
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Junhong Liang,
Louisiana State University, United States

REVIEWED BY

Haijin Dai,
National University of Defense
Technology, China
Valentin Ludwig,
Alfred Wegener Institute Helmholtz
Centre for Polar and Marine Research
(AWI), Germany

*CORRESPONDENCE

Junde Li

junde.li@hhu.edu.cn

RECEIVED 16 May 2023

ACCEPTED 27 September 2023
PUBLISHED 18 October 2023

CITATION

Xu M and Li J (2023) Assessment of sea ice
thickness simulations in the CMIP6 models
with CICE components.
Front. Mar. Sci. 10:1223772.
doi: 10.3389/fmars.2023.1223772

COPYRIGHT

© 2023 Xu and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 18 October 2023

DOI 10.3389/fmars.2023.1223772
Assessment of sea ice thickness
simulations in the CMIP6 models
with CICE components

Mengliu Xu and Junde Li*

College of Oceanography, Hohai University, Nanjing, China
Arctic sea ice plays a critical role in modulating our global climate system and the

exchange of heat fluxes in the polar region, but its impact on climate varies

across different sea ice thickness (SIT) categories. Compared to sea ice cover, the

performance of ice models in simulating SIT has been less evaluated, particularly

in the sixth Coupled Model Intercomparison Project Phase (CMIP6). Here, we

chose 12 CMIP6 models with the Community Ice Code model (CICE)

components and compared their SIT simulations with the satellite observations

and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)

model between 1980 and 2014. Our results show that the seasonal cycle of

the PIOMAS SIT is consistent with satellite observations. Compared to the

PIOMAS reanalysis, the multi-model ensemble mean (MME) well represents the

sea ice extent in both the thin ice (<0.6 m) and thick ice (> 3.6 m). However, the

MME SIT has larger biases in the Chukchi Sea, the Beaufort Sea, the central Arctic,

and the Greenland Sea during winter and mainly in the central Arctic during

summer. Both the MME and PIOMAS show decreasing trends in SIT over the

entire Arctic Ocean in all seasons, but the interannual variability of SIT in MME is

smaller than that in PIOMAS. Among the 12 CMIP6 models, the FIO-ESM-2.0

model shows the best simulation of the annual mean SIT, but the SAM0-UNICON

and NESM3 models have the largest biases in the climatological mean SIT over

the Arctic Ocean. We also demonstrate that the FIO-ESM-2.0 performs the best

in the seasonal cycles of SIT. Our study suggests that more attention should be

paid to the coupling of the CICE model with ocean and atmosphere models,

which is vital to improving the SIT simulation in CMIP6 models and to better

understanding the impact of Arctic sea ice on our climate system.
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1 Introduction

Arctic sea ice plays a critical role in the global climate system (Stjern et al., 2019). Since

the beginning of the 21st century, the decline in Arctic sea ice extent (SIE) has been

accelerating dramatically (Kwok and Rothrock, 2009; Stroeve et al., 2012; Comiso et al.,

2017), accompanied by the emergence of a dark open ocean with a lower albedo, leading to
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increased heat absorption in the surface ocean (Previdi et al., 2020).

At the same time, sea ice volume (SIV) and sea ice thickness (SIT) in

the Arctic Ocean are also declining rapidly (Mallett et al., 2020;

Kacimi and Kwok, 2022). SIV has a loss rate of 2870 km3/decade in

winter (February–March) and 5130 km3/decade in the fall

(October–November) (Kwok, 2018). The decreasing rate of SIT is

0.13 ± 0.02 cm/year from 2002 to 2021 (Zhang et al., 2023). As a

result, the sea surface temperatures in the ice-free region of the

Arctic Ocean are increasing two times faster than the global average

(Screen et al., 2012; Döscher et al., 2014). In the Arctic Ocean, the

reduction of SIE in the fall, which is associated with the sea ice

albedo feedback (Feldl and Merlis, 2021), may also affect the mid-

latitude atmospheric circulation (Chatterjee et al., 2021; Cai et al.,

2023). Therefore, evaluating sea ice simulation in the Arctic Ocean

will be beneficial for us to understand the impact of sea ice on

the climate.

In contrast to sea ice concentration (SIC) and SIE, few studies

have focused on the SIT variability in the Arctic Ocean due to

limited observations. Changes in SIE and SIC can affect

atmospheric circulation by altering the surface albedo and

absorption of short-wave radiation (Frey et al., 2011; Feldl and

Merlis, 2021). The decrease in SIT significantly influences the

atmospheric circulation and heat transfer to the ocean through

the insulation effect (Serreze and Barry, 2011). In a warming

climate, changes in SIT significantly influence sea ice area and

atmospheric circulation in the Northern Hemisphere (Koenigk

et al., 2014; Francis and Wu, 2020). Examining the spatial and

temporal variation of SIT in different seasons can also help us

predict the trends of Arctic sea ice (Balan-Sarojini et al., 2021; Zhou

et al., 2022). Moreover, SIT significantly affects surface heat fluxes.

Sea ice thinning results in the enhancement of near-surface

warming of about 1˚C per decade in winter, especially in the

marginal sea ice areas, which further leads to a 37% increase in

the Arctic amplification factor (Lang et al., 2016). Thus, assessing

SIT simulations in the CMIP6 models is important for us to

understand the sea ice evolution in climate models and to further

improve the performance of sea ice models.

Previous climate model simulations underestimated SIT in the

northern Canadian Arctic Islands, northern Greenland, and the

Floran Channel but overestimated SIT on the Eurasian shelf

(Zachary et al., 2018). Compared to satellite observations, the

Arctic Ocean Model Intercomparison Project model simulations

overestimated the thickness of observed ice thinner than 2 m but

underestimated the thickness of observed ice thicker than

approximately 2 m (Johnson et al., 2012). The Polar Ocean and

Sea Ice Reanalysis Products Mutual Comparison Project showed

large differences in SIT simulations within 10 ocean and sea ice

reanalysis products (Uotila et al., 2019). Although the differences

between models in the sixth Coupled Model Intercomparison

Project Phase (CMIP6) are smaller than those in CMIP5 and

CMIP3 (Notz and Community, 2020), there are still large

uncertainties in model simulations and vast discrepancies

between models and observations (Shu et al., 2015; Tsujino et al.,

2020). However, the evaluation of the Arctic SIT simulation in the

CMIP6 models via the multi-model ensemble mean (MME) with

Community Ice Code model (CICE) components has not yet been
Frontiers in Marine Science 02
studied. Therefore, there is a pressing need to investigate the

performance of CMIP6 models with CICE components in

simulating the SIT.

In this study, we evaluate the performance of CMIP6 models

with CICE components in simulating the SIT using the PIOMAS

reanalysis product, which has been validated with satellite

observations. In Section 2, we introduce the SIT dataset and the

methodology. In Section 3, we first validate the SIT simulation in

PIOMAS with CS2SMOS satellite observations, then compare the

mean state, seasonal cycle, and spatial distributions of SIT between

PIOMAS and MME, and finally show the intercomparison of 12

CMIP6 models. Section 4 presents the discussion and conclusion.
2 Materials and methods

2.1 Satellite observations

In this study, we used the weekly averaged SIT from CS2SMOS,

product version v205, which spans from January 2011 to December

2022. The CS2SMOS SIT (AWI, 2023) was derived by merging the

CryoSat-2 (CS2) altimeter and the Soil Moisture and Ocean Salinity

(SMOS) radiometer ice thickness using an optimal interpolated

scheme with a horizontal resolution of 25 km×25 km. Compared to

the product of CS2 and SMOS ice thicknesses, the relative

uncertainties of the ice thickness retrieval methods for thin ice

(<1 m) from the CS2 altimeter measurements and thick ice (>1 m)

from the SMOS radiometer observations were significantly reduced

in CS2SMOS (Ricker et al., 2017). The SIV was estimated by the

product of the CS2SMOS SIT and the Ocean and Sea Ice Satellite

Application Facility (OSI SAF) SIC. The SIE data were obtained

from the NOAA/NSIDC Climate Data Record of Passive

Microwave Sea Ice Concentration, version 3, with a horizontal

resolution of 25 km × 25 km (Meier et al., 2017). For comparison,

the CS2SMOS dataset was remapped to an NSIDC grid.
2.2 CMIP6 model simulations
and PIOMAS reanalysis

There are several different sea ice model components in the

CMIP6 models, such as CICE, FESOM, SIS, LIM3, GFDL-SIM,

GISS SI, NEMO-LIM, COCO, and MPIOM. Among all sea ice

models, the CICE model is a dynamic-thermodynamic model that

includes a subgrid-SIT distribution and multiple layers in each

thickness category (Hunke and Elizabeth, 2014), which has been

widely used in previous sea ice simulations and has shown good

performance (Hunke and Elizabeth, 2014; Kumar et al., 2021). In

this study, a total of 12 different models were chosen from the

CMIP6 models with a CICE component. The SIT in the CMIP6

models was interpolated into a grid with a horizontal resolution of

25 km×25 km. The monthly historical SIT used in this study spans

from January 1980 to December 2014. Here, we evaluated not only

the performance of each CMIP6 model but also its MME.

The Pan-Arctic Ice Ocean Modeling and Assimilation System

(PIOMAS) was used to evaluate the sea ice simulation in the CMIP6
frontiersin.org
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models, which include the SIT and SIE. The PIOMAS reanalysis has

a horizontal resolution of 1°×1°. Monthly PIOMAS SIT data from

1980 to 2022 were used in this study. The PIOMAS assimilates the

sea surface temperature and SIC observations (Zhang and

Rothrock, 2003), and has shown good agreement in sea ice

simulations with satellite observations (Wang et al., 2016; Ricker

et al., 2017). It is an excellent sea ice reanalysis product in the Arctic

Ocean for long-term studies of sea ice evolution (Zhang and

Rothrock, 2003; Collow et al., 2015). Therefore, we compared the

sea ice simulations in the CMIP6 models with the PIOMAS

reanalysis in the Arctic Ocean (Figure 1).
2.3 Taylor diagram

Taylor diagrams provide a way to graphically summarize how

well model simulations match observations (Taylor and Karl, 2001),

and have been widely used in model evaluations (Mu et al., 2018;

Kumar et al., 2021; Li et al., 2021). To compare the performance of

different CMIP6 models on the same plot, here we have used the

correlation coefficient (R), the normalized centered root mean

square error (CRMSE), and the standard deviation (STD) in the

Taylor diagrams, which are defined as follows:

R =
o
N

n=1
(fn − f )(rn − r)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
N

n=1
(fn − f )2o

N

n=1
(rn − r)2

s (1)

CRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

n=1
½(fn − f ) − (rn − r)�2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

n=1
(rn − r)2

s (2)
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STD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

n=1
(fn − f )2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

n=1
(rn − r)2

s (3)

Where f and r represent the SIT in the CMIP6 and PIOMAS

models with a sample size of N, and their means are indicated by

their overbars �f and �r , respectively.
3 Results

3.1 Mean state and seasonal cycle of SIT

Because of the lack of suitable satellite observations during the

sea ice melt season, SIT observations are not continuous during the

summer season. PIOMAS (version 2.1) provides an estimate of SIV

from simulations with the assimilation of SIC and sea surface

temperature observations (Zhang and Rothrock, 2003), which fill

the SIT gaps in the summer. This product has been extensively

validated against a wide range of observations, such as satellite and

in situ mooring observations (Schweiger et al., 2011). Figure 2

shows the evolution of the monthly mean SIE and SIT in the Arctic

Ocean from satellite observations, CMIP6 models, and the PIOMAS

reanalysis. The biases of SIE between NSIDC observations,

PIOMAS reanalysis, and MME of CMIP6 models are very small

during the sea ice melt season (July-September) but the biases grow

during the sea ice growth season (Figure 2A). The SIT of the

PIOMAS reanalysis averaged for 2011-2022 agrees well with the

CS2SMOS observations in winter, with biases of less than 0.3 m

(Figure 2B). Although the CMIP6 models have a large ensemble

spread, the MME from 1980 to 2014 shows good agreement with
FIGURE 1

Subregions of the Arctic Ocean with the same definition in Li et al. (2021) and Kumar et al. (2021), which are shaded with 11 different colors.
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PIOMAS (Figure 2B). This gave us the confidence to use PIOMAS

to evaluate the mean state and seasonal cycle of SIT from the

selected 12 CMIP6 models based on the PIOMAS reanalysis.

To further investigate the performance of CMIP6 models in

simulating different SIT categories, we show the seasonal evolution

of SIE covered by different SIT fromMME and PIOMAS (Figure 3),

using the same SIT category boundaries from Hunke and Elizabeth

(2014) and Kumar et al. (2021): 0-0.6 m, 0.6-1.4 m, 1.4-2.4 m, 2.4-

3.6 m, and > 3.6 m. Overall, the SIE difference between MME and

PIOMAS was very small, with biases of less than 1.0×106 km2

throughout the year. The ice thickness category with a range of 1.4-

2.4 m (purple bars) had the largest bias in the first three months of
Frontiers in Marine Science 04
the year (Figure 3B). In both the MME and PIOMAS, we can also

see that the fraction of sea ice coverage was dominated by ice with a

thickness ranging from 1.4 m to 2.4 m in most months except April,

May, and June, which were characterized by thicker ice, between 2.4

m and 3.6 m (Figure 3A). The percentage of ice thickness greater

than 3.6 m was the smallest among the five SIT categories

(Figure 3A), and the bias between MME and PIOMAS was also

the smallest (Figure 3B) implying that the MME model represents

the SIE of thick ice well. For thin ice of less than 0.6 m, we can see

that the biases between MME and PIOMAS were also very small in

all months (Figure 3B). This suggests that the MME can also

represent the SIE of thin ice well.
B

A

FIGURE 3

(A) Monthly mean SIE covered by different SIT categories from MME (solid line) and PIOMAS (dashed line) from 1980 to 2014. (B) Absolute values
(bars) of SIE differences between MME and PIOMAS and the bias in percent of SIE differences relative to PIOMAS SIE.
BA

FIGURE 2

(A) Monthly climatological mean sea ice extent in the Arctic Ocean from NSIDC (black line), MME (red line), and PIOMAS reanalysis (blue line) from
1980 to 2014. (B) Monthly climatological mean sea ice thickness in the Arctic Ocean from PIOMAS reanalysis (red line), and CS2SMOS observations
(black line) from 2011 to 2022. The orange and green lines indicate the sea ice thickness from PIOMAS and MME, averaged from 1980 to 2014. The
green shading denotes the ensemble spread in the CMIP6 models.
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3.2 Spatial distributions of SIT

To investigate the spatial distribution of SIT in March and

September in the Arctic Ocean, we plotted the SIT averaged from

1980 to 2014 from the PIOMAS and CMIP6 models. As shown in

Figures 4A, B, most regions of the Arctic Ocean are covered by sea

ice during the winter. The ice-covered area in the MME is larger

than that in the PIOMAS (purple lines), particularly in the Bering

Sea, Baffin Sea, Greenland Sea, and Barents Sea, where the ocean is

covered by thin new ice with SIT less than 0.5 m. This result is

consistent with a previous study by Li et al. (2021). Compared to

SIT in PIOMAS, the MME SIT is much larger in the Chukchi Sea,

the Beaufort Sea, and the central Arctic, but smaller in the

Greenland Sea (Figure 4C), with differences greater than 1 m in

some regions. The thin new ice melts during the summer season

(Figures 4D, E), so we can see the sea ice retreat in the Bering Sea,

Chukchi Sea, Barents Sea, Greenland Sea, and Baffin Sea. As a result,

most regions in the Arctic Ocean are covered by thick ice with a SIT

greater than 0.5 m. The sea ice areas between PIOMAS and MME

are very similar, but there is more sea ice in the Kara Sea in

PIOMAS than in the MME. The SIT in the central Arctic is much

larger in PIOMAS than in MME, but it is smaller in the other ice-

covered regions (Figure 4F).

Due to the sea ice melting and refreezing in the Arctic Ocean,

the interannual variability of SIT varies in different regions. To

examine the difference in the interannual variability of SIT between

PIOMAS and MME, we present the spatial distributions of the

variance of the annual mean SIT (Figure 5). The variances of the

annual mean SIT in PIOMAS are very small in most of the Arctic

Ocean, except for the Canadian Archipelago and East Siberia

(Figure 5A). The variances of the annual mean SIT in MME have
Frontiers in Marine Science 05
a similar pattern to PIOMAS (Figure 5B), but with larger variances

along the east coast of Greenland, implying that the SIT in CMIP6

models has larger interannual variability around this region.

Additionally, we also show the variances of the mean SIT during

the sea ice growth and melting seasons. Regions with strong

interannual variability of SIT in March (Figures 5C, D) and

September (Figures 5E, F) are similar to those in Figures 5A, B

but with much larger amplitudes. The interannual variability of SIT

in PIOMAS is stronger than that in the MME during these

two seasons.

We further show the linear trends in SIT between 1980 and

2014 in the winter (Figures 6A, B) and summer (Figures 6C, D)

seasons. We observe decreasing trends in SIT over the whole Arctic

Ocean in all seasons, which is consistent with previous studies

(Kwok et al., 2013; Tilling et al., 2019). Compared to the March SIT

trends in PIOMAS (Figure 6A), we can also see negative trends

along the eastern coast of Greenland and the Baffin Sea in the MME

(Figure 6B). The areas with negative trends retreat in September,

but the decreasing trends are much larger (Figures 6C, D),

particularly in PIOMAS. As there is some thin sea ice from the

MME along the eastern coast of Greenland in September

(Figure 4E), we can still see negative trends of SIT in the

MME (Figure 6D).

As shown in Figure 7, the climatological mean SIT in PIOMAS

between 1980 and 2014 was 1.61 m, with an STD of 0.22 m. The

largest SIT could be found in the SAM0-UNICON model, which

reached 3.13 m. NESM3 had the smallest SIT, with a value of 1.03

m. This indicates that SAM0-UNICON and NESM 3 had the largest

model biases in the climatological mean SIT over the Arctic Ocean

compared to PIOMAS (blue bars). The same model biases could

also be found in the mean SIT for March (orange bars) and
B C

D E F

A

FIGURE 4

Spatial distributions of SIT averaged between 1980 and 2014 from (A) PIOMAS and (B) MME in March, and (C) the differences between PIOMAS and
MME. The purple lines in (A) and (B) indicate the ice edge (SIC of 15%) from PIOMAS and MME, respectively, while the yellow lines indicate the ice
thickness of 0.5 m. (D-F) Same as (A-C), but for September.
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September (gray bars). However, the model biases between

PIOMAS and the 12 CMIP6 models were smaller in September

than in March, suggesting that the CMIP6 models performed better

in the sea ice melt season than in the sea ice growth season.

We then compared the monthly mean SIT between the

PIOMAS and CMIP6 models. The monthly mean SIT of MME

and PIOMAS peaked in May, and they decreased during the sea ice

melt season, with a minimumMME SIT in August and a minimum

PIOMAS SIT in October (Figure 8A). The monthly mean SIT
Frontiers in Marine Science 06
differences between MME and PIOMAS were within 0.10 m, which

occurred in summer (June-September). Compared to PIOMAS, the

SAM0-UNICON model had the largest SIT difference, which was

1.41 m in October and 1.06 m for the entire 12 months. The SIT

difference between the FIO-ESM-2.0 model and PIOMAS averaged

over 12 months was only 0.004 m, suggesting that this model

performed the best in seasonal cycles among the 12 CMIP6 models.

At interannual time scales, we found decreasing SIT trends and

interannual variability in PIOMAS and all CMIP6 models from
B

C D

E F

A

FIGURE 5

Spatial distributions of the variance of the annual mean SIT between 1980 and 2014 from (A) PIOMAS and (B) MME. (C, D) and (E, F) same as
(A, B), but for March and September, respectively.
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1980 to 2014 (Figure 8B), consistent with previous studies (Cavalieri

and Parkinson, 2012; Bindoff et al., 2019). The annual mean MME

showed consistent variability with PIOMAS, with differences of less

than 0.28 m. Among the 12 CMIP6 models, the SAM0-UNICON

had the largest positive bias compared to PIOMAS, with a value of

1.28 m in 1985, and the NESM 3 model had the largest negative

bias, -0.65 m, in 1997. Overall, the FIO-ESM-2.0 model had the

smallest difference of 0.11 m over the whole period between 1980

and 2014, which was the best simulation of the annual mean SIT.

The differences between MME and PIOMAS in March and

September and the annual mean from 1980 to 2014 were within

0.4 m (Figure 8C). The smallest differences occurred between 1990

and 2010, which were less than 0.15 m. We could also find

decreasing trends in the differences between MME and PIOMAS,

which indicates that the performance of CMIP6 models has

improved over the past decades.

Figure 9 shows the simulation skills of the CMIP6 models. We

found that most models have correlation coefficients of 0.8-0.9 and

CRMSEs of 0.3-0.9 m. The correlation coefficients in almost all

CMIP6 models were larger than 0.8, except the SAM0-UNICON
Frontiers in Marine Science 07
model, which had a correlation coefficient of 0.7. The MME showed

the highest correlation with PIOMAS, with a correlation coefficient

of 0.93 (above the 95% significance level). Additionally, the CRMSE

of the MME was the smallest among all CMIP6 models, with a value

of 0.37. The SAM0-UNICON and CESM2-WACCM had CRMSE

greater than 0.75, implying large biases in these two models. It was

also shown that the NorESM2-MM model had the smallest

variability, but the SIT variability in CESM2-WACCM was the

highest. These results further demonstrate that the SAM0-

UNICON model performs worse than the other CMIP6 models

shown in Figures 7, 8, suggesting that it is necessary to use the MME

results to better represent the sea ice evolution in the

CMIP6 models.
4 Discussion and conclusion

In this study, we evaluated the SIT simulation in 12 CMIP6

models using satellite observations and PIOMAS reanalysis. We

assessed not only the mean state, seasonal cycle, and spatial
B

C D

A

FIGURE 6

Spatial distributions of (A) PIOMAS and (B) MME SIT trends between 1980 and 2014 in March. (C, D) same as (A, B), but for September.
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distributions of SIT but also the intercomparison of SIT simulations

in 12 CMIP6 models. We found that the CMIP6 MME can well

represent the mean state and monthly cycle of SIT in the Arctic

Ocean. The variances of the annual mean SIT in PIOMAS are very

small in most of the Arctic Ocean. We also found decreasing trends

in SIT over the entire Arctic Ocean in all seasons. The CMIP6

models performed better in the sea ice melt season than in the sea

ice growth season. The FIO-ESM-2.0 model performed the best

among 12 CMIP6 models in seasonal cycles, but the SAM0-

UNICON model had the largest bias and performed worse than

the other CMIP6 models.
Frontiers in Marine Science 08
We chose 12 CMIP6 models with CICE components and

compared their performance in simulating the SIT in the Arctic

Ocean. Our results showed that the model performances vary in

different CMIP6 models, although with the same sea ice

component. Various factors can cause the SIT biases in CMIP6

models. On the one hand, the bias can originate from the CICE

model, e.g., the version of the CICE model, the uncertainty of the

subgrid-scale ice thickness distributions and ice thickness

categorization, etc. (Urrego-Blanco et al., 2016; Wang et al.,

2020). On the other hand, the CICE model is coupled with ocean

and atmosphere models that transfer heat, salt, and momentum
B

CA

FIGURE 8

Monthly (A) and annual (B) climatological mean SIT in the Arctic Ocean between 1980 and 2014. (C) Monthly evolution of the difference between
MME and PIOMAS from 1980 to 2014 in March (black line), September (red line), and the annual mean (blue line). The dashed lines indicate the
corresponding linear trends.
FIGURE 7

Sea ice thickness averaged between 1980 and 2014 from CMIP6 models and PIOMAS reanalysis. The blue, orange, and gray bars indicate the
climatological mean SIT over the entire period, in March and September, respectively. The horizontal dashed lines denote the corresponding MME
mean SIT. Error bars indicate significance at the 95% confidence level.
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fluxes to the ice model (Kumar et al., 2021; Yu et al., 2022). Biases

from unrealistically simulated surface air and ocean temperature, 10

m winds, snowfall/depth, and surface albedo or coarse spatial

resolution can also affect the SIT simulation in the CICE model

(Crawford et al., 2023). Our study shows which combination of

CICE, ocean, and atmosphere models in CMIP6 is the best, which

will be beneficial for the development of the next generation of

CMIP models with a CICE component.

In addition to the CICE components, there are also other sea ice

model components in CMIP6, such as FESOM, SIS2, LIM3, GFDL,

GISS SI, NEMO-LIM3, COCO 4.9, and MPIOM 1.63. Although

previous studies have evaluated the SIT simulations in FESOM,

LIM3, and NEMO-LIM3 (Pemberton et al., 2017; Semmler et al.,

2020; Tian et al., 2021), our understanding of the SIT simulations in

the other sea ice models is limited. Therefore, further investigations

are needed to assess the SIT simulations in the CMIP6 models with

the other sea ice model components.

As shown in Figures 4–6, the biases, variability, and trends of

SIT vary in different subregions. Previous studies have shown

different changes in SIT and SIE in the Arctic Ocean. For

example, the edge of the seasonal Arctic sea ice is constantly

retreating toward the central Arctic under global warming,

resulting in a decrease in SIE (Meier et al., 2007). SIT also

decreased by 36% in the western and central Arctic from the

1980s to the early 2000s (Kwok and Rothrock, 2009). The

decrease in SIT will further reduce sea ice cover and increase the

area of the open ocean (Park et al., 2015). The decreasing rate of SIE

is the largest in the Beaufort and Chukchi Seas, with values of

0.36×105 km2/year (Hu et al., 2022). Our results show that the

decreasing trends of SIT vary in different subregions of the Arctic

Ocean. However, our understanding of SIT simulations in CMIP6

models with CICE components in these subregions is limited and

needs further evaluation.
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FIGURE 9

Taylor diagrams displaying statistical comparisons of monthly mean SIT over the Arctic Ocean from January 1980 to December 2014 between
different models and PIOMAS. The blue, green, and gray lines represent the correlation coefficient, normalized centered root mean square errors,
and standard deviations, respectively. PIOMAS is indicated with the red dot.
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