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Marine algae are thought to be a source of various metabolites that have a wide

range of positive effects on human health. The pharmacological properties of algal

metabolites, including their antioxidant, anti-inflammatory, cholesterol homeostasis,

protein clearance, and anti-amyloidergic effects, lend credence to their protective

efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and

impaired proteostasis, all of which are involved in the pathophysiology of

neurodegenerative disorders. There are currently no clinical trials on the effects of

marine algae on neuroinflammation; however, considering the significant biological

activities that have been established by in vitro and animal research, we expect that

there will be clinical trials on this topic in the not-too-distant future. Themost recent

and important findings on the potentially neuroprotective effects of the anti-

inflammatory properties of marine algae were chosen for this study. Next, we

conducted a literature review on the neuroprotective potential of algal

compounds, along with the underlying pharmacological mechanism, and finally,

we evaluated recent advances in therapeutics.
KEYWORDS
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Introduction

Neurodegenerative diseases (NDDs) are diseases that can progressively arise due to

dysfunction of specific neurons. This dysfunction occurs since some neurons undergo

structural and functional changes, and thus, their loss leads to neuronal cell death. The

word “neurodegeneration” is composed of two different words, i.e., “neuro”, which refers
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to neurons or nerve cells, and “degeneration”, which refers to

“damage” . Examples include Alzheimer ’s disease (AD),

amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD),

Friedreich ataxia (FA), Lewy body disease (LBD), Huntington’s

disease (HD), spinal muscular atrophy (SMA), prion disease

(PrD), progressive supranuclear palsy (PSP), brain trauma (BT),

and spinocerebellar ataxia (SCA). Neuronal loss could be due to

the deposition or accumulation of extra- and an intracellular

misfolded protein that later becomes toxic. The generation of

neurotoxic reactive oxygen species (ROS), which exert oxidative

stress on mitochondria, is one cause. Another cause could be

alterations in mitochondrial function. Nerve cells are highly

complicated, specialized, and amitotic in nature, and since

neurons are amitotic, they cannot undergo mitotic division;

hence, if destroyed, they cannot divide or be replaced. The

nervous system acts via neuronal cells by conducting nerve

impulses. Disruption of this process causes neurons to stop

communicating with one another, resulting in both motor and

nonmotor symptoms, such as vision and hearing loss, and

symptoms associated with movement, such as speech and

language, memory, and others. Affected brain regions and their

functions in relation to neurodegenerative disorders are shown

in Figure 1.
Alzheimer’s disease

One of the important causes of dementia is AD where

dysfunctions of the medial temporal lobe (MTL) and the

hippocampus of the brain occur. Patients with AD initially face

reduced episodic memory, which leads to gradually affected
Frontiers in Marine Science 02
extensive cognitive dysfunctions like apraxia, amnesia, and

visuospatial deficits (Eramudugolla et al., 2017). The pathogenesis

of AD is characterized by hyperphosphorylated tau protein (p-tau)

in neurofibrillary tangles and the aggregation of the amyloid-b (Ab)
protein in senile plaques in the brain (Moghadas et al., 2020). The

abnormal clusters of protein fragments formed between nerve cells

are plaques, while the tangles are described as dead nerve cells. The

clumping of these small protein fragments is responsible for

forming plaques that hamper cell communication by disrupting

cell signaling at synapses. However, the tangles are used to destroy a

protein from a vital cell transport system. Thus, disease disrupts

neuron-related processes and functional networks with their

activities, such as communication, metabolism, and repair

systems. The sticky beta-amyloid that surrounds nerve cells is

present in the lipid bilayer membrane. Another cause of AD

progression is an accumulation of Th1 cells and M1 microglial

cells in the brain due to the peripheral deposition of phenylalanine

and isoleucine by alteration of the gut microbiome (Wang X. et al.,

2019). The disease is typically considered a brain disorder that

diminishes a large number of neurons in the brain region

responsible for learning and memory, i.e., the entorhinal cortex,

hippocampus region, and cerebral cortex region involved in speech

and social behavior. Therefore, it diminishes memory, thinking skill

abilities, and behavioral manifestations, finally leading to dementia

with impairment of memory and cognitive judgments.
Amyotrophic lateral sclerosis

ALS is a multisystem neurodegenerative fatal disorder in which

loss of muscular control occurs due to progressive degeneration of
FIGURE 1

Affected brain regions and their functions in relation to neurodegenerative disorders.
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nerve cells in the brain and in the spinal cord. ALS could be due to

the involvement of genetic inheritance (familial: fALS) and

environmental factors (sporadic: sALS) as well as aging‐related

dysfunctions that affect the motor system due to the loss of both

upper and lower motoneurons in the motor cortex of the brainstem

and anterior horn of the spinal cord. ALS disease is also termed Lou

Gehrig’s disease based on the name of a famous baseball player who

was diagnosed initially whereas the term “amyotrophic lateral

sclerosis” was given by the French neurologist Jean‐Martin

Charcot (Masrori and Van Damme, 2020). The hallmarks of ALS

include weakness, stiffness, dysarthria, dysphagia, dysphonia, and

hyperreflexia. Muscle weakness first starts in the distal muscles and

later in the proximal muscles, and wasting occurs. ALS is mainly

spread by Mendelian inheritance-associated autosomal dominant

gene mutation of Cu/Zn superoxide dismutase (SOD1) and TAR-

DNA binding protein 43 (TDP-43) (Grad et al., 2017).
Friedreich ataxia

FA is an autosomal recessive degenerative disorder caused by

damage to the cerebellum, spinal cord, and peripheral or other

nerves or defects or mutations in the FXN gene. The FXN gene

holds the genetic code for a mitochondrial protein, called frataxin,

i.e., a highly conserved protein, and balanced cellular iron

homeostasis (Schmucker and Puccio, 2010). This type of gene

mutation is responsible for guanine–adenine–adenine (GAA)

trinucleotide repeats in both alleles of FXN genes (Campuzano

et al., 1996). The repeated expansion of gene expression reduces the

transcription of the gene. This could result in diminished energy

production within neurons and cardiac cells. Thus, the result causes

poor muscle control and clumsy voluntary movements. Two

defective copies of the gene obtained from each parent increase

the risk of disease to their offspring. FA is thought to be acquired,

degenerative, or hereditary. The term “Friedreich ataxia” was first

described by Nikolaus Friedreich and is characterized by motor

coordination because of dysfunction of the cerebellum and its

connections (Campuzano et al., 1996). The symptoms that may

arise are fatigue, nystagmus (involuntary eye movements), hearing

loss, dysarthria (slurred speech), cardiomyopathy (heart

enlargement), heart failure (CHF), diabetes, difficulty in walking,

and sometimes deformities in feet like high arches and curvature of

the spine (scoliosis).
Lewy body disease

Abnormal protein deposits in brain tissues are called Lewy

bodies, which result in the decay of brain tissues due to the excess

accumulation of abnormal proteins; this condition is called LBD.

The disease arises in particular brain regions involved in thinking,

learning, memory, and movement. The disease results in dementia;

psychiatric symptoms such as visual hallucinations, changes in

attention, and alertness; and motor symptoms such as rigid

muscles, slow movement, walking difficulty, and tremors.
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Parkinson’s disease

PD is the second most common neurocognitive and chronic

neurodegenerative disorder affecting the nervous system and body

parts controlled by the nerves of the nigrostriatal pathway; thus,

patients with PD develop both motor and nonmotor features and

symptoms (Deal et al., 2019). Dr. James Parkinson, an English

physician, initially defined paralysis agitans or shaking palsy in

1817, and the pattern is known as PD (Schnabel, 2010). There

are various mutations related to PD, i.e., a-synuclein, LRRK2,
PINK1, Parkin, DJ-1, VPS35, GBA1, and the loss of the

dopaminergic neuron potential (Zeng et al., 2018). The key

pathogenic mechanisms of this disease are mainly oxidative stress

and the loss of dopaminergic neurons. This dopaminergic

degeneration mainly occurs in the substantia nigra part of the

brain since nerve cells, mainly in the substantia nigra region,

produce dopamine. Dopamine is a chemical that acts as a

neurotransmitter that coordinates body movements. This disease

results in uncontrollable movements such as shaking, stiffness, and

difficulty balancing and coordinating due to the loss of dopamine

neurotransmitters, which are responsible for movement (Deal et al.,

2019). In PD, symptoms usually begin gradually and worsen over

time. It may also cause mental and behavioral changes, disturbances

in sleeping patterns, depression, memory difficulties, and fatigue. As

the disease progresses, it becomes more serious, and muscle rigidity

and tremors grow due to the slowness of voluntary movement and

postural instability.
Huntington’s disease

It is a lethal autosomal dominant mutation that causes HD, a

neurodegenerative illness of the central nervous system. HD is an

inherited disease that progressively breaks down or degenerates

nerve cells in the brain due to a mutation in the genetic code of a

protein called Huntington. This mutation causes defects in the

building blocks of DNA due to the repetition of cytosine, adenine,

and guanine (CAG) trinucleotides on the short arm of Huntingtin,

i.e., HTT (Parsons and Raymond, 2015). This particular HTT gene

mutation reduces the growth of the aberrant polyglutamine protein,

which causes neurodegeneration (Andhale and Shrivastava, 2022).

The nuclear symptoms of this neuropsychiatric disorder include

chorea, i.e., abnormal involuntary movements, behavioral and

psychiatric disturbances, dementia, and cognitive decline. Patients

also have some other psychiatric symptoms including apathy,

suicide tendency, mania, and schizophrenia-like symptoms as well

as cognitive defects such as lack of attention, motor skill learning

deficits, and organizational deficit.
Spinal muscular atrophy

SMA is an autosomal recessive genetic condition affecting

muscles that degenerate anterior horn cells, and alpha

motoneurons of the spinal cord present symptoms of weakness,
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wasting, or thinning paralysis of the proximal muscular mass, and

significant disability due to low levels of SMN protein in lower

spinal cord motor neurons. Reduced levels of SMN have activated

the JNK and ROCK signaling pathways in the in vitro and in vivo

SMA models (Ahmad et al., 2016). Anterior horn cells are a type of

motoneuron emerging from the anterior portion of the gray matter

in the spinal cord toward the skeletal muscle, while alpha

motoneurons (a) are the lower motoneurons found in the

brainstem and spinal cord and are the largest neurons in the

spinal cord with myelinated axons. Both are responsible for

motor behavior and thus help to generate movement. The term

was given by Werdnig and Hoffmann (D’Amico et al., 2011), and

the disease could be recognized by the development of symptoms of

weakness in one arm and/or one leg as well as facial weakness,

numbness or tingling, difficulty in swallowing or speaking, trouble

walking and balancing, and gradual memory loss.

Seaweed bioprospecting has garnered significant attention in

recent years due to its potential for discovering novel bioactive

compounds with diverse applications (Upadhyay and Singh, 2021).

Researchers have focused on identifying seaweed species with

promising bioactivities and elucidating the chemical structures

and biological properties of their components (Donia and

Hamann, 2003). Several studies highlighted the neuroprotective

effects of seaweed-derived compounds, particularly in the context of

neurodegenerative disorders (Olasehinde et al., 2020; Catanesi et al.,

2021; Dhahri et al., 2021; Wang et al., 2022; Nyiew et al., 2023).

These investigations have underscored the importance of exploring

seaweed resources for the development of therapeutic interventions

targeting neurological diseases (Schepers et al., 2020). In India, very

few regional research efforts have been intensified in the field of

neuroprotection, with a particular emphasis on natural products

derived from indigenous seaweeds (Suganthy et al., 2010). However,

preclinical and clinical investigations conducted have further

validated the neuroprotective properties of seaweed-derived

agents, paving the way for their potential therapeutic application

in neurological disorders. Overall, the convergence of seaweed

bioprospecting and neuroprotection research is a growing interest

in harnessing marine resources for addressing neurological health

challenges, with promising prospects for the development of novel

therapeutic interventions.
Methodology used for data collection

The initial data for this study were collected by keyword search

across two databases, Google Scholar and Scopus. Within the

Google Scholar database, 7 hits were obtained using (“Marine

Algae” AND “Algal Metabolites” AND “Neuroprotection” AND

“Neuroinflammation” AND “Therapeutics”), 1,120 hits were

obtained using (“Marine Algae” AND “Algal Metabolites), 225

hits were obtained by (“Marine Algae” AND “Algal Metabolites”

AND “Therapeutics”), and 40 hits were obtained using (“Marine

Algae” AND “Algal Metabolites” AND “Neuroprotection”)

keywords. Similarly, within the Scopus database, 818 hits were

obtained by (Marine AND Algal AND metabolites), 15 hits were

obtained by using (Marine Algae AND Algal Metabolites AND
Frontiers in Marine Science 04
Neuroprotection), 89 hits were obtained by (Marine Algae AND

Therapeutics), and 11 hits were obtained using (Marine Algae AND

Algal Metabolites AND Therapeutics). The process of further

screening is given in Figure 2.
Neurodegenerative algal metabolites

Marine algae have piqued people’s curiosity as possible

renewable resources throughout the past few decades. There are

more than 8,000 distinct classes of marine algal species that have

been discovered worldwide (Probst, 2015; Menaa et al., 2020). The

primary and secondary metabolites found in seaweed, such as

polysaccharides, proteins, amino acids, dietary fiber, essential fatty

acids, pigments, phytosterols, polyphenols, terpenoids, carotenoids,

and tocopherols, are known to have cytostatic, antiviral,

anthelminthic, antifungal, neuroprotective, and antibacterial

effects (Pérez et al., 2016; Cheong et al., 2018; Uzair et al., 2020;

Ramos-Romero et al., 2021). Although terrestrial organisms are

currently the primary source for discovering natural medicines,

there has been an upsurge in interest in focusing on marine

organisms (Menaa et al., 2020). There has been an increase in

interest in focusing on marine creatures, even though terrestrial

organisms are now the main source for producing natural

medicines (Gong et al., 2018). The increase in marine variety is

due to variations in pressure, temperature, salinity, light, nutrients,

oxygen, and ion concentrations, which result in unique adaptations

and specializations of the species (Hamed et al., 2015; Carson and

Clarke, 2018; Gong et al., 2018). In this review, we discuss several

algal metabolites that play crucial roles in neuroprotection.
FIGURE 2

Approaches for data collection.
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Summarized marine algal metabolites for neuroprotective activity

have been given in Table 1.
Lipids

Polyunsaturated fatty acids (PUFAs) make up between 25% and

60% of total lipids. Phytosterols, glycolipids, phospholipids, and fat-

soluble vitamins are among the functional lipid fractions present in

seaweeds (carotenoids; vitamins A, D, E, and K), which have

relatively low concentrations of lipids (between 1% and 5% of dry

weight) (Hamed et al., 2015; Menaa et al., 2020). PUFA-like omega-

3-rich foods are pharmacologically significant because they can (i)

regulate blood pressure, blood clotting, and membrane fluidity; (ii)

lower the risk of diabetes, cardiovascular disease (CVD), and

osteoporosis; and (iii) correct the growth and function of the

brain and the nervous system (Peng et al., 2015). Isochrysis

galbana, Ulva fasciata, Laurencia papillosa, Gracilaria salicornia,

Dictyota fasciola, Taonia atomaria, Chaetoceros, Tetraselmis,

Thalassiosira, and Nannochloropsis are among the marine algae

that are known to produce large amounts of PUFA. Undaria

pinnatifida has high concentrations of EPA, DHA, and

monounsaturated FAs (C12:1 lauroleic acid, C14:1 myristoleic

acid, C16:1 palmitoleic acid, C17:1 cis-10-heptadecenoic acid, and

C18:1 oleic acid). Algal lipids also benefit from increased

bioavailability and a range of health advantages for both people

and animals because of these features. Lipid molecules can combine

with glycosidic fragments to form glycolipids, which are categorized

into three groups: glycosphingolipids, atypical glycolipids, and

glycoglycerol (Cheng-Sánchez and Sarabia, 2018).

Lipids play a major role in PD because they have been found to

have anti-inflammatory effects. Omega-3 fatty acids are directly

correlated with inducible nitric oxide synthase (iNOS) and hence

have a neuroprotective effect on rats. Layé et al. (2018) reported the

anti-inflammatory effects of omega-3 fatty acids on microglial and

neuronal cells and demonstrated their therapeutic efficacy against

neurodegenerative diseases.
Proteins

Compared to brown seaweed (5%–24%) (such as Sargassum

polycystum), edible green seaweed (such as Caulerpa lentillifera)

and red seaweed (such as Eucheuma cottonii) have the highest

protein content (10%–47% of dry weight) (Peng et al., 2015; Cherry

et al., 2019). Significant amounts of proteins are present in Catenella

repens, Polysiphonia mollis, Gelidiella acerosa, Capsosiphon

fulvescens, Ulva prolifera, Porphyra sp., Osmundea pinnatifida,

Pterocladium capillacea, Sphaerococcus coronopifolius, Gelidium

microdon, and Cystoseira abies-marin (Cherry et al., 2019).

The prevention and treatment of neurodegenerative diseases,

cancers, and gastric ulcers; DNA replication; the response to

stimuli; the transport of molecules; and the catalysis of

biochemical reactions are all made possible by proteins having

anti-inflammatory, antioxidant, antitumor, antiaging, and

protective effects (Menaa et al., 2021). Additionally, amino acids
Frontiers in Marine Science 05
are useful in functional medicines, nutraceuticals, and

cosmeceuticals since they are used as natural moisturizing agents

for hair and skin (Couteau and Coiffard, 2016). Because of their

high nutritional value and high protein content, macroalgal species,

including Chlorella sp., Dunaliella salina, Aphanizomenon flos-

aquae, Dunaliella tertiolecta, and Spirulina platensis, are

frequently employed as human food sources (Menaa et al., 2021).

Histidine and taurine are found in Ulva australis; aspartic and

glutamic acid (26%–32% of the total amino acids) are found in Ulva

spp.; high levels of serine, alanine, and glutamic acid are found in

Palmaria palmata (Dulse) and Himanthalia elongata (sea

spaghetti); and methionine is found in Sargassum vulgare.

Additionally, MAAs have been found in a wide range of species,

particularly in Rhodophyta, including Chondrus crispus, Palmaria

palmata, Gelidium spp., Porphyra/Pyropia spp., Curdiea racovitzae,

Grateloupia lanceola, Asparagopsis armata, Solieria chordalis, and

Gracilaria cornea (Menaa et al., 2021).

Additionally, these algal species have the potential to be

employed as UV blockers and cell growth stimulants in cosmetics

and toiletries (Couteau and Coiffard, 2016). A protein known as

phycobilin (i.e., PC and PE) is covalently joined to chromophores to

form phycobiliproteins (Cherry et al., 2019). These water-soluble

proteins can be employed as natural food colorants and are effective

antioxidants. A549 lung cancer cells are resistant to PC, a blue-

colored phycobiliprotein mostly generated by the cyanobacterium

Arthrospira spp., and PE, a pink-colored protein pigment produced

by the cyanobacterium Lyngbya spp. Various proteins, such as

carnosine, taurine, and glutathione, demonstrate antiapoptotic and

antioxidant effects in the rat brain (Pérez et al., 2016; Pérez-Andrés

et al., 2019). Coelho et al. (2017) reported that lectins are

glycoproteins that have antinociceptive, antibiotic, mitogenic, and

cytotoxic effects.
Carbohydrates

Carbohydrates or polysaccharides are abundant in several

seaweeds and are therapeutically active and have anti-

inflammatory and antioxidant effects. Oligosaccharides can be

mono- or poly(OH). In brown algae, the monosaccharides

present are glucose, galactose, glucuronic acid, mannuronic acid,

xylose, and fucose. The polysaccharides used were laminarin,

alginate, fucoidan, and mannitol. Red algae include carrageenans,

florideans, lignin, and funorans. In addition to these algae, green

algae contain ulvan, mannan, xylans, cellulose, and lignin

(Barbalace et al., 2019).

Fucoidans, xylans, and ulvans, three minor sulfated

polysaccharides, are present in brown, red, and green seaweeds,

respectively (Cheong et al., 2018). In Ulva spp., 9% to 36% of the dry

mass of algae is made up of sulfated polysaccharides that have been

isolated from the intercellular space and the fibrillar wall of green

seaweeds (Cherry et al., 2019). Chlorella ellipsoidea has several

health advantages, including the ability to improve hemoglobin

concentrations, reduce blood sugar levels, and function as a

hepatoprotective, neuroprotective, and hypocholesterolemic agent.

The most significant component of these goods is b-1,3-glucan,
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TABLE 1 Summary of marine algal metabolites for neuroprotective activity.

Units Formulations Activity References

b-(1,4)-linked D-
mannuronic acid and
a-(1,4)-linked L-
guluronic acid units

seleno-
polymannuronate
(2.36 kDa)

↓amyloid b
aggregation
↓BACE 1 and
cytochrome c
expression

(Alba & Kontogiorgos,
2018) (Tariverdian et al.,
2019) (Takeshita & Oda,
2016) (Nesic & Seslija,
2017) (Qin et al., 2018)
(Bi et al., 2020) (El-
Missiry et al., 2020)
(Hariyadi et al., 2018)

ellagic acid-loaded
calcium–

alginate
nanoparticles

↓glutamate,
homocystiene
↓amyloid
b aggregation

erythropoietin–
alginate
microspheres

↑glutathione
peroxidase activity

D-galactose and 3,6-
anhydrogalactose
residues linked
through alternating
a(1,3) and b(1,4)
glycosidic bonds

Carageenan gels ↓caspase 3 activity
and mitochondria
transmembrane
potential

(Zhang et al., 2020)
(Souza et al., 2018)

Type I chains contain
repeating (1,3)-linked
a-L-fucopyranose
residues, while type II
chains contain
alternating (1,3)- and
(1,4)-linked a-L-
fucopyranose residues

Fucus vesiculosus
and Undaria
pinnatifida
extracted fucoidan
Laminaria japonica-
extracted fucoidan

↓amyloid b
aggregation
↓cytotoxicity
protects dopamine
and improves
mitochondrial
functions

(Wang Y. et al., 2019)
(Gao et al., 2019)
(Alghazwi et al., 2019a)
(Zhang et al., 2017a)

↓Inflammatory
response; ↓NF-kB
pathway; ↓NO
production ↓iNOS
and COX-2

(Continued)
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Sr. No. Compoud
name

Species taken Structure

1. Alginate
(Approx.
500kDa)

Laminaria hyperborea, Laminaria digitata,
Macrocystis pyrifera, Ascophyllumnodosum,
and Laminaria japonica

2. Carageenan
(Mw:>100 kDa.)

Chondrus crispus

3. Fucoidan
(Mw: 49.8 kDa)

Mozuku, Kombu, Limu moui, bladderwrack,
and wakame

4. Fucosterol E. bicyclis
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TABLE 1 Continued

Formulations Activity References

Extract preventing damage
after cerebral
ischemia shocks by
lowering pro-
inflammatory
microglia and
attenuating
reactive gliosis.

(Zargarzadeh et al.,
2020) (Lee et al., 2020)
(Shanmuganathan
et al., 2018)

- Inhibit
inflammatory
hyperalgesia

(Silva et al., 2010)

y

n

ocosahexaenoic
acid-
enriched
phosphatidylcholine

preventing amyloid-
b40 and amyloid-
b42 fibrillogenesis

(Ramesh Kumar et al.,
2019) (Mallick et al.,
2019) (Wang et al.,
2018)( Zhang
et al., 2018)

intragastric
pretreatment

attenuate oxidative
stress and reduce
tert-butyl
hydroperoxide-
induced
upregulation cell
apoptosis

reduced
inflammatory
cytokine levels and
reversed amyloid-b-
induced
upregulation of

(Huang et al., 2019)
(Liu et al., 2018) (Cao
et al., 2019)
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Species taken Structure Units

5. Laminarin Laminaria, Saccharina,or Eisenia species b-D-glucans linked
by (1,3) and (1,6)
glycosidic bonds

6. Lectins (Low
molecular
weight,
monomeric)

Pterocladiella capillacea Glycoprotein -

7. Polyunsaturated
fatty acids

Microalgae sphingosine and fat
acid residues, which
are linked to an
amide in the
ceramide and conta
no phosphate group

8. Lycopene (Mw:
536.9 g/mol)

Chlorella marina 8 Isoprene units
t

i
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Formulations Activity References

TLR4 and NF-kB
p65 mRNA

AST
loaded liposomes

inhibition of
lipopolysaccharide-
induced
neuroinflammation,
amyloidogenesis,
and oxidant activity

(Han et al., 2019)
(Rahman et al., 2019)
(Lu et al., 2019)

Lipid Extract Improves spatial
and memory deficits
and treats Ab
accumulation along
with
BACE1 expression

(Ye et al., 2020)

Lipid Extract Ab1−42 clearance;
↓Ab-42 secretion;
LXRb activation

(Martens et al., 2021)

Extract Reduced oligomer
formation ,
decreased Ab

(Shanmuganathan
et al., 2018)

Lipid Extract Stimulated neuronal
development and
found to prevent
incidence of
neurodegenerative
diseases.

(Tirtawijaya
et al., 2019)

Liposomes
and Nanoparticles

↓progression
of Alzheimer

(Alghazwi et al., 2019b)
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9. Astaxanthin
(Mw: 596.8
g/mol)

Haematococcus pluvialis

Beta-carotene-
4,4'-dione

10. b-sitosterol
(Mw: 414.7
g/mol)

Phaeophyta (Cystophora pectinata,
Pyllospora comoasa, Scytothalia dorycarpa,
Carpoglossum confluens, E. radiata,
Sargassum lacerifolium, Perithalia caudata,
Codium harveyi, Scytothalia dorycarpa,
Hypnea valida, Cystophora monilifera,
Hormosira banksia Myriodesma
integrifolium, Epiphytic algae sp.,
Cystophora subfarcinata)

Steroidal unit

11. 24(S)-
Saringosterol
(prospects of
marine sterols)
Mw:
428.690 Da)

Sargassum fusiforme Steroidal unit

12. a Bisabolol
(Mw: 222.198
g/mol)

Padina gymnospora Sesquiterpenic
alcohol

13. Cholesterol K. alvarezii Steroidal unit

14. Fucoxanthin
(algal
carotenoids;
Mw: 658.9
g/mol.))

Undaria pinnatifida Carotenoid
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which is a potent immunostimulator, free radical scavenger, and

blood lipid reductant (Menaa et al., 2021; Cheong et al., 2018). The

ketogenic diet has gained much importance because it contains

pr imar i l y BHB and ACA, which are used to t r ea t

neurological disorders.

The primary polysaccharides of the red algal cell wall, i.e.,

carrageenans, are categorized into three broad types based on the

degree of sulfation: kappa, lambda, and iota (Pérez et al., 2016).

Fucoidan polysaccharides are often generated by brown algae such

as Sargassum thunbergi, Ascophyllum nodosum, Fucus vesiculosus,

Laminaria japonica, Fucus evanescens, and Laminaria cichorioides,

which are then exploited to create innovative medications and

useful foods (Menaa et al., 2021).

Several studies have investigated the role of saccharides in

neurodegeneration. Jin et al. (2017) reported in their study that

Gracilaria lemaneiformis extracted from agaro has antioxidant

potential when tested on kumming mice. Liu et al. (2019)

observed the ability of oligosaccharides from Ulva lactuca and

Enteromorpha prolifera to protect brain neurons by reducing

oxidative stress and inflammatory factors. Another study by Bi

et al. (2020) revealed the neuroprotective effect of seleno-

polymannuronate (a selenium derivative of polymannurate)

separated from alginate. Selenium is known for guarding

neurocytes. He observed the suppression of microglial and

astrocytic activation induced by LPS; hence, LPS functions as an

anti-neuroinflammatory molecule.
Phenols

A type of chemical compound known as a phenolic compound

has hydroxyl groups that are directly joined to aromatic

hydrocarbon rings. The simplest compound is phenol, which

has just one aromatic ring. Depending on how many phenol

units are present in the molecule, phenolic substances can be

either single phenols or polyphenols. All members of the plant

kingdom contain phenols in varying amounts, but the phenols

found in marine algae are distinct from those made by terrestrial

plants (Barbalace et al., 2019). Phenolic acids can easily penetrate

the brain and can potentially act on PD, HD, and anti-

amyotrophic disease.

Phloroglucinol and phlorotannin are two of the most well-

known polyphenols found in marine algae. The subclasses of

phlorotannins are eckols, fuhalols, fucophlorethols, phlorethols,

fucols, and ishofuhalols. Green and red algae have the most

phenolic chemicals (bromophenols, phenolic acids, and

flavonoids). The only source of phlorotannins is marine brown

algae (Menaa et al., 2021).

Nho et al. (2020) studied the role of phlorotannin from the

edible seaweed Ecklonia cava and reported that dickol inhibited

AChE and BChE and prolonged acetylcholine neurotransmission in

rat brain neurons. Paudel et al. (2019) reported the targeting of

eckol from Ecklonia stolonifera and revealed that eckol is an agonist

of the dopamine receptor and is active against PD. Rengasamy et al.

(2015) concluded that a study on phenolic extracts of Amphiroa

beauvoisii, G. foliaceum, Codium capitatum, and C. duthieae
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revealed a decrease in AChE activity, which was better proven

in AD.
Isoprenoids and caprotenoids

Major phytosterol derivatives are found in brown algae, including

Agarum cribosum, Undaria pinnatifida, and Laminaria japonica

(Menaa et al., 2021). Fucosterol makes up 83%–97% of the total

phytosterol concentration. Astaxanthin-carotene, lutein, lycopene,

and canthaxanthin are among the many common lipophilic-

pigmented molecules known as carotenoids (Bajpai et al., 2018).

The antioxidant activity, anti-inflammatory effects, anticancer

activity, antiobesity activity, antidiabetic activity, hepatoprotective

impact, antiangiogenic effect, and cerebrovascular protective effect are

some of the possible health-promoting benefits of these carotenoids.

Fucoxanthin in particular has been shown to reduce oxidative

damage and inflammation, and astaxanthin has been shown to reduce

IL-6 production in activated microglia (Fantonalgo, 2017), all of which

have been linked to the etiology of neurodegenerative disorders.

Various pigments, which impart color, are found in marine

algae. Algal color was categorized into three categories: brown

pigments from Phaeophyta, green pigments from Chlorophyta

(lutein, xanthin, and neoxanthin), and red pigments from

Rhodophyta (zeaxanthin). These carotenoids have promising

antioxidant and neuroprotective effects (Chuyen and Eun, 2017).

In another study performed by Kim et al. (2017), patients with

PD had lower serum levels of alpha and beta carotene, lycopene,

and tocopherols than did patients in the control group. Browne

et al. (2019) also reported decreased levels of alpha tocopherols and

vitamin E in patients with AD. Another study focused on the role of

carotenoids in neurodegenerative disorders. Lakey-Beitia et al.

(2019) conducted a lead-induced PD study and revealed that

treating patients with Crocus sativus hydroethanolic extract

prevented all damage to the brain. Furthermore, Fernandes et al.

(2021) investigated lutein-loaded nanoparticles in a PD model and

found that they had a positive impact on restoring dopamine levels.

Lycopene was also found to be more active in AD (C.-B. Liu et al.,

2018). Lycopene is involved in downregulating the serum levels of

TNF-a and IL-b, hence reducing the inflammatory response at the

choroid plexus and improving cognitive defects. Sun et al. (2020)

investigated the effect of fucoxanthin on MPTP-induced PD and

reported that fucoxanthin counteracted neuronal loss by reducing

oxidative stress.
Alkaloids

A large number of marine alkaloids can act as neuroprotective

agents. Various studies have shown that alkaloids have great

potential for treating neurodegenerative disorders. Copmans et al.

(2019) reported the specific effects of the isoquinole alkaloids TMC

120 B and TMC 120 B, which were isolated from Aspergillus

insuetus, on zebrafish and mice and reported a reduction in

seizure duration. Rivanor et al. (2018) investigated the effect of

lectin from the green seaweed Caulerpa cupressoides. It reduced the
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levels of TNF-a and interleukins and hence proved to be a potential

anti-inflammatory and antinociceptive agent. Furthermore, Pan

et al. (2019) studied the effect of 9-methylfascaplysin from the

marine sponge Fascaplysinopsis sp. on a scopolamine-induced AD

model, which causes decreased cognitive dysfunction and no Ab-
induced tau hyperphosphorylation.
Phytosterols

These compounds are fatty in nature, are obtained from plants,

and contribute to maintaining the integrity of biological

membranes. Several phytosterols, such as fucosterol and

brassicasterol, have been extracted from brown algae, also known

as Phaeophyta. In addition, in red algae, also referred to as

Rhodophyta, cholesterol is the main principal component, and it

has little phytosteroidal content and is composed of fucosterol,

desmosterol, chalinasterol, and sitosterol. Poriferasterol, 28-

isofucosterol, beta sitosterol, chondrillasterol, and ergosterol are

the major phytosterols found in green algae, i.e., chlorophyta. In

addition, phytosterols also have anti-inflammatory, antioxidant,

and anti-AD effects. Another study revealed the involvement of

phytosterols in AD (Wong et al., 2018). He studied several

mechanisms of fucosterol’s antioxidant activity, such as an

increase in free radical scavenging enzymes and inhibitory

activities against AChE, which contribute to AD. Vanbrabant

et al. (2021) stated that 24S saringosterol has greater oxidant

properties than fucosterol and hence greater neuroprotective

power. Several studies have shown the anti-inflammatory

potential of fucosterol, which has synergistic effects on

neurodegenerative disorders. Alghazwi et al. (2019) reported that

seaweed-derived fucoxanthin and fucoidan improve memory

deficits. Wong et al. (2018) reported that fucosterol also reduces

the generation of inflammatory mediators in Ab-induced microglia,

protecting against Ab-associated neuroinflammation. Kheiri et al.

(2018) reported that the activation of p38 mitogen-activated protein

kinase (MAPK) by the Ab peptide triggers inflammation.
Terpenes

Brown algae are considered to be a renowned source of

terpenoids, primarily diterpenes and meroterpenoids.

Sargachromenols are the most well-known terpenoids found in

Sargassum species. The genus Caulerpa, which is found in green

algae, is a source of monocyclic sesquiterpenes and diterpenes with

neuroprotective properties (Yang et al., 2014). Many of these

compounds contain chromene groups, which may have cytotoxic

and antioxidant properties. Three meroterpenoids from S.

macrocarpum, sargaquinoic acid, sargahydroquinoic acid, and

tuberatolide B have been the subject of previous research. These

compounds demonstrated neuroprotective effects, reduced

inflammation, and suppressed cancer growth (Gaysinski et al.,

2015). Silva et al. (2019) investigated the antioxidant and

neuroprotective potential of diterpenes extracted from Bifurcaria
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bifurcata (brown seaweed). The use of isolated diterpenes has

shown promising results in treating PD. Silva also studied the

neuroprotective effect of algal extracts on SH-SY5Y cells and

found that neurotoxicity was reduced, hence affecting

neurodegeneration. Another study on zonarol, a sesquiterpene

from the brown algae Dictyopteris undulata, by Shimizu et al.

(2015) revealed that zonarol activates the Nrf2/ARE pathway and

hence participates in the protection of neuronal cells from oxidative

stress. Furthermore, studies by Wozniak et al. (2015) showed the

promising effects of Papenfussiella lutea’s extracted sesquiterpenes

involved in the inhibition of AChE, hence decreasing AD

symptoms. MaChado et al. (2015) reflected the role of

halogenated monoterpenes extracted from Ochtodes secundiramea

against AD by inhibiting AChE. Recently, Kwon et al. (2022)

reported the neuroprotective effects of two monoterpenoid

lactones from Sargassum macrocarpum via the inhibition of the

MAO enzyme, which is involved in the physiology of PD.
Mode of action of metabolites
in neuroprotection

Currently, marine algae play an important role in the field of

neuroprotection via various mechanisms, such as anti-

neuroinflammatory and antioxidant effects, the inhibition of neuron

death, and cholinesterase inhibitors. Therefore, various therapeutic

systems, such as nutraceuticals and pharmaceuticals, are believed to

have neuroprotective effects on marine algae (Pradhan et al., 2020).

Signaling and neuroprotective functions of various components of

marine algae are shown in Figure 3. In the biological system, ROS affect

human health by damaging macromolecules (Angelova et al., 2018),

whereas different lines of experimental evidence have shown that ROS

are neutralized by the antioxidant components of various marine algae,

such as green, brown, and red algal species, which have lots of beneficial

compounds, such as vitamins, carotenoids, astaxanthin, phycocyanin,

phycobilin, and polyphenols. These components of marine algae are

used to treat different diseases, such as cancer, diabetes, immune

responses, and neurological diseases (Pradhan et al., 2020). Different

signaling pathways that regulate the survival of brain neurons, like

ROS, NF-kB/Akt, and MAPK pathways, balance neurodegeneration,

and we will further talk about the regulation of these signaling

pathways in terms of metabolites of marine algae. Lycopene is a red–

pink carotenoid found in several fruits and vegetables, like guava and

watermelon. Lycopene significantly recovers neuronal life by regulating

the cyclooxygenase-2 (COX-2) pathway in inflammation, balancing

Nrf2 via the NF-kB pathway and stimulating MAPK in the brain

(Fradet et al., 2009; Hwang et al., 2017; Zhao et al., 2017). To prevent

primary hippocampal neuron apoptosis, lycopene stopped the

degradation of the antiapoptotic proteins Bcl-2 and Bcl-xL, enhanced

the efflux of calcium from neurons by activating Ca2+-Mg2+-ATPase

and Ca2+-ATPase transporter proteins (Zhang F. et al., 2017), and

balanced mitochondrial membrane integrity to regulate membrane

potential (Qu et al., 2016). During ROS challenge in brain neurons,

lycopene also balances the inner membrane potential of mitochondria

to increase the life of neurons (Soleymaninejad et al., 2017).
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Astaxanthin is lipophilic in nature; thus, trans-astaxanthin easily

crosses the blood–brain barrier and plays a significant role not only

in neuroprotection in the cortex and hippocampus of rats (Manabe

et al., 2018) but also in neurological disorders via different pathways: it

initially reduces the levels of ROS-generating enzymes, for example,

p22phox protein and NADPH oxidase 4; it increases the level of

superoxide dismutase, which has antioxidant effects; and it increases

Nrf2 protein levels to reduce oxidative stress (Deng et al., 2019; Lin

et al., 2020). Astaxanthin prevents the apoptosis of neurons in the brain

of rat via reducing the levels of Bax protein and cleaved caspase 3.

Unlike initial parameters, it increases the level of Bcl2 by balancing the

mitochondrial membrane potential of hippocampal neurons of rat

brain (Wang et al., 2018; Deng et al., 2019). On the other hand,

astaxanthin also protected the neurons by balancing the function of the

Na+-K+-2Cl− cotransporter-1 (NKCC1) of brain cells regulated by the

NF-kB pathway to reduce the swelling of brain cells (Zhang J. et al.,

2017). Another highly abundant marine carotenoid, fucoxanthin, is

found in edible brown algae (Yang et al., 2021) and has antiapoptotic,

antioxidant, and anti-inflammatory properties that protect against

neuron damage in animals challenged by neurodegenerative diseases

and improve motor function. Various studies have indicated that, like

astaxanthin, fucoxanthin enhances rodent brain functions by

stimulating Nrf2 transcription factors via different pathways

including PI3K/Akt pathways that enhance the expression of target

molecules, such as superoxide dismutase, heme oxygenase-1, and Bcl-2,

to reduce neural damage or apoptosis (Zhang L. et al., 2017). Another

significant neuroprotective role of fucoxanthin in Addison’s disease is

that it helps reduce neuroinflammation and oxidative stress and

regulate amyloid-b to prevent the aggregation of amyloid-b fibrils

(Lakey-Beitia et al., 2019). Fecosterol is an important marine algae-

derived phytosterol that shows different medicinal properties, such as

neuroprotective, antioxidant, and anti-inflammatory properties.

Various experimental and in silico studies have indicated that it can

be used against neurodegenerative disorders to recover life of the

neurons by regulating different pathways, such as the PI3K/Akt,
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MAPK, and neurotrophin pathways and also via transporter

proteins, enzymes, and TLR signaling related to neurons (Hannan

et al., 2019). Alginate is a linear marine polysaccharide of brown algae

that plays a significant role in the development of dopaminergic (DA)

neurons from induced human pluripotent stem cells (hiPSCs) in in

vitro culture systems for easier treatment of patients with PD. Alginate

plays a neurogenerative function through the mechanical properties

responsible for proper culture of human and mouse embryonic stem

cells (ESCs, i.e., hESCs and mESCs) into the mature neuron lineage to

treat neurodegenerative diseases (Gilmozzi et al., 2021). Various other

components of marine algae, such as lectins (Doolen et al., 2020) and

PUFAs (Kim et al., 2022b), play significant roles in different

neurodegenerative diseases and enhance the survival of neurons by

increasing the secretion of neurotransmitters in the human and

animal brains.

Another significant marine component of brown algae, i.e.,

sodium oligomannate, is a linear oligosaccharide of 2–10

carbohydrate moieties that can cross the blood–brain barrier via

the GLUT1 transporter to destabilize the Ab fibril formation in the

brain during AD, and because of such significant result, it has reached

phase III clinical trial in China (Wang X. et al., 2019). It also

suppresses gut dysbiosis with a reduction of phenylalanine/

isoleucine accumulation during AD (Seo et al., 2019). Experimental

evidence indicates that sodium oligomannate enhances the memory

of mouse models of AD (C. Shanghai Green Valley Pharmaceuticals

Co, 2019) by not only modifying cellular components of

inflammation like proinflammatory Th1 cells and M1 microglial

cells via brain cytokine alteration but also preventing Ab aggregation

and phosphorylation of tau protein in the brain (Wang et al., 2019).
The need of the hour

In recent years, a growing number of reports have revealed the

serious involvement of the immune system in the beginning and
FIGURE 3

Signaling and neuroprotective functions of various components of marine algae.
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progression of neurodegeneration (Seeley, 2017; Oxtoby et al., 2021)

since neurodegeneration is characterized by alterations in cytokine

signaling, proliferation of immune cells, movement, reactive gliosis,

and altered phagocytosis (Burda and Sofroniew, 2014).

Neuroinflammation, or the stimulation of neuroimmune

microglia and astrocytes in proinflammatory states, is a powerful

endogenous defense that defends the central nervous system from

pathogens and injury. It is often a beneficial means aimed at

eliminating dangers and restoring balance (Glass et al., 2010). On

the other hand, prolonged neuroinflammatory events can cause a

chain of events that culminate in the slow neuronal damage that

characterizes many neurodegenerative illnesses (Spencer et al.,

2012). Astrocytes, glial cells, and microglia play pro- and anti-

inflammatory roles and are engaged in phagocytosis, steroid release,

free radical reduction, and cell repair under normal and

pathological conditions (Dhapola et al., 2021). Glial cells promote

inflammation by producing ROS and cytokines, which cause

synaptic dysfunction and loss and neural fatality, resulting in

damage to the central nervous system. To date, most studies have

concentrated on microglia as a major player in neuroinflammation

in neurodegeneration, but recent research-based data have

demonstrated that astrocytes play a crucial role in the

inflammation that characterizes neurodegenerative illnesses (Jäkel

and Dimou, 2017; Crespo-Castrillo and Arevalo, 2020; Muzio

et al., 2021).

Degenerative brain disorders such as AD and PD are the result

of abnormal aging of the brain and are characterized by specific

regional cell loss (Cetin et al., 2022). All over the world, these

disorders are the leading causes of dementia in elderly people

(Azarpazhooh et al., 2018). Although the specific causes of many

brain disorders are unknown, they share some pathophysiologies,

such as mitochondria l dysfunct ion, oxidat ive stress ,

neuroinflammation, protein misfolding, and defective protein

clearance, which complicate these conditions (Picca et al., 2021);

however, if not deadly, ischemic, hurtful, and other types of brain

damage cause subsequent damage and are significant sources of

cognitive problems in patients. Brain injuries, such as

neurodegenerative illnesses, have the same pathogenesis (Cruz-

Haces et al., 2017). Regardless of the type of dementia one has,

the existing treatment options can only relieve symptoms, not stop

the disease from progressing.

Unfortunately, no pharmaceutical therapy exists to date that

can delay or stop the progression of these deadly illnesses. As a

result, research has focused on identifying natural substances that

can protect against these ailments. Given the importance of

neuroinflammation in the initiation and progression of

neurodegenerative diseases, natural substances with anti-

inflammatory effects may be promising candidates for the

development of successful treatment techniques. Marine

organisms provide a significant supply of natural chemicals, some

of which have structural properties that differ from those found on

land. Natural chemicals derived from the sea may have antidiabetic

(Abo-Shady et al., 2023), anti-inflammatory (Barbalace et al., 2019),

antioxidant, anticancer (Haq et al., 2019), and antiobesity properties
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(Wan-Loy and Siew-Moi, 2016; Oh et al., 2022), paving the way for

the development of new treatments (Menaa et al., 2021).

Furthermore, current medications are associated with a variety

of negative effects. Given the enormous societal and economic cost

of these ailments, researchers are focusing their efforts on

discovering possible therapeutic molecules that can target disease

etiology while generating no adverse effects on patient wellbeing.

Although man-made medications have some benefits, such as ease

of development, naturally derived chemicals have taken precedence

because they are comparatively well tolerated (Atanasov et al.,

2021). Natural substances are said to have anti-inflammatory,

antioxidant, and immunomodulatory properties (Hahn et al.,

2020). Compounds with various pharmacological actions provide

better treatment options for neurological illnesses with

complicated pathomechanisms.

Macroalgae, often identified as seaweed, are abundant oceanic

organisms that may offer renewable sources for nutrition and

commercial applications (Leandro et al., 2020; Kumar et al.,

2022). In addition, the metabolites of marine algae, such as

carotenoids, phytosterols, phenolics, alkaloids, terpenoids, and

polysaccharides, have piqued the interest of medicinal chemists

owing to their functional and structural diversity (Singh et al., 2017;

Bhowmick et al., 2020; Hannan et al., 2020; Catarino et al., 2023).

Because of their antioxidant , anti- inflammatory, and

immunoregulatory properties, these bio-functional chemicals have

been demonstrated to offer neuroprotective effects in preclinical

prototypes of neurodegenerative disorders, diabetes, ischemic

stroke, BT, and overweightness, among others (Cornish et al.,

2017; Sathasivam et al., 2019; Pagarete et al., 2021; Ibrahim et al.,

2023). Reports show that metabolites of algal origin, fucosterol,

fucoxanthin, and fucoidan, could possibly lead to the development

of CNS disease treatments (Koirala et al., 2017; Schepers et al., 2020;

Meinita et al., 2022). Sodium oligomannate was discovered and

conditionally approved as an anti-AD medicine, despite the slow

pace of algal metabolite drug discovery (Syed, 2020), increasing the

prospect of future medicines derived from marine algae.

Among the oceanic animals, micro- and macroalgae constitute

one of the seas’ most precious sources. Epidemiological research

comparing Japanese and Western diets revealed that algal

consumption is associated with a lower incidence of chronic

degenerative illnesses (Brown et al., 2014). Algae are valuable

resources of important biologically active constituents such as

minerals, antioxidants, vitamins (Wells et al., 2017), PUFAs

(Harwood, 2019), polysaccharides (Xu et al., 2017), proteins,

terpenes, sterols, carotenoids, tocopherols (Galasso et al., 2017),

phycocyanins, phycobilins, phycocolloids, and soluble dietary fibers

(Pradhan et al., 2020). Recently, Elbandy (2023) summarized the

most recent information on the possible anti-inflammatory action

of oceanic algal metabolites, demonstrating their possible defensive

efficacy against neuroinflammation. Marine algae, in particular,

have been demonstrated to suppress neuroinflammation at

multiple cellular levels, including by blocking proinflammatory

enzymes such as iNOS and COX-2 (Jin et al., 2006; Je et al.,

2021), regulating MAPK pathways (Jung et al., 2009), and
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activating NK-kB (Jiang et al., 2016). Currently, there are no

medical tests on the effects of marine algal metabolites on

neuroinflammation, but considering their essential biological

potential, as proven by in vitro studies and research on animals,

we anticipate that these studies will be conducted soon.

Furthermore, because anti-inflammatory medications can cause

problems and serious adverse effects (Scarpignato et al., 2017),

finding new anti-inflammatory compounds in marine algal

candidates could be a viable answer to these issues. Indeed,

because of their extensive use in traditional medicines, natural

anti-inflammatory substances have been shown to be harmless

(Singh et al., 2017; Hannan et al., 2020).

The biological potential of marine algae, its nutritive value, and

the probable advantages for their wellbeing have all been extensively

researched and reviewed in recent years. This article, on the other

hand, concentrates on the neuroprotective effects of marine algal

species and highlights their prospective utility as forthcoming

pharmacological agents for preventing neurodegenerative illnesses.
Safety issues of marine algae and
its compounds

East Asian countries consume a lot of seaweed, and there have

been no health problems associated with its consumption. Its

buildup of vital microelements like iron and iodine, as well as

heavy metals like cadmium, arsenic, mercury, and lead, is

concerning. It is also critical to note that a large number of

bioactive substances, particularly terpenoids, have not been

subjected to toxicological testing. Consequently, it is essential to

carry out in-depth safety assessments for seaweed (Sá Monteiro

et al., 2019; Hannan et al., 2020). Furthermore, the toxicity profiles

of drugs derived from seaweed need to be carefully examined, even

though safety issues come up throughout the therapeutic

development process. Numerous investigations have documented

the non-toxic characteristics of algal polysaccharides, despite the

paucity of information regarding the safety of algal metabolites.

Research conducted both in vitro and in vivo has validated the safety

of fucoidan, irrespective of the source of the algae (Hwang et al.,

2016). Even at high oral dosages, fucoidan derived from Undaria

pinnatifida and Laminaria japonica has been shown to be safe in

animal models, and human clinical investigations have also shown

that it has no harmful effects on health (Chung et al., 2010; Kim

et al., 2010). Comparably, studies on the safety of carrageenan have

revealed no harmful consequences from sub-chronic or chronic use

of this food-grade polysaccharide, nor have they revealed any link to

genotoxicity, carcinogenicity, or reproductive abnormalities

(Weiner, 2014). Additionally, research on iota-carrageenan taken

orally did not find any toxicological reactions (Hebar et al., 2015).

The toxicity of another chemical, fucoxanthin, has been studied and

shown to be safe in experimental subjects with no discernible

negative effects (Beppu et al., 2009). Some of the toxicity profiles

of marine metabolites have been evaluated; nevertheless, there are

inadequate toxicological data to support the need for thorough

investigations using suitable experimental models for additional

potentially bioactive metabolites (Rengasamy et al., 2020).
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Conclusion and future prospects

In conclusion, an exciting area for further study and practical

application is exploring the possibility of algae-derived metabolites as

potential therapeutic agents against neurodegenerative diseases.

Preclinical research has shown that a wide range of bioactive

substances, including fatty acids, polysaccharides, and polyphenols,

found in marine algae, possess significant neuroprotective capabilities.

These substances have an array ofmodes of action, such as neurotrophic,

anti-inflammatory, and antioxidant properties, all of which are vital in

the fight against the intricate pathophysiology of neurodegenerative

diseases. Furthermore, using marine algae metabolites has several

benefits, such as their sustainability, abundance, and potential for

biotechnological optimization. Additionally, the marine environment

continues to be a mostly unexplored source for novel bioactive

chemicals, offering an enormous reservoir for the discovery and

production of novel therapeutic agents.

To fully understand the precise mechanisms of action behind the

neuroprotective benefits of marine algae metabolites, more research is

required in the future. This entails looking into how they interact with

important biological targets connected to neurodegenerative processes

and how they might work in concert with current treatments.

Furthermore, clinical trials are necessary to assess the efficacy and

safety of drugs obtained from marine algae in humans. These studies

will yield important information on the drugs’ potential for therapy, the

best dosage schedules, and any possible adverse effects. Translating

marine algae metabolites from bench to bedside will require close

collaboration between researchers, doctors, and industry partners.

Additionally, the production and bioavailability of chemicals derived

from marine algae that can be used for medicinal purposes can be

improved by the use of biotechnological techniques including synthetic

biology and bioengineering. This includes developing new delivery

methods to improve bioavailability and targeted delivery to the central

nervous system, genetically modifying algae to increase metabolite

production, and optimizing culture procedures. Overall, the study of

marine algae metabolites is a potential area of research in the search for

efficient treatments for neurodegenerative illnesses. Harnessing the full

potential of these natural chemicals to reduce the increasing burden of

neurodegenerative illnesses on global health will require ongoing

studies and interdisciplinary collaboration.
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