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Underwater acoustic signal
classification based on a spatial–
temporal fusion neural network
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1School of Physics and Electronic Engineering, Taishan University, Tai’an, China, 2College of
Electronic Engineering, Faculty of Information Science and Engineering, Ocean University of China,
Qingdao, China
In this paper, a novel fusion network for automatic modulation classification

(AMC) is proposed in underwater acoustic communication, which consists of a

Transformer and depth-wise convolution (DWC) network. Transformer breaks

the limitation of sequential signal input and establishes the connection between

different modulations in a parallel manner. Its attention mechanism can improve

the modulation recognition ability by focusing on the key information. DWC is

regularly inserted in the Transformer network to constitute a spatial–temporal

structure, which can enhance the classification results at lower signal-to-noise

ratios (SNRs). The proposed method can obtain more deep features of

underwater acoustic signals. The experiment results achieve an average of

92.1% at −4 dB ≤ SNR ≤ 0 dB, which exceed other state-of-the-art

neural networks.
KEYWORDS
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1 Introduction

In wireless communication, AMC is one of the important tools for signal detection, and

it plays an irreplaceable role in the civil and military field (Chithaluru et al., 2022; Liu et al.,

2022; Teekaraman et al., 2023; Zhang et al., 2023). In the civil field, AMC is the basis for

channel parameter estimation and spectrum monitoring. In the military field, AMC is

widely used in information interception, interference selection, and radiation source

classification, among others. However, the wireless environment of underwater

communication is complex and changeable, and the modulation types become more and

more diverse, all of which bring great challenges to the acoustic signal of modulation

identification technology. Therefore, it is urgent to study efficient and intelligent AMC

methods in underwater acoustic communication transport.

In underwater acoustic signal modulation recognition, the challenge arises from

discerning intricate signal characteristics, which varies environmental noises and
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disturbances. Unlike terrestrial communication, underwater

channels are subject to unique interference such as multipath

propagation, varying sound speed profiles, and ambient noises

from natural and anthropogenic sources. These factors not only

obscure signal clarity but also introduce variability and

unpredictability in signal behavior, complicating the modulation

recognition process.

The dilemma intensifies with the diverse modulation schemes

used in underwater communication, each characterized by distinct

features that necessitate precise identification and classification

Addressing these complexities necessitates the development of

sophisticated AMC methods, which are adept at handling the

dynamic nature of underwater signals. It is efficient in

differentiating between an array of modulation types under

varying channel conditions.

In a real underwater communication environment, there are

many factors that affect acoustic signal transmission, such as ocean

physics movement, maritime commercial activities, and marine

organisms (Cai et al., 2022; Zhang Y. et al., 2022; Zhai et al.,

2023; Zheng T. et al., 2023). The underwater acoustic channel is

often more complex and changeable than the land air channel.

There are two categories in AMC technology: likelihood-based (LB)

methods and feature-based (FB) methods (Hamee and Wadi, 2015;

Abu-Romoh et al., 2018; Li et al., 2019; Hreshee, 2020). In the

received signal modulations, the likelihood function of unknown

parameters can be maximized by LB methods, which change the

identification problem into multiple hypothesis testing. There is the

most likely outcome by the likelihood ratio, and it requires a lot of

prior knowledge of transmission environment. The suboptimal

performance is obtained by FB methods, which have huge

advantages in computational complexity and robustness. Deep

learning algorithms (DLAs) are one of the important branches of

FB, which can automatically extract features and produce

classifying results.

DLAs have made remarkable strides in image classification,

natural language processing, and speech recognition (Dong S. et al.,

2021; Song et al., 2022; Menghani, 2023; Xu et al., 2023; Zheng C.

et al., 2023). There are a wealth of studies in underwater AMC. In

Wang et al. (2019), the convolutional neural network (CNN) is the

efficient extractor in spatial domain, and the discriminative

information of signal features is fully obtained. The underwater

channel interference mixed with oceanic noise can be effectively

mitigated to improve the recognition performance. The imbalanced

class of underwater acoustic modulations is studied in Dong Y. et al.

(2021), and the redesigned loss function can significantly stress the

recognition effects, which assume the exponential categorical cross

entropy in CNN. In the few shot scene, Wang et al. (2022a) shows

that the underwater dataset containing the impulse noise can

achieve better results by the employed network, which adopts the

attention mechanism in the network design. Wang et al. (2022b)

uses the hybrid network to identify the modulation styles in

multiple underwater signal receiving devices. The method can not

only obtain multi-channel signal features, but also better classify

these features, which can greatly emphasize the recognition effects.

There is the redesigned autoencoder of extractor in Huang et al.
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(2022), which employs the K-nearest neighbors method to classify

features. While the recognition rate is impressively improved, the

recognition time is also shorter. It is due to the fact that there are

acquired high-quality features and the appropriate recognizing

method. In Gao et al. (2022), the underwater acoustic modulation

data are collected in three different scenarios, which are applied to

the comparative learning. More significant discriminative

information of modulation styles are earned on supervised

conditions, which can efficiently differentiate between MPSK and

MFSK at low signal-to-noise ratios (SNRs). Zhang W. et al. (2022)

adopt two neural network forms, which consist of a CNN and a

recurrent neural network (RNN). The classification results are

improved by the wider network structure. There is a shorter

recognition time to employ the 1D convolution kernel and

remove the pooling operation. In Fang et al. (2022), the wavelet

transformation augments the acoustic signal data to weaken the

underwater communication interference. The redesigned

random forest (RF) enhances the recognition effect with the

assistance of signal spectrum characteristics, which optimizes

computational complexity.

DLA solutions have made a lot of recent progress in the

modulation classification field. There are still many shortcomings

in the existing methods. First of all, the structure of CNNmethods is

often complex to extract more deep features, which is prone to the

overfitting problem resulting in poor practical outcome. The

maximum number of Vapnik–Chervonenkis dimensions that the

large-scale CNN model can classify training samples is too high. It

leads to fitting noise and unrepresentative features in training

samples, which makes the model unable to really categorize the

true distribution of the whole data. Secondly, it is difficult for the

neural network based on RNN, in the main form of long short-term

memory (LSTM), to solve the gradient problem after superposition,

which is almost impossible to further grow in the recognition effect.

In the underwater modulation classification, it is important to

effectively obtain the hidden signal information, and the two

network forms cannot cope with the underwater acoustic

interference, such as obvious multi-path effect, serious time delay

of acoustic signal propagation, and marine ambient noise, which

leads to serious signal attenuation and modulation constellation

confusion. Aiming at the problems of CNN and RNN, an

autoencoder is adopted, which is different from the two neural

network architectures. Its implementation approach is the

Transformer architecture (Dosovitskiy et al., 2020), which

demonstrates fairly high accuracy in underwater acoustic

modulation recognition. Transformer is essentially a network

architecture of an encoder–decoder structure, which consists of

the self-attention mechanism and the feed forward neural network

of multilayer perceptron (MLP).

In this paper, the innovative approach addresses these

challenges by combining advanced spatial–temporal fusion

techniques with a neural network architecture, which is tailored

for underwater acoustic signal modulation recognition. The

proposed method leverages a unique combination of spatial

domain analysis and temporal sequence modeling, enabling it to

effectively handle the complex characteristics of underwater signals.
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By integrating these techniques, the proposed solution not only

mitigates the issues of signal attenuation and modulation

constellation confusion but also overcomes the limitations of

traditional CNN and RNN models, including overfitting and

gradient problems. Furthermore, the proposed approach

combines spatial–temporal fusion techniques with a neural

network architecture tailored for this purpose. It effectively

handles complex signal characteristics and mitigates issues like

signal attenuation and modulation constellation confusion, which

overcomes the limitations of traditional models. Additionally, it is

designed to filter out noise and irrelevant features, capturing the

true data distribution. These capabilities lead to more accurate and

robust modulation recognition, highlighting the method’s potential

for significant improvements in both accuracy and practical

applicability for underwater acoustic signal classification.

Compared to using DWC alone (Hu et al., 2021), our method

enhances classification in lower SNRs by integrating Transformer

with DWC, utilizing advanced spatial–temporal fusion techniques

for improved accuracy and applicability in underwater acoustic

signal classification.

The contributions are summarized as follows:
Fron
1. The Transformer network is introduced to handle long

temporal signal series, and the high-dimensional features of

temporal domain signals are dynamically acquired in the

long-range sequence correlation, which enhances the

recognition ability at lower SNRs.

2. A novel attention mechanism is proposed that is efficient

and effective at finding a small number of important

differentiate information from weak underwater acoustic

signals. This mechanism is able to model pairwise attention

over a longer temporal signal.

3. Multiple DWC blocks are creatively inserted to the stacked

Transformer modules. By employing the fusion network,

the model gains the ability of extracting spatial

representations of underwater signal characteristics.

Meanwhile, it has a lower computing burden and better

classification performance.
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2 The proposed method

2.1 Signal model

The AMC task is effectively a multi-classification problem,

which bears a striking resemblance to other conventional work in

the DLA field. The form of received signals is the complex

representation in the temporal domain, which includes all

modulation styles. The underwater received acoustic signals

(Equation 1) can be represented as:

s(t) = c(t)*h(t; t) + n(t) (1)

where s(t) is the received transmission signal, c(t) is the emitted

complex modulation signal, ∗ is the signal convolution operation, n

(t) is the additive Gaussian white noise, h(t;t) is the underwater

acoustic channel impulse response, t is the signal time delay, and t is

the signal time.
2.2 Proposed network

2.2.1 Transformer model
The proposed network architecture is shown in Figure 1. Let V

be an input signal tensor of dimensions H × W × C, where H × W

correspond to the temporal dimensions of the input, and C

represents the number of channels. For the input V, the goal is to

learn a set of K abstract features denoted as U = ½ui�Ki=1. To elaborate
further, ui = Bi(V) serves as a constructed feature function that maps

the input V to a feature vector ui :RH�W�C ↦RC . During this

process, K feature functions Bi are learned, enabling adaptive

selection of latent information from V. Consequently, the abstract

features obtained in this manner do not constitute a fixed partition

of the input tensor, which represent a set of adaptively changing

identification selections. Each input will mine different high-level

representations with high-level features. It is possible to model the

long-range dependencies and interaction distinction information of

signals in special underwater noise environments.

To control the computational cost of the model, K is set to be

less than both H and W. This can significantly reduce the
FIGURE 1

The architecture of the proposed network.
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computational complexity required by subsequent modules in the

model, ensuring the training speed and parameter capacity of the

model. In this context, the ith feature ui = Bi(V) are implemented

using a temporal attention mechanism. In the learning process of

the model, it is necessary to generate a computational weight map

corresponding to the size of H ×W according to the input V. These

weight maps are element-wise multiplied with V to create abstract

data combinations with temporal features. Specifically, let µi(V)

represent the function responsible for generating H ×W × 1 weight

maps. Each feature ui (Equation 2) is generated as follows:

ui = Bi(V) = GAP(V ⊙ Bi _) = GAP(V ⊙h(mi(V))) (2)

where ⊙ signifies element-wise multiplication, and Bi _ ∈
RH�W�C is an intermediate weight tensor calculated by the

function µi(V) and the broadcasting function h(·). Finally,

temporal global average pooling GAP(·) is applied to reduce the

dimensions toRC . The resultant feature aggregations are aggregated

to form the output tensor U = ½ui�Ki=1 ∈ RK�C . The entire process

takes the form of element-wise temporal self-attention. The

functions ui( · )
K
i=1 are collectively implemented as a single or a

series of convolutional layers with a channel size of K, followed by

the sigmoid function, facilitating the generation of results.

The underwater acoustic signals are preprocessed, and each

input is treated as an element, which equates a block operation. The

dimension is reduced by the liner projection offlattened spots, and a

liner embedding has been obtained. In this way, the original

underwater acoustic signals are serialized, and there are a set of

preprocessing features and position embedding. The position

embedding contains the position information in the sequence,

which is regarded as trainable input variables. The preprocessed

signal data are transmitted to the Encoder as the input for the deep

feature extraction. The proposed Encoder structure is shown in

Figure 2. The process (Equations 3–5) can be expressed as:

y0‘ = MHA(LN(y‘−1)) + y‘−1 (3)

y‘ = MLP(LN(y0‘)) + y0‘ (4)

y = LN(y‘) (5)

MHA(·) is the multi-head attention mechanism, and LN(·) is

layer normalization. yℓ–1 represents the (ℓ − 1)-th layer input, and yℓ
'

is the multi-head attention output in the ℓ-th layer; MLP(·) is the

multilayer perceptron, and y is the final output of the Encoder.

y is then sent to the reverse mapping block where a reverse

attention mechanism is employed to provide an adaptive fusion,

enabling selective reconstruction of the output from the labels based

on content and context. A reverse mapping function F (Equation 6)

is learned to map the label tensor back to the original shape:

V 0 = F(y) ∈ RH�W�C0
(6)

where RC' is typically different from the original input channel

C. In other words, the proposed network initially learns a reverse

attention mechanism that generates attention vectors ai,e(y) of

shape RK�1 for each position (i,e). These attention vectors
Frontiers in Marine Science 04
(Equation 7) are multiplied element-wise with the reshaped labels

y, and a weighted sum is performed to generate the output for each

position (i,e),

V
0
ie =o

K

i=1
ai,e (y)i (7)

where yi ∈ RC0
represents the vector representation of the ith

label. The above equation can be written in matrix form (Equation 8):

V 0 = F (a(y), y) (8)

where a(y) ∈ RH�W�K denotes the attention vectors for all

positions (i,e), and F represents matrix multiplication and

summation operations. The distinction in dimensions, RK�1 for

attention vectors and RC0
for label vectors, underscores the adaptive

fusion capability of our reverse attention mechanism, enabling

precise context-aware reconstruction from label information to

the desired output shape, enhancing the model’s interpretability

and effectiveness in handling complex signal characteristics.

The signal representation embedding layer is integrated by the

intermediate abstract multimodal fusion layer, and the complete

temporal Transformer is constructed. The input V first goes

through the signal representation embedding layer module to

generate markers U, which are then fed into a standard

Transformer encoder, and finally restored back to the original

shape via the intermediate abstract multi-modal fusion layer

module. By stacking multiple layers of the temporal Transformer, a

more powerful model can be built. The temporal Transformer retains

the advantages of Transformer in modeling, while adapting

computations to the dimensions through labeling and fusion

operations. This provides an efficient and flexible method for

modeling interactions in underwater signal recognition, improving

the performance and deployment practicality of network models.
2.2.2 Transformer embedding CNN
The relative position information refers to the fact that the

signal distribution position is used to distinguish the modulation

categories in the underwater acoustic signal modulation

constellation. The original underwater acoustic data do not

contain the relative position information of modulations, leading

to the same effect in a different position vector. The different

position vector corresponds to the position information contained

in the input underwater acoustic signal sequence, which is input to

the Transformer network as a vector. It is difficult to distinguish the

modulation types in the spatial dimension. The discrimination

ability of Transformer can be effectively improved by the position

information. The attention mechanism of Transformer can

remember the key distinguishing information like the human

visual attention mechanism.

In general, CNN gives the same weight to all the position

information, which will limit the expression ability of the model. It

is almost impossible to distinguish the modulation types that are

seriously disturbed by the underwater environment. The

Transformer attention mechanism is used for the feature

aggregation, which can adaptively adjust the weight of feature
frontiersin.org

https://doi.org/10.3389/fmars.2024.1331717
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1331717
aggregation according to the relationship between the underwater

acoustic signal sequence and the location information. The model is

improved to alleviate the signal fading, which enhances the

modulation recognition ability.

If there are no strong constraints in the training of Transformer,

the recognition ability of CNN is better than that of the same size

model on smaller dataset. Compared to CNN, Transformer has less

prior knowledge of inductive bias. Unlike CNN, Transformer can

learn by itself from data. In the absence of enough data to pre-train,

it is impossible to get a good transfer learning effect on downstream

tasks, and the Transformer obtains similar or better results than the

current best CNN. Therefore, the better way is combining

Transformer and CNN in network design. Transformer has the

relatively strong global modeling ability, which can acquire the key

classification information at a lower SNR. CNN has an inductive

bias ability that can effectively improve the feature extraction ability

on a smaller-scale dataset.
Frontiers in Marine Science 05
CNN is regularly inserted in the Transformer architecture, and

there is the spatial conversion of the underwater acoustic signal. The

combination of modulation classification information can be

adaptively selected. The tensors extracted by the input middle

layer can simulate the modulation spatial–temporal relationship

of underwater acoustic signals in the adaptive splitting form, and

the recognition results can be promoted at the lower SNR. The

process (Equations 9–11) can be expressed as:

zj = DWCGelu(V
0) (9)

Z = ConvSigmoid(G
J
j=1zj) (10)

O = l(V 0 ⊙Z) (11)

The spatial conversion layers of the inserted CNN is the DWC

form in Figure 3. DWCGelu(·) is the depth-wise convolution with the

Gelu activation function. The expression H×W×C' is split into H ×
FIGURE 2

The structure of the proposed Encoder architecture.
FIGURE 3

DWC convolution operation process.
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W × 1, which means that a tensor with dimensions of height H,

width W, and depth C′ is divided into smaller tensors, each having

dimensions of height H, width W, and depth 1. Following this, a

convolution operation with a kernel size of M × M × 1 is applied,

resulting in a tensor with dimensions H"×W"×C'. Subsequently,

another convolution operation with a kernel size of 1×1×C' is

applied, which yields the final output tensor of depth C" and

dimensions H"×W"×C". ConvSigmoid(·) is the two-dimension

convolution with the Sigmoid activation function, GJ
j=1½·� is the

number of layers of DWC, j is the corresponding layer, j = 1,…,J.

Through an optimized spatial transformation that preserves

essential feature information, Z is the weight map of the spatially

transformed output,⊙ is the element-wise multiplication, l(·) is the
global pooling. The method not only optimizes the computational

efficiency, but also separately convolves the exacted features in

space, which is more conducive to distinguishing the detailed

features of the underwater acoustic signals to strengthen the

recognition ability.
3 Experiment

In the underwater acoustic wireless channel (Wang et al.,

2022a), the generated signals are more approximate to the

realistic situation of disturbances. The dataset involves 10 types of

modulation signals, which is BPSK, QPSK, 8PSK, 4PAM, 16QAM,

64QAM, FM, DSB, CPFSK, and 4FSK. Other setting experiment

parameters are shown in the Table 1.

A total of 2,000,000 modulation data are included in the dataset,

and SNRs are in the range of −20 dB to +18 dB. The dataset is

divided into a training set, a validation set, and a testing set with

60%, 20%, and 20%, respectively. There is a complex floating point

I/Q value in each signal data, which has a length of 256. Otherwise,

the time fading model is Rayleigh distribution. The range of SNRs is

from −20 dB to 20 dB. Gaussian white noise is considered for the

additive noise, which is bandlimited and has a zero mean. The

random number generator seed of the noise source is set to 0x1498.

When utilizing a patch size of 16 × 16, a batch size of 64, and

constructing the model with two Transformer encoders and three
Frontiers in Marine Science 06
DWC blocks, the classification accuracy of the model achieves

an optimal performance. This specific combination of

hyperparameters demonstrates the model’s ability to efficiently

capture complex acoustic patterns and spatial features present in

the data. These results underscore the significance of our fusion

model settings for achieving superior classification outcomes.

The classification results of the proposed method are shown in

Figure 4. When SNR is less than −10 dB, the classification rate is

lower than 49.8%. With the increase of SNRs, the recognition

accuracy is obviously improved in the magnitude. The

classification rate reaches nearly 93.7% at SNR = −2 dB. The

proposed method can realize the effective identification of various

modulation styles at the lower SNR. At SNR ≥ 0 dB, the recognition

effect continues to grow, and the classification results can achieve

approximately 97.9% on average. The results demonstrate

the effectiveness of the proposed method in the network

structure design.

In Figure 5, the classification rate of DWC is higher than CNN,

SeparableCNN, and TransposeCNN. Compared with three CNN

forms, DWC has obvious advantages in recognition accuracy at

lower SNRs. In particular, the recognition effect of DWC is nearly

16.9% stronger, on average, than that of CNN at the range from −8

dB to −4 dB in Figure 5A. At the same SNR range, the similar

situation also appears in Figures 5B, C, and DWC is approximately

7.8%, 5.8% higher than SeparableCNN and TransposeCNN on

average, respectively. The convolution form of DWC resists the

influence of underwater transmission environment, which can

achieve higher classification results.

At a certain SNR, the classification result in varieties of

modulation types is shown in Figure 6 at bit group = 256. At

SNR = −6 dB, 4FSK and 8FSK are misidentified as SSB in Figure 6A.

At a lower SNR, the analog signal waveforms are easily confused to

lead to the bad results. Simultaneously, 16QAM and 32QAM are

poorly identified, and there is a similar constellation diagram to the

two modulation types to cause the bad results. When SNR is

improved to −4 dB, in Figure 6B, the classification results of

4FSK and 8FSK are greatly enhanced. The classification rate for

4FSK improved significantly by 62%, with misidentifications as SSB

and 8FSK reduced to 13% and 12%, respectively. Additionally, the

recognition rates for 8PSK and SSB also improved by 10% and 4%.

At the SNR, the network’s capability to discern between different

modulation signatures was enhanced, leading to significant

advancements in classification rates for these types. 16QAM and

32QAM can be correctly distinguished at the SNR. Other

modulation types can achieve a favorable classification effect. As

SNRs are elevated, the used network learns more hidden signal

traits and accomplishes the desired classification results.

The t-distributed stochastic neighbor embedding (t-SNE) (Van

der Maaten and Hinton, 2008) is used to analyze the features of

underwater modulation signals in Figure 7. A total of 400,000

testing signal data randomly selected from dataset are adopted for

the experiment. The output results are extracted as the obtained

recognition features in the last dense layer. Most modulation styles

can be separated from each other by the proposed method, which

constructs the feature map for the effective identification. The

previous classification results match the testing effects. There are
TABLE 1 The experiment parameters.

Parameters Data Comment

Doppler shift carrier
Frequency

5 × 103

10 kHz

Symbol transmission rate 1,000 symbol/s

Sample rate of the
maximum deviation

15 Hz In the
random mode

Standard offset drift process 1 Hz per sample In the sample rate

Time fading model Rayleigh
distribution

Frequency selective fading 20 cosines

Filter of the raised cosine
pulse shaping

0.35 roll-off factor
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some overlaps between QPSK, 8PSK, 16QAM, and 64QAM for

features. The main reason for the phenomenon is that they are

polluted by the underwater emission attenuation, which have

similar constellation distributions at low SNRs. The results

illustrate that the proposed method exhibits better view of the

class types in the underwater acoustic signal modulations.

In Figure 8, the proposed network (ProposedNet) is compared

with ShuffleNet (Ma et al., 2018), MobileNet (Howard et al., 2019),

Xception Chollet (2017), ANResNet (Liang et al., 2021) and IAFNet

(Wang et al., 2022a). ShuffleNet is characterized by its wide-
Frontiers in Marine Science 07
structured network design. MobileNet and Xception are

lightweight neural networks that utilize stacking of smaller

convolutional kernels for efficiency. Meanwhile, ANResNet and

IAFNet represent networks with more complex structures in the

field of underwater acoustic signal recognition. ShuffleNet has better

classification results than the proposed network in the range of −20

dB and −12 dB, and the method has never really worked at a low

SNR. MobileNet, ANResNet, and Xception have almost the same

classification result as the proposed network. There is a similar

result between IAFNet and the proposed network from −20 dB to
A B

C

FIGURE 5

Modulation classification results for varying SNRs. (A) The classification rate of DWC is higher than that of CNN. (B) The classification rate of DWC is
higher than that of SeparableCNN. (C) The classification rate of DWC is higher than that of TransposeCNN.
FIGURE 4

The classification results of the proposed method.
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−16 dB, and the performance of IAFNet does not improve enough

as SNRs strengthen. From −12 dB to −4 dB, the proposed network is

substantially higher than other networks in the classification rate,

which is approximately 3.2%, 7.1%, 8.0%, 4.6%, and 29.2% higher

than ShuffleNet, MobileNet, Xception, IAFNet, and ANResNet on

average, respectively. It shows that the proposed network has a

superior structure and obtains more advanced classification

information of signals. After SNR = −4 dB, there is an impressive

improvement in the classification effect of all networks. The

proposed network is superior to the other four networks.

ShuffleNet, MobileNet, and Xception demonstrate similar trends

in classification performance, particularly in key performance
Frontiers in Marine Science 08
metrics such as accuracy and recall rate, showing comparable

results when processing specific types of datasets. They are less

effective than the proposed network, which is better by

approximately 11.2% and 11.4% than ShuffleNet and MobileNet,

respectively. Meanwhile, the proposed network outperforms

Xception and ANResNet by approximately 12.4% and 8.7%,

which is far superior to IAFNet. It is due to the network structure

that enriches the trait extraction of signals, which performs better

than the wide network structure of the lightweight network of

ShuffleNet, MobileNet, and Xception, the commonly used

underwater acoustic recognition network structure of ANResNet

and IAFNet.
FIGURE 7

t-SNE visualization for testing features learned from the proposed method.
A B

FIGURE 6

Modulation classification results for varying SNRs. (A) SNR = -6 dB. (B) SNR = -4 dB.
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The proposed network compares the epoch time (training time)

and the parameter size with other network models in Table 2, which

were obtained on ubuntu 18.04, tensorflow version 2.12, CPU i7,

and GPU 2080ti.

Compared to the proposed network, the parameter sizes of

ShuffleNet, MobileNet, and ANResNet2 are four times, five times,

and six times larger, respectively. ANResNet and IAFNet have a

complex structural style, and have a fairly large parameter size. They

are nearly 20 times and 52 times larger than the proposed network

in terms of parameter size, respectively. The proposed network has

the shortest amount of epoch time, which is approximately 1/3, 1/4,

1/5, 1/9, and 1/19 the epoch time of ShuffleNet, MobileNet,

Xception, ANResNet, and IAFNet, respectively. The epoch time is

related not only to the parameter size but also to the complexity of

the network structure. The structural design of the used network is

more efficient with the signal trait exchange of the multi-routing

structure, which has a smaller parameter size and a shorter training

time. The proposed network is more appropriate to apply and

embed in a real underwater communication system.
Frontiers in Marine Science 09
4 Conclusion

In an underwater acoustic environment, this algorithm

proposes the novel fusion network for AMC. The proposed

method consists of both Transformer and the spatial conversion

CNN module, and the results show the effectiveness in underwater

modulation classification. The Transformer network can input

signal sequences and has the attention mechanism, which can

obtain more hidden distinguishing signal information at lower

SNRs. The embedded DWC can acquire deep representations in

spatial domain, which improves the recognition accuracy at lower

SNRs. In future work, research should center on improving the

classification accuracy in the less than −15 dB SNR range.

Nomenclature

Resource identification initiative

No specific resources requiring an RRID were used in this study.
Life science identifiers

This study did not involve the description of new species or

nomenclatural acts registered with ZOOBANK; therefore, no Life

Science Identifiers (LSIDs) are included.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
TABLE 2 The parameter size and epoch time of different
network models.

The network model Epoch time (s) Total
parameters

The proposed network 6 868,762

ShuffleNet 19 3,166,848

MobileNet 24 3,718,570

Xception 29 5,334,562

ANResNet 56 20,772,894

IAFNet 112 44,961,468
FIGURE 8

Classification results between different networks.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1331717
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1331717
Author contributions

YW: Writing – review & editing, Writing – original draft,

Visualization, Methodology, Conceptualization. JX: Writing –

review & editing, Project administration, Methodology,

Investigation. XC: Writing – original draft, Validation, Software,

Investigation. QW: Supervision, Formal Analysis, Writing – review

& editing, Project administration. NT: Writing – review & editing,

Resources, Project administration, Data curation.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was financially supported by Scientific Research Startup Foundation

of Taishan University (No. Y-01-2020016), Shandong Provincial

Natural Science Foundation (No. ZR2022MF347).
Acknowledgments

We wish to extend our sincere thanks to College of Electronic

Engineering, Faculty of Information Science and Engineering, Ocean

University of China, for their invaluable assistance with the
Frontiers in Marine Science 10
development of the computational models. Their insights and

expertise were pivotal to the successful completion of this project,

and their contributions to our discussions and their technical input

have been greatly appreciated.We are also grateful for the supportive

environment provided by the Faculty of Information Science and

Engineering at Ocean University of China, which has been

instrumental in facilitating our research endeavors.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abu-Romoh, M., Aboutaleb, A., and Rezki, Z. (2018). Automatic modulation
classification using moments and likelihood maximization. IEEE Commun. Lett. 22,
938–941. doi: 10.1109/LCOMM.2018.2806489

Cai, X., Xu, W., Wang, L., and Kaddoum, G. (2022). Joint energy and correlation
detection assisted non-coherent ofdm-dcsk system for underwater acoustic
communications. IEEE Trans. Commun. 70, 3742–3759. doi: 10.1109/
TCOMM.2022.3169227

Chithaluru, P., Stephan, T., Kumar, M., and Nayyar, A. (2022). An enhanced energy-
efficient fuzzy-based cognitive radio scheme for iot. Neural Comput. Appl. 34, 19193–
19215. doi: 10.1007/s00521-022-07515-8

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions,
in Proceedings of the IEEE conference on computer vision and pattern recognition.
(Honolulu, Hawaii: IEEE), 1251–1258.

Dong, S., Wang, P., and Abbas, K. (2021). A survey on deep learning and its
applications. Comput. Sci. Rev. 40, 100379. doi: 10.1016/j.cosrev.2021.100379

Dong, Y., Shen, X., Jiang, Z., and Wang, H. (2021). Recognition of imbalanced
underwater acoustic datasets with exponentially weighted cross-entropy loss. Appl.
Acoustics 174, 107740. doi: 10.1016/j.apacoust.2020.107740

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929.

Fang, T., Wang, Q., Zhang, L., and Liu, S. (2022). Modulation mode recognition
method of noncooperative underwater acoustic communication signal based on
spectral peak feature extraction and random forest. Remote Sens. 14, 1603.
doi: 10.3390/rs14071603

Gao, D., Hua, W., Su, W., Xu, Z., and Chen, K. (2022). Supervised contrastive
learning-based modulation classification of underwater acoustic communication.
Wireless Commun. Mobile Comput. 2022, 1–10. doi: 10.1155/2022/3995331

Hamee, H. M., and Wadi, J. (2015). Automatic modulation recognition for mfsk
using modified covariance method. Int. J. Electrical Comput. Eng. (IJECE) 5, 429–435.
doi: 10.11591/ijece.v5i3

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., et al. (2019).
Searching for mobilenetv3, in Proceedings of the IEEE/CVF international conference on
computer vision. (Seoul, South Korea: IEEE) 1314–1324.
Hreshee, S. S. (2020). Automatic recognition of the digital modulation types using
the artificial neural networks. Int. J. Electrical Comput. Eng. (2088-8708) 10:5871–5882.
doi: 10.11591/ijece.v10i6

Hu, G., Wang, K., and Liu, L. (2021). Underwater acoustic target recognition based on
depthwise separable convolution neural networks. Sensors 21, 1429. doi: 10.3390/s21041429

Huang, Z., Li, S., Yang, X., and Wang, J. (2022). Oae-eeknn: An accurate and efficient
automatic modulation recognition method for underwater acoustic signals. IEEE Signal
Process. Lett. 29, 518–522. doi: 10.1109/LSP.2022.3145329

Li, X., Dong, F., Zhang, S., and Guo, W. (2019). A survey on deep learning techniques
in wireless signal recognition. Wireless Commun. Mobile Comput. 2019, 1–12.
doi: 10.1155/2019/5629572

Liang, Z., Tao, M., Wang, L., Su, J., and Yang, X. (2021). Automatic modulation
recognition based on adaptive attention mechanism and resnext wsl model. IEEE
Commun. Lett. 25, 2953–2957. doi: 10.1109/LCOMM.2021.3093485

Liu, X., Xu, B., Wang, X., Zheng, K., Chi, K., and Tian, X. (2022). Impacts of sensing
energy and data availability on throughput of energy harvesting cognitive radio
networks. IEEE Trans. Vehicular Technol. 72, 747–759. doi: 10.1109/TVT.2022.
3204310

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the European
conference on computer vision (ECCV) (Munich, Germany: Springer), 116–131.

Menghani, G. (2023). Efficient deep learning: A survey onmaking deep learningmodels
smaller, faster, and better. ACM Comput. Surveys 55, 1–37. doi: 10.1145/3578938

Song, X., Li, J., Cai, T., Yang, S., Yang, T., and Liu, C. (2022). A survey on deep
learning based knowledge tracing. Knowledge-Based Syst. 258, 110036. doi: 10.1016/
j.knosys.2022.110036

Teekaraman, Y., Manoharan, H., Basha, A. R., and Manoharan, A. (2023). Hybrid
optimization algorithms for resource allocation in heterogeneous cognitive radio
networks. Neural Process. Lett. 55, 3813–3826. doi: 10.1007/s11063-020-10255-2

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.
Learn. Res. 9. 2579–2605.

Wang, H., Wang, B., and Li, Y. (2022a). Iafnet: Few-shot learning for modulation
recognition in underwater impulsive noise. IEEE Commun. Lett. 26, 1047–1051.
doi: 10.1109/LCOMM.2022.3151790
frontiersin.org

https://doi.org/10.1109/LCOMM.2018.2806489
https://doi.org/10.1109/TCOMM.2022.3169227
https://doi.org/10.1109/TCOMM.2022.3169227
https://doi.org/10.1007/s00521-022-07515-8
https://doi.org/10.1016/j.cosrev.2021.100379
https://doi.org/10.1016/j.apacoust.2020.107740
https://doi.org/10.3390/rs14071603
https://doi.org/10.1155/2022/3995331
https://doi.org/10.11591/ijece.v5i3
https://doi.org/10.11591/ijece.v10i6
https://doi.org/10.3390/s21041429
https://doi.org/10.1109/LSP.2022.3145329
https://doi.org/10.1155/2019/5629572
https://doi.org/10.1109/LCOMM.2021.3093485
https://doi.org/10.1109/TVT.2022.3204310
https://doi.org/10.1109/TVT.2022.3204310
https://doi.org/10.1145/3578938
https://doi.org/10.1016/j.knosys.2022.110036
https://doi.org/10.1016/j.knosys.2022.110036
https://doi.org/10.1007/s11063-020-10255-2
https://doi.org/10.1109/LCOMM.2022.3151790
https://doi.org/10.3389/fmars.2024.1331717
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1331717
Wang, H., Wang, B., Wu, L., and Tang, Q. (2022b). Multihydrophone fusion network
for modulation recognition. Sensors 22, 3214. doi: 10.3390/s22093214

Wang, Y., Zhang, H., Sang, Z., Xu, L., and Gulliver, T. A. (2019). Modulation
classification of underwater communication with deep learning network. Comput.
Intell. Neurosci. 2019, 1–12. doi: 10.1155/2019/9142753

Xu, M., Yoon, S., Fuentes, A., and Park, D. S. (2023). A comprehensive survey of
image augmentation techniques for deep learning. Pattern Recognit. 137, 109347.
doi: 10.1016/j.patcog.2023.109347

Zhai, Y., Li, J., Feng, H., and Hong, F. (2023). Application research of polar coded
ofdm underwater acoustic communications. EURASIP J. Wireless Commun. Netw.
2023, 26. doi: 10.1186/s13638-023-02236-5

Zhang, Y., Li, C., Wang, H., Wang, J., Yang, F., and Meriaudeau, F. (2022). Deep
learning aided ofdm receiver for underwater acoustic communications. Appl. Acoustics
187, 108515. doi: 10.1016/j.apacoust.2021.108515
Frontiers in Marine Science 11
Zhang, W., Tait, A., Huang, C., Ferreira de Lima, T., Bilodeau, S., Blow, E. C., et al.
(2023). Broadband physical layer cognitive radio with an integrated photonic
processor for blind source separation. Nat. Commun. 14, 1107. doi: 10.1038/
s41467-023-36814-4

Zhang, W., Yang, X., Leng, C., Wang, J., and Mao, S. (2022). Modulation recognition
of underwater acoustic signals using deep hybrid neural networks. IEEE Trans. Wireless
Commun. 21, 5977–5988. doi: 10.1109/TWC.2022.3144608

Zheng, T., Jing, L., Long, C., He, C., and Yin, H. (2023). Frequency domain direct
adaptive turbo equalization based on block normalized minimum-ser for underwater
acoustic communications. Appl. Acoustics 205, 109266. doi: 10.1016/j.apacoust.2023.
109266

Zheng, C., Wu, W., Chen, C., Yang, T., Zhu, S., Shen, J., et al. (2023). Deep learning-
based human pose estimation: A survey. ACM Comput. Surveys 56, 1–37. doi: 10.1145/
3603618
frontiersin.org

https://doi.org/10.3390/s22093214
https://doi.org/10.1155/2019/9142753
https://doi.org/10.1016/j.patcog.2023.109347
https://doi.org/10.1186/s13638-023-02236-5
https://doi.org/10.1016/j.apacoust.2021.108515
https://doi.org/10.1038/s41467-023-36814-4
https://doi.org/10.1038/s41467-023-36814-4
https://doi.org/10.1109/TWC.2022.3144608
https://doi.org/10.1016/j.apacoust.2023.109266
https://doi.org/10.1016/j.apacoust.2023.109266
https://doi.org/10.1145/3603618
https://doi.org/10.1145/3603618
https://doi.org/10.3389/fmars.2024.1331717
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Underwater acoustic signal classification based on a spatial–temporal fusion neural network
	1 Introduction
	2 The proposed method
	2.1 Signal model
	2.2 Proposed network
	2.2.1 Transformer model
	2.2.2 Transformer embedding CNN


	3 Experiment
	4 Conclusion
	Nomenclature
	Resource identification initiative
	Life science identifiers

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


