser by suing a photoresist S-1805 coated on the quartz wafer 
(thickness 30 nm).

Applications of Graphene Materials in 
Functional Devices

Graphene research has skyrocketed since the Nobel Prize 
winners Andre Geim and Konstantin Novoselov published 
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a number of papers on the discovery of graphene 11  years 
ago. Since then, there has been a sharp increase in our sci-
entific knowledge of graphene, as shown by the number of 
publications and patent applications on graphene (Figure 2). 
However, only a handful of graphene-based devices have 
entered the market, thus we are in an early stage in the com-
mercialization of this material. Further research and develop-
ment of graphene are critical to help achieve the full potential 
of this material and the sections below relate to research work 
of using graphene in smart applications. Figure  11 shows 
attempt of classification of some potential smart applications 
of graphene material as a function to the corresponding 
technology readiness level.

Photovoltaic Cell
Photovoltaic (PV) cell is the device which converts light to electric-
ity (Chapin et al., 1954; Wang et al., 2008). So far, graphene-based 
solar cells have been demonstrated in dye-sensitized PV cells 
(Choe et al., 2010; Jo et al., 2012), organic bulk-heterojunction 
PV cells (Li et al., 2010b; Yin et al., 2010), hybrid ZnO/poly(3-
hexylthiophene) (P3HT) PV cells (Li et al., 2010c), Si based PV 
cells (Shim et al., 2011), and InGaN p-i-n PV cells (Gomez De 
Arco, 2010).

The functionalization of graphene material either during syn-
thesis process (in situ) or post-treatment has demonstrated not 
only the possibility to control the properties of the surfaces and 

interfaces but also tailoring its work function (Jo et al., 2010; Guo 
et al., 2011; He et al., 2011; Wan et al., 2011). In an organic PV cell, 
the difference in work function between the two conductors cre-
ates an electrical field in the organic layer (Jo et al., 2012). To date, 
the power conversion efficiency (PCE) of graphene-electrode 
organic solar cells (OSCs) has been reported to be in the range 
of 0.08–2.60% (Wan et al., 2011; Jo et al., 2012), which is indeed 
much lower than those of conventional OSCs made with ITO 
electrodes (8.37%) (Stankovich et al., 2006; Chen et al., 2010a; 
He et al., 2011; Wan et al., 2011;  Yu et al., 2012; Saravanakumar 
et al., 2013; Yokomizo et al., 2013; Sharma et al., 2014). However, 
the PCE of graphene-electrode OSCs needs to be improved to 
make graphene film a serious candidate for OSCs (Jo et al., 2012).

Transparent and Flexible electronics
Currently, most of the research groups in electronics devices 
fabrication are investigating different routes to fabricate flexible 
and transparent electronic devices for various types of applica-
tions, including smart windows, IC cards, displays, LEDs, solar 
cells, etc. (Wager et al., 2003; Yu et al., 2011; Jo et al., 2012). In 
materials, graphene is one of the viable aspirants, which have all 
the required properties, at the same time, such as optical trans-
parency, mechanical flexibility, and high conductivity. In recent 
years, different research groups have reported the integration 
of graphene-based composite electrodes, including graphene/
pentacene and graphene/SWCNT, into transparent and flexible 
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FiGURe 12 | (A) Graphical representation and optical photo of an optically 
transparent and mechanically flexible FETs using graphene as source and drain 
electrodes. (B) Graphical representation composite graphene/SWCNT 
composite electrode network in FETs and its photograph. Inset in (A) shows an 

image of a mechanically stretched graphene/SWCNT composite based 
transistor, at the 0 and 50% strain, respectively; the right inset (B) is showing 
the variation of the electrical resistance w/r to the graphene number of layers. 
Reproduced with permission of Lee et al. (2011). Copyright 2013, Wiley-VCH.
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electronic like-devices, such as transistors, memory devices, and 
ICs (Wager et al., 2003; Ji et al., 2011; Lee et al., 2011; Yu et al., 
2011; Jo et al., 2012).

Pentacene-based organic FETs-devices were elaborated onto 
a flexible substrate by means of patterning and transfer or trans-
fer and patterning processes (P-T) and (T-P) techniques that are 
defining the graphene electrodes (Figure 12A) (Lee et al., 2011; 
Jo et  al., 2012). As a gate electrodes, a plastic substrate based 
on PEDOT/PSS was used, and poly-4-vinylphenol (PVP) as 
cross-linker. The typical transfer response of these organic FET 
is shown in the Figure  12A, where a carrier mobility of 0.01 
and 0.12 cm2/Vs were systematically estimated for the (T-P) and 
(P-T) processes, respectively (Jo et al., 2012). In addition to the 
field effect carrier mobility, the overall electronic characteristics 
of the organic transistors dealing with the (P-T) technique of 
graphene are superior (Jo et al., 2012). Figure 12B is showing the 
variation of the electrical resistance as a function of the number 
of graphene layers. However, there is large room for improving 
these electronic properties, especially the carrier mobility and to 
make it more feasible to use in large scale applications (Jo et al., 
2012).

Smart Applications of Graphene

Thermoelectric Application of Graphene
Thermoelectric materials (TEM) achieve the conversion between 
thermal and electrical energy and vice versa. This field has regained 
renewed attention because of the huge potential of TEM to be 
applied in Peltier coolers and thermoelectric power generators. It 
is well established that the performance of TEM are determined 

mainly by its dimensionless figure of merit, namely ZT. To date, the 
performance research of TEM have mainly focused on inorganic 
semiconductors, such as PbTe, Bi2Te3, CoSb3, SnSe, and theirs 
alloys or composites (Li et al., 2010d). The challenge to develop 
TEM for a crystalline system with high performance is know how 
to tailor the interconnected thermoelectric physical parameters, 
including Seebeck coefficient, the electrical conductivity, and 
thermal conductivity.

The efficiency of a TEM-based device is usually character-
ized by the following figure of merit:

 ZT = 2S Tσ / κ,  

where S is the Seebeck coefficient (or thermopower, μV/K), σ 
is the electronic conductance (S/m), T is the thermal conductivity 
including contributions from both phonons and electrons (W/
mK), and κ is the absolute temperature (K).

Figure 13 shows a schematic illustration of a thermoelec-
tric module for (a) power generation (Seebeck effect) and 
(b) active generation (Peltier effect). Figure  13A shows an 
applied temperature difference, which causes charge carriers 
in the material (electron or holes), to diffuse from the hot side 
to the cold one, resulting in a current flow through the circuit. 
Figure 13B is schematic of the heat that evolves at the upper 
junction and is adsorbed at the lower junction when a current 
is made to flow through the circuit.

Recently, great effort has been made in improving the 
TEM dimensionless figure of merit (ZT). The difficulty in to 
simultaneously optimizing them, which causes thermoelec-
tric research to stagnate for a while, until great reductions in 
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thermal conductivity were theoretically and experimentally 
proven in nanostrtuctured materials.

Ghosh et al. (2010) examined the evolution of the thermal 
properties of FLG with respect to increasing thickness (i.e., 
the number of graphene layer, n). The results obtained by 
Raman spectroscopy have shown that, overall, the thermal 
conductivity decreases with increasing the FLG thickness, 
approaching that of the bulk graphite limit (Figure 14) (Ghosh 
et al., 2010). The experimental data points in Figure 14 were 
all normalized to the same width of graphene sheet of 5  μm 
(Ghosh et al., 2010). The detailed procedure is described in Ghosh 
et al. (2010).

The evolution observed from 2D graphene to bulk graphite 
is explained by the cross-plane coupling of the low-energy 
phonons and changes in the phonon scattering, since more states 
are available for scattering owing to the increased number of 
phonon branches. The thermoelectric power (TEP) is the voltage 
developed across a sample when a constant temperature gradient 
is applied. TEP of 80 μV/K was recently measured in graphene 
at room temperature (300 K) (Zuev et al., 2009). Similar to the 
quantum Hall effect in electronic transport, quantized TEP has 
also been observed in graphene at high-magnetic fields (Zuev 
et al., 2009). The TEP can be tuned in graphene, even to negative 
values, under the application of a gate bias or chemical potential 
(Wei et al., 2009). Very large TEP values have been predicted for 
GNRs, for instance, 4 mV/K for a 1.6 nm wide ribbon (Haskins 
et  al., 2009). In comparison, the highest value experimentally 
reported so far is 850 μV/K for two-dimensional electron gases 
in SrTi2O3 heterostructures (Ohta et al., 2007), while only a few 
μV/K has been reported for bulk graphite (Tyler et al., 1953). The 
TEP power of single walled carbon nanotubes (SWNTs) has been 
theoretically and experimentally shown to be 60  μV/K (Hone 
et  al., 1998), inferior to that of graphene. A giant thermoelec-
tric coefficient of 30 mV/K was reported in metallic electrodes 
periodically patterned over graphene, deposited on SiO2 substrate 
(Chang et al., 2007).

On the other hand, thermoelectric properties of graphene 
have attracted increased interest as well, since it can convert 
heat to electricity and vice  versa. A high thermopower value 
of 80 μV/K was reported for graphene (Zhu et al., 2009; Zuev 
et al., 2009). Various structures of graphene have been exam-
ined, including nanoribbons (GNRs) (Haskins et  al., 2009; 
Sevinçli et al., 2009; Ouyang and Hu, 2010; Huang et al., 2011; 
Mazzamuto et  al., 2011), quantum dots (Yan et  al., 2012), 
graphene junctions, and chevron-type structures (Chen et al., 
2010b). It is worth noted here that ZT of zigzag GNRs can 
exceed 3 (Ouyang and Hu, 2010).

Recently, many works have been conducted on the creation 
of graphene band gap by means of making an array of holes 
(antidots) into the graphene layer (Pedersen et al., 2008; Ouyang 
et al., 2011; Petersen et al., 2011; Chang and Nikolic, 2012). This 
is an inevitable property for the integration of graphene material 
directly into transistor architecture (Ouyang et al., 2011; Petersen 
et al., 2011). The gap can be engineered by controlling the lattice 
geometry (i.e., the antidot size and the hole-to-hole separation) 
(Shen et al., 2008; Eroms and Weiss, 2009; Bai et al., 2010; Kim 
et al., 2010; Gunst et al., 2011; Karamitaheri et al., 2011). Further, 
thermoelectric properties of these structures (2D graphene anti-
dot lattices) have also been investigated where ZT up to 0.3 was 
found (Li et al., 2010d).

Graphene in Shape Memory Materials
Shape memory polymers (SMPs) are defined as smart materials, 
with the faculty to respond to an external stimulus, typically 
heat, and have a wide-range of applications from biomedical 
devices to space materials (Han and Chun., 2014). Polyurethane 
(PU) is the most attractive SMP material, commonly referred to 
as SMP polyurethane (SMPU) (Lee et  al., 2014). Based on the 
specific molecular design, SMPU can form either a crystalline or 
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FiGURe 15 | Shape recovery behavior of graphene-cross linked PU composites, for a temporary helix shape (left) to a permanent shape when 
applying a constant voltage of 50 v. Reproduced with permission from Rana et al. (2013). Copyright 2013, Royal Society of Chemistry.
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amorphous structure, with a broad actuation temperature range 
from −20 to 150°C (Kim et al., 2014). SMP composites based on 
nanofillers have shown to increase the overall shape memory 
properties. An exciting research area is the use of carbon-based 
nanomaterials, particularly graphene, as nanofillers for SMPUs.

Han and Chun (2014) prepared a graphene/PU composite 
material by functionalizing graphene with diazonium salts carrying 
phenethyl alcohol. The resulting material showed enhanced shape 
memory, thermal, and mechanical properties. The resulting material 
showed shape fixity up to 98 with 94% shape recovery ratio after 
four cycles. Hysteresis loss can be low as 2%. Rana et  al. (2013) 
prepared a flexible and conductive shape memory composite based 
on PU and functionalized graphene sheets. The graphene sheets 
were functionalized using phenyl isocyanate and poly diol. The 
composite resulted in 97% shape recovery and 95% shape fixity (see 
Figure 15). Modifications to PU can also improve the shape memory 
performance with graphene. Thakur et al. (2013) have demonstrated 
that castor oil-modified hyperbranched PU and graphene-oxide 
(without functionalization) can result in a shape recovery of ~99.5% 
with shape fixity of ~90%. Park et al. (2014) have demonstrated that 
PU and allyl isocyanate modified graphene oxide can also be actu-
ated by infrared absorption, with a resulting shape recovery of 90%.

Graphene in Self-Healing Materials
Long-term stability and durability of materials are one of the main 
challenges faced today for structural and coating applications, 
especially when using polymeric composites materials. Indeed, 
there are many parameters affecting the degradation of materials, 
including environmental conditions of large types (temperature 
gradient, UV irradiation, oxygen erosion, corrosion, etc.). As 
indicated by their name, self-healing materials are first conceived 
and then designed and elaborated to have the potential to heal 
mainly the mechanical properties of the materials when dam-
aged. Representative applications of self-healing materials are 
found in composite polymers, various metals, ceramics, and 
their related composites, which are subjected to a wide variety of 
healing principles.

Recently, a few studies have demonstrated the potential of gra-
phene as an additive for self-healing materials. Dong et al. (2013) 
synthesized a composite material of poly(acrylamide) (PAM), 
poly(acrylic acid) (PAA), and graphene that exhibits shape mem-
ory effect and self-healing ability. Graphene content was in the 

range of 10–30% and the material can be recovered after 20 cycles 
of cut and self-healing. The self-healing capabilities are illustrated 
in Figure 16, where 10 wt.% graphene sample is cut in the middle 
and the two pieces were healed together at 37°C for 20 min. The 
results suggest that the self-healing ability and shape memory 
effect occur due to a “zipper effect” of PAM–PAA that forms or 
dissociate the hydrogen-bond network, where such effects are 
limited without the addition of graphene. Huang et  al. (2013) 
have demonstrated the use of FLG with thermoplastic polyure-
thane (TPU) as self-healing material initiated using an electric 
stimulus. When the FLG loading rate is 5 wt.%, the material can 
be healed to an efficiency higher than 98% in 3 min. Furthermore, 
upon increasing the FLG loading rate to 8 wt.%, the same healing 
efficiency of 98% can be achieved in 15 s only. It is expected that 
graphene efficiently converts electrical energy to thermal energy, 
which improves the self-healing ability of TPU diffusion and re-
entanglement of the TPU chains. More recently, Wang et al. (2013) 
and Sullivan et al. (1977) have recently reported the fabrication 
of a composite based on a cross-linked (CL) hydrogen bonding 
polymer with graphene oxide. This composite material was 
found to enable a fast self-healing capability, with high efficiency, 
occurring at room-temperature. More importantly, the healing 
reaction was produced without the need of any external stimuli, 
such as electrical bias, light, and heat (Zhang et al., 2014). The 
introduction of the graphene material in this CL-based polymer 
was found to be crucial to reduce the needed amount of CL sites 
that are necessary for the healing reaction. It is worth noting here 
that a huge amount of CL sites are not only negatively impacting 
the mechanical properties of the polymer (including flexibility) 
but also its dynamic characteristics (Zhang et al., 2014). Such 
nanocomposite materials involving CL-hydrogen bonding 
polymer with graphene-oxide can be useful in many applica-
tions, e.g., protecting barrier for electronic devices, sealing 
layer for gas systems, and stretchable self-healing conductive 
wires (Zhang et al., 2014).

Graphene in Photomechanical Actuators
Actuators are materials, which change their shape or dimensions 
under the application of external stimulus. To date, the well-
recognized materials for actuation are piezoelectrics (Nakamura 
et  al., 1989), ferro-electrics (Kuribayashi et  al., 1989), shape 
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memory alloys (Damjanovic and Newnham, 1992), electrostric-
tive materials (Damjanovic and Newnham, 1992), and conducting 
polymers (Smela et al., 1999). Recently, large stresses and strains 
from low-voltage electromehcanical actuation have exhibited 
by carbon nanotubes (CNTs) (Baughman et  al., 1999) and 
porous metallic nanoparticles (Ahir and Terentjev, 2005). Beside 
this, both single walled CNT (SWCNT) and multiwalled CNT 
(MWCNT)-based composites have been reported to undergo 
photomechanical actuation (Dreyer et al., 2010).

Several articles have reported about graphene-based 
composites, mostly in sheets form and have derived from 
graphite oxide or graphite intercalation compounds (GICs). It 
has been observed that intrusion of graphite oxide or graphite 
intercalation compounds derived fillers can enhance electrical 
conductivities of polymeric matrices (Gómez-Navarro et  al., 
2008), the Young’s moduli (Potts et al., 2011), and could easily 
be functionalized to tailor to host polymer properties (Sun et al., 
2009). Now, it is well-known that by tailoring the number of 
layers of graphene nanoplateletes (GNP) and GNR, the overall 
properties of composite material change [such as saturable 
absorption (Casiraghi et  al., 2007) and electric field assisted 
band gaps (Zhang et al., 2009)].

FiGURe 16 | SeM image of G-PAM-PAA strip heating at 37°C in different times, (A) 0 min, (B) 10 min, and (C) 20 min. (A′–C′) are close-up view of the 
factures occurred in (A–C), respectively. Percentage of the recovery ratio as a function of (D) healing-time and (e) self-healing number (N). Reproduced with 
permission from Dong et al. (2013). Copyright 2013, Wiley-VCH.

Loomis et  al. (2012) have reported that a simple polymer 
composite system with photomechanical responses is realized 
solely by incorporation of a homogeneous dispersion of GNPs 
within a PDMS elastomer matrix. It has been observed that 
the actuation responses of GNPs/PDMS composites depend 
on the initial applied pre-strain as in CNT/PDMS composites. 
Photomechanical stress change 2.4–3.6 times is greater for 
GNP/PDMS composites, compared to any other tested form 
of nanocarbon. These stress changes reported are usable and 
recoverable work achieved by the actuators. Energy conver-
sion factor (ηM) of 7–9  MPa  W−1 for optical-to-mechanical 
is obtained during testing. Until now, this is a largest energy 
conversion factor of an extraordinary photomechanical effect 
exhibited by any material so far.

Graphene in Piezoelectric Materials
Piezoelectric material has the property of converting mechanical 
movement into electrical movement and vice versa. Traditionally, 
piezoelectricity is considered to be an intrinsic property of a 
particular material phase. Piezoelectric materials have been 
frequently used in a wide variety of applications from pressure 
sensors (Pereira and Castro Neto, 2009), to acoustic transducers 
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(Guinea et  al., 2010), to high voltage generators (Bunch et  al., 
2007) for dynamical control of material deformation by applica-
tion of external electric force.

Luk’yanchuk et  al. (2015) have found that piezoelectricity 
can be concocted into intrinsically non-piezoelectric materials 
such as graphene. This is a nanoscale new phenomenon and 
lacking a direct bulk analog (Luk’yanchuk et al., 2015). This new 
phenomenon has provided room for practical approach toward 
manipulation and dynamic control different concerns in nan-
odevices, such as optical, chemical, and electronic. Luk’yanchuk 
et  al. (2015) have reported an extraordinary two dimensional 
piezoelectric effect, both on a strained and unstrained graphene 
junction. Interestingly, it has been formally attested that this 2D 
piezo effect is a direct consequence of the difference in the two 
work functions (of the two type of graphene) and hence to the 
charge transfer occurring from the biaxial strain when putting 
the two graphene types together (i.e., bend band structure). The 
effect has termed as the band-piezoelectric effect, which exhibits 
a massive magnitude due to the ultrathin structure of graphene 
(Luk’yanchuk et al., 2015).

Using this new type of piezo effect, a piezoelectric 
nanogenerator and a piezoresistive pressure sensor within a 
graphene nano-electro-mechanical-system (NEMS) platform 
have been demonstrated. In this novel device, the deforma-
tion caused by an AFM tip resulted in charge separation, 
due to the modified band structure of the bent membrane 
(Luk’yanchuk et al., 2015). Consequently, by using appropri-
ate metal electrodes with suited work function, we can even 
collect the cumulated charge and produce an electrical volt-
age (Luk’yanchuk et al., 2015).

Graphene in electrorheology Materials
Electrorheology (ER) material is a type of smart material where 
the rheological properties of the material can be reversibly trans-
formed with the application of an external electric field (Zhang 
et al., 2010c, 2012; Yin et al., 2012; Zhang and Choi, 2014). An 
ER material is composed of polarizable particles suspended in an 
insulating medium and after applying an electric field the parti-
cles are polarized and form a column like structure. This modifies 
the rheological properties of the material, such as viscosity, shear 
stress, and dynamic modulus. Applications of such materials 
include damper systems, ER polishing, tactile displays, medical 
devices, and robotic actuators. Recently, graphene, r-GO, and GO, 
due to their unique properties, have gathered the interest of the 
scientific community as an additive for ER materials (Zhang and 
Choi, 2014). Zhang et al. (2010c) prepared colloidal r-GO using a 
modified Hummers method, which was used to prepare a nano-
composite material comprising of GO and polyaniline (PANI). 
The resulting material showed adjustable electrical conductivity, 
which has potential for use as an ER material. Additionally, Zhang 
et al. (2012) also prepared GO particles suspended in silicone oil, 
where the ER fluid is polarized and exhibits viscoelastic proper-
ties at various strains under an electric field.

Yin et al. (2012) prepared a novel ER suspension comprising 
of two dimensional PANI decorated GO sheets. With the appli-
cation of an electric field, the suspension containing PANI and 

GO, shows higher ER effect when compared to pure PANI. The 
performance of the material is dependent on the thickness of the 
PANI coating applied to the GO sheets. Furthermore, Yin et al. 
(2013) prepared mesoporous silica-coated r-GO nanosheets as a 
dispersal for ER fluids. Silica coating limits the conductivity of 
graphene, which enables high polarization and ER response, with 
the application of an electric field particularly high-frequency AC 
electric fields. The silica shells also limit the restacking of gra-
phene. Li et al. (2015) studied the ER effects of non-conducting 
GO and conducting r-GO comprise an insulating SiO2 shell. The 
results show that the GO/SiO2 has a higher ER response to DC 
and low-frequency AC electric fields, while the r-GO/SiO2 has a 
higher ER response to high-frequency AC electric fields. The dif-
ferent behavior can be explained by the impact of the polarization 
rate with regards to the inter-particle interaction.

Multifunctional Graphene Nanocomposite 
Foams for Space Applications
Space is the new frontier and new materials, devices, and tech-
nologies for aerospace applications represent now an emerging 
sector with significant employment prospects and opportunities 
for profit. Materials and devices used in space applications (e.g., 
satellites) should combine functionality with low weight and 
reduced volume, to optimize cost effectiveness. The main cost of a 
satellite is its launch into orbit (estimated at about 7 M$), therefore 
reducing weight and volume can significantly decrease the overall 
cost. Weight savings can be achieved by replacing heavy copper 
wiring, which accounts for example up to 4000 lbs of weight on 
a Boeing 747 and about one-third of the weight of large satel-
lites (Meador et al., 2010), with low density carbon-based wiring 
cables. In addition, Joule heating from metallic parts requires 
additional components for cooling (radiators), thus adding to the 
overall weight and cost. The combination of superior electronic 
and thermal properties of graphene materials could potentially 
revolutionize the design and fabrication of light weight electrical 
and electronic devices to be used in space applications. In this 
context, graphene is a promising candidate because its ballistic 
electron transport limits Joule heating and should allow reduc-
tions in weight, volume, and subsequently total cost.

Another potential space application of graphene is its use as 
nanofiller to fabricate light weight and robust nanocomposite, 
to be used, e.g., as thermal barrier. Recently, graphene nano-
platelets having FLG with 1–5 layers and typical diameters 
ranging from 1 to over 100 μm have been successfully grown 
by a team from Michigan State University1. These nanoplate-
lets show, overall, similar properties to a single graphene layer 
while being mechanically much robust. In addition, their cost 
production can be lowered to be competitive to other carbo-
naceous additives and fillers. These nanoplatelets could be 
used as a nanoadditive into various polymer foams, increasing 
thereby their thermal, mechanical, and electrical properties, 
while the foam still maintains its unique structure and low 

1 Space Technology missions directorate. The document is available at: http://www.
nasa.gov/directorates/spacetech/strg/2012_nstrf_rollins.html
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density. This combination of unique properties has direct 
potential application as flame resistant in space technology.

Conclusion and Outlooks

Research on graphene has considerably enriched our under-
standings and applications of two-dimensional atomic crystal. 
The combination of unprecedented physical and chemical 
properties, including its extremely high strength, thermal and 
electrical conductivity, and mechanical flexibility, have harried 
scientists to investigate in-depth its real potential in delivering 
improvements to different devices in many technological and sci-
entific fields, ranging from materials science to physics, chemical 
engineering, and even biology. In this review, we have presented 
an overview of the main gas-phase synthesis of graphene and 
its applications as smart material systems. The possibility of 
successfully integrating graphene directly into device, could not 
only improve the electrical and/or mechanical properties but 
also enable the realization of a wide range of applications, such 
as actuation, thermoelectricity, shape memory, and self-healing. 

However, this success is conditioned by the prior success to 
address the following issues: (i) developing a cost-effective 
growth process to synthesize functional graphene in a reasonable 
scale with acceptable degree of reproducibility, for the realization 
of practical applications; (ii) considering the unique electrical, 
mechanical, and optical properties of graphene, incorporation 
of these characteristics into the existing smart systems from 
an interdisciplinary point of view should be highly valued; (iii) 
finally, from practical view-point, its highly desirable to fabricate 
graphene multifunctional systems, that are responsive to multi-
ple stimuli. Considering the current and ongoing achievements, 
it is believed that the smart applications of graphene systems 
with more functionality are expected to emerge as new comple-
ments  –  and/or even replacements  –  to existing conventional 
systems, especially in fields of electronics, energy, and space.
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