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Bivalves and microbes: a
mini-review of their relationship
and potential implications for
human health in a rapidly
warming ocean
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Yuewen Deng1 and Liqiang Zhao1,2*

1Fisheries College, Guangdong Ocean University, Zhanjiang, China, 2Guangdong Provincial Key
Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University,
Zhanjiang, China
Heatwaves have become increasingly frequent and intense, posing a significant

threat to the survival and health of marine bivalves. The temperature fluctuations

associated with heatwaves can cause significant alterations in the composition

and quantity of microbial communities in bivalves, resulting in changes to their

immunological responses, gut microbiome, oxidative stress levels, and other

physiological processes and eventually making them more susceptible to

diseases and mass mortalities. This is particularly concerning because some of

these bivalves are consumed raw, which could represent a risk to human health.

This paper provides an overview of the current state of knowledge regarding the

impact of marine heatwaves on bivalves and their microbial communities,

demonstrating the intricate relationship between heatwaves, microbial

ecosystems, and bivalve health. Our analysis highlights the need for additional

research to establish the underlying mechanisms of these reactions and to

develop appropriate conservation and management strategies to limit the

impact of heatwaves on bivalves and their microbial ecosystems.

KEYWORDS
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1 Introduction

Marine heatwaves have been widely recognized as one of the most significant drivers of

change in the marine environment in recent years (Oliver et al., 2018). These heatwaves,

defined as prolonged and intense periods of elevated water temperature, have become more

frequent and intense with global warming, leading to severe impacts on the marine
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ecosystem (Frölicher et al., 2018; He et al., 2022a; Xu et al., 2022).

One of the areas of particular concern is the effect of marine

heatwaves on bivalve microbial communities, which are an

essential component of the marine ecosystem and play a critical

role in maintaining its stability and health. The diversity of

microbial communities in bivalves has been extensively

studied recently.

A growing body of literature demonstrates the presence of

various bacteria, archaea, and eukaryotic microorganisms

(Haygood et al., 1999; Fiore et al., 2010; Robledo et al., 2019).

Bivalves harbor a diverse community of bacteria, including

Proteobacteria, Firmicutes, and Bacteroidetes. Vibrionaceae,

Pseudomonadaceae, and Flavobacteriaceae families (Leite et al.,

2017; Akter et al., 2022). The structure of microbial communities

in bivalves is highly variable, with different regions of the bivalve’s

body harboring distinct microbial communities. For example, the

gills of clams contained a different microbial community than the

digestive tract, with the gills being dominated by Proteobacteria and

the digestive tract being dominated by Firmicutes (Zhang et al.,

2016). Similarly, the gut of mussels contained a different microbial

community, with the gut being dominated by Bacteroidetes and the

gills being dominated by Proteobacteria (Musella et al., 2020). The

function of microbial communities in bivalves is not well

understood. However, recent studies have suggested that they

play essential roles in the survival and growth of these organisms.

For example, the microbial communities Vibrio, Bacteroides, and

Pseudomonas in oysters play a crucial role in the digestion of food,

including the breakdown of complex carbohydrates and the

production of essential amino acids (Pierce and Ward, 2019).

Similarly, the microbial communities Gammaproteobacteria, and

Alphaproteobacteria in mussels play crucial roles in detoxifying

pollutants, including heavy metals and organochlorines (Milan

et al., 2018; Wang et al., 2020). In recent years, the effects of

marine heatwaves on the bivalve microbial communities have

become a focus of scientific research. This is because the microbes

present in these bivalve mollusks play an essential role in the health

and survival of the host and are thought to play a significant role in

mediating the effects of heat waves on the bivalve mollusks (Ertl

et al., 2016).

Mortality events affecting adult and juvenile bivalves have been

reported throughout history (Jones et al., 2017; Alfaro et al., 2019).

These events have been observed across all ages and production

stages (Lattos et al., 2020; Soon and Zheng, 2020), some attributed

to pathogens favored by temperature increase. One such disease

affecting farmed Pacific oysters on the West Coast is the Protistan

parasite Mikrocytos mackini (Denman Island Disease), firstly

reported in the 1960s on Vancouver Island and has resulted in

mortality events (Sweet and Bateman, 2016; Garcia et al., 2018). In

addition, another parasite, Haplosporidium nelsoni, was associated

with mortality events in Crassostrea virginica in 2007 (Matt

et al., 2020).

However, despite the growing interest in this area, a

comprehensive review of the existing research is yet to be

conducted. This review paper aims to provide a comprehensive

overview of the current state of knowledge on the effects of marine
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heatwaves on bivalve microbial communities. To do this, we

conducted a thorough literature search covering articles and

studies published in peer-reviewed journals, conference

proceedings, and technical reports. The review paper will provide

valuable insights into the current understanding of the effects of

heatwaves on the bivalve microbial communities. It will inform

future research efforts and potential human health risks via bivalve

consumption. The results of this review will also have important

implications for the management and conservation of marine

ecosystems, as well as for developing mitigation strategies to deal

with the impacts of these heat waves on bivalves.
2 Bivalve microbiome

The microbiome of bivalves consists of a diverse community of

microorganisms, including bacteria, viruses, and fungi (Rey-

Campos et al., 2022). The bacterial community is the most well-

studied component of the bivalve microbiome. It plays a critical role

in host health and disease (Figure 1). The composition of the bivalve

microbiome can vary significantly depending on several factors,

including habitat, water quality, and host species (Paillard et al.,

2022). Bivalves inhabit a wide range of aquatic habitats, from

freshwater streams to deep-sea hydrothermal vents (Zgouridou

et al., 2022). The microbiome of bivalves is known to vary

depending on the habitat in which they are found. For example,

bivalves that inhabit polluted waters may have a different

microbiome than those found in unpolluted waters (Martinez-

Colon et al., 2009). Similarly, bivalves that live in close proximity

to hydrothermal vents may have a different microbiome, such as

Methanoperedens and Endoriftia, found in the gill tissue of the

hydrothermal vent mussel Bathymodiolus thermophilus, which

cannot be found in other marine environments (German et al.,

2011; Smith and Wrighton, 2019; Lee D. Y. et al., 2021).

Water quality is an essential factor that can influence the

microbiome of bivalves. A range of factors, including pollution,

nutrient enrichment, and changes in temperature and salinity, can

influence the quality of the water. Studies have shown that changes

in water quality can lead to changes in the composition of the

bivalve microbiome (Bentzon-Tilia et al., 2016; Michan et al., 2021).

For example, bivalves living in nutrient-rich waters may have a

different microbiome than those in nutrient-poor waters (Pusch

et al., 1998; Bang et al., 2018). The microbiome of bivalves can also

vary depending on the host species. Different bivalve species may

have different requirements for their microbiome, which can result

in differences in the microbiome composition (Vezzulli et al., 2018;

Pierce and Ward, 2019). For example, some bivalve species may

require specific bacteria to aid in the digestion of their food, such as

Spirochaetes in clams; these bacteria are involved in the breakdown

of complex carbohydrates (Harwood and Canale-Parola, 1984). In

contrast, other species may require different bacteria to help with

other aspects of their physiology.

The microbiome of bivalves is thought to play an essential role

in host health and disease. The bacterial component of the bivalve

microbiome is known to be involved in a range of functions,
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including digestion, nutrient cycling, and immune defense (Pierce

and Ward, 2018; Timmins-Schiffman et al., 2021). Studies have

shown that some bacteria in the bivalve microbiome produce

antimicrobial compounds that help protect the host from

pathogens (Destoumieux-Garzón et al., 2020; Balbi et al., 2021).

Additionally, certain bacteria in the bivalve microbiome are

associated with increased resistance to disease. Bacteroidetes and

Rhizobiales exemplify this (Dubé et al., 2019). These bacteria

produce enzymes that break down complex carbohydrates and

have been shown to contribute to the immune response of

bivalves. The microbiome of bivalves is also involved in nutrient

cycling, an essential process for maintaining healthy ecosystems

(Moruf et al., 2020). Additionally, the bivalve microbiome can play

a role in transferring pathogens between different organisms in the

ecosystem (Paillard et al., 2022).
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3 Role of bivalve-microbe symbioses
in mediating heatwave effect

Heatwaves are a frequent and growing problem in many parts

of the world due to the effects of climate change (He et al., 2022b).

These extreme weather events can devastate marine and freshwater

ecosystems, leading to declines in biodiversity and changes in

ecosystem function (Smale et al., 2019). In recent years, the study

of bivalve-microbe symbioses has become increasingly important in

understanding how these organisms can mediate the effects of

heatwaves on aquatic ecosystems. The microbiome of bivalves has

important implications for the ecology of aquatic ecosystems.

Bivalves are filter feeders that can remove large amounts of

organic matter from the water column, which can help to

improve water quality. Bivalves and microbes are critical to water
A

B

FIGURE 1

Microbial Community composition of each sample type by phylum and order. (A) Showing the relative abundance of each taxonomic group >1% of
the total for mussel gut, oyster gut, aggregate, and aggregate-free seawater (AFSW) samples, categorized by phylum. Colors correspond to different
phyla, as indicated in the legend. (B) Showing the relative abundance of each taxonomic group >1% of the total for each sample type, categorized by
order. Colors correspond to different orders, as indicated in the legend. Data were obtained from (Pierce and Ward, 2019).
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quality management as they are essential in maintaining the balance

of dissolved oxygen, pH, and nutrient levels (Zhou et al., 2009;

Mohapatra et al., 2013). This balance is essential for aquatic

organisms’ survival and helps mitigate the adverse effects of

heatwaves on these ecosystems (Table 1).

Microbes such as Pseudomonas and Aspergillus play a critical

role in decomposing organic matter in water (Zhou et al., 2009),

which releases nutrients essential for the growth of aquatic plants

and animals. During heatwaves, the decomposition of organic

matter can accelerate, increasing nutrient levels that can cause

harmful algal blooms and other adverse effects on water quality.

However, some types of bacteria and fungi can also help break down

harmful substances in the water, such as pollutants and toxins,

improving water quality and protecting aquatic life (Chaturvedi

et al., 2015). By regulating nutrient and toxin levels, microbes help

to maintain the delicate balance of water quality that supports

healthy aquatic ecosystems (Hlordzi et al., 2020).

One of the most critical roles of bivalve-microbe symbioses in

mediating the effects of heatwaves is heat stress protection (Turner

et al., 2016). During heatwaves, bivalves can experience thermal

stress that can damage their tissues and impair their physiological

functions (Masanja et al., 2022; Liu et al., 2023). However, some

species of bivalves have been found to host microbial communities

that protect against heat stress. For example, the bivalve Crassostrea

virginica and Mytilus coruscus have been found to harbor a diverse

and stable microbial community such as Vibrio spp, Rhizobiales,

Endozoicomonas that can protect the host from thermal stress by

producing compounds that act as heat shock proteins, chaperones

and antioxidants (Lokmer and Mathias Wegner, 2015; Li et al.,

2018). Bivalves rely on microbes for the acquisition of essential

nutrients, such as nitrogen and phosphorus, which are often limited
TABLE 1 Summarizes the diverse beneficial functions performed by microbia

Microbe Function

Bacillus spp. Bacillus sp. is a beneficial bacterium in bivalves, which helps imp
enhance immune response.

Flavobacterium
spp.

Flavobacterium spp. is beneficial bacteria in bivalves that helps im

Marinobacter spp. Marinobacter sp. is a beneficial bacterium in oysters, which help
pathogen load.

Pseudoalteromonas
spp

Pseudoalteromonas sp. is a beneficial bacterium in clams, which

Planococcus spp Planococcus sp. is a beneficial bacterium in clams, which helps im

Rhodobacteraceae
spp

Rhodobacteraceae sp. is a beneficial bacterium in bivalves, which
response.

Roseobacter spp Roseobacter denitrificans is a beneficial bacterium in oysters that
metabolism.

Shewanella spp Shewanella colwelliana is a beneficial bacterium in mussels, whic

Vibrio spp Vibrio tubiashii is a beneficial bacterium in Pacific oysters, whic

These functions include nutrient cycling, waste removal, pathogen suppression, and production o
each part. Overall, this review emphasizes the critical role of bivalve-associated microbial commu
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in their environment. During heatwaves, the availability of these

nutrients can be further reduced, which can have adverse effects on

bivalve growth and survival. However, some species of bivalves have

been found to host microbial communities that can increase the

availability of nutrients during heatwaves. For example, the bivalve

Mercenaria mercenaria has been found to host a diverse microbial

community, Rhizobiales and Planctomycetes, that can increase

nitrogen availability during heatwaves by fixing atmospheric

nitrogen (King et al., 2019; Soon and Zheng, 2020).

Bivalves rely on their immune system to defend against

pathogenic microbes and other harmful agents (Rahman et al.,

2019). However, during heatwaves, the immune system can be

impaired, increasing the susceptibility of bivalves to disease

(Nascimento-Schulze et al., 2021). Some species of bivalves have

been found to host microbial communities that can enhance the

host’s immune defense during heatwaves (Allam and Espinosa,

2016). For example, bivalves have been found to harbor

Vibrionaceae and Rhodobacteraceae that can produce antimicrobial

compounds that can protect the host from pathogenic bacteria during

heatwaves (Leite et al., 2017; Baden et al., 2021; Scanes et al., 2021b).

Bivalves are critical in carbon cycling in aquatic ecosystems

(Hakenkamp and Palmer, 1999). However, their ability to do so

can be influenced by heatwaves. During these extreme weather

events, bivalves may experience changes in feeding behavior and

metabolism (Liu et al., 2023), which can ultimately affect their

contribution to carbon cycling. Despite these challenges, some

species of bivalves have been found to host microbial communities

that can enhance their ability to participate in carbon cycling during

heatwaves. For instance, studies have shown that bivalves host a

microbial community of planctomycetes that can enhance the host’s

ability to assimilate and recycle organic matter during heatwaves
l communities associated with bivalves.

References

rove nutrient absorption, reduce ammonia toxicity, and Nayak, 2021

prove digestive enzyme activity and nutrient uptake. Mi et al., 2022

s in improving the immune response and reducing Clerissi et al., 2020

helps in improving growth and survival rate. Laroche et al., 2018

prove growth and reduce the mortality rate. Pushparaj et al.,
2022

helps reduce pathogen load and improve immune Wan-Mohtar et al.,
2022

helps in the detoxification of pollutants and nitrogen Collins, 2014

h helps reduce heavy metal toxicity and improve growth. Pavan et al., 2020

h helps in improving the immune response. Rajeev et al., 2021

f essential metabolites. The table also highlights the specific microbial taxa that contributed to
nities in promoting the health and productivity of bivalves and their surrounding ecosystems.
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(Doni et al., 2023). Another example of a bivalve species that can

benefit from microbial communities is the giant clam Tridacna

maxima. This bivalve has been found to host symbiotic algae,

which can increase the clam’s photosynthetic capacity and carbon

uptake even during periods of high-temperature stress (Soo and

Todd, 2014).

Overall, understanding the complex relationships between

bivalves, their microbial communities, and the carbon cycle is

critical for accurately predicting the impacts of climate change on

aquatic ecosystems. Bivalves are known for their ability to produce

calcified structures, such as shells, that are important for their

survival and ecology (Ysebaert et al., 2019). However, the

biomineralization process can be affected by heatwaves (He et al.,

2022a), which can alter these structures’ chemical and mechanical

properties. Some species of bivalves have been found to host

microbial communities that can enhance the process of

biomineralization during heatwaves. The bivalve Crassostrea gigas,

commonly known as the Pacific oyster, has been found to harbor a

diverse and stable microbial community that can regulate the

chemical composition of the shell and enhance its mechanical

properties during heatwaves (Lokmer et al., 2016).
4 Bivalve microbial community
changes due to heatwave events

Heatwaves have been found to alter the microbial diversity of

bivalve communities (Green et al., 2019; Alma et al., 2020).

Changes in microbial interactions due to heatwaves have been

found to alter the interactions between bivalve microbial

communities and their hosts (Scanes et al., 2021). A decrease in

symbiotic relationships and an increase in pathogenic relationships

have been observed, suggesting a shift from a mutualistic to a

parasitic interaction (Willing et al., 2011). This may be due to

changes in the microbial community structure and function in

response to heatwave events. Heatwaves have been found to alter

the transport of nutrients and organic matter in bivalve microbial

communities (Wetz and Yoskowitz, 2013). An increase in nutrient

uptake and a decrease in organic matter export have been

observed, suggesting a shift from a source to a sink (IPCC, 2018).

This adaptation may be an attempt to maintain energy balance and

avoid thermal stress. Heatwaves have been found to alter the

production of toxins by bivalve microbial communities

(Zgouridou et al., 2022). An increase in toxin production has

been observed, potentially as a response to increased

competition and changes in microbial interactions. This

adaptation may threaten the health of the bivalve host and the

surrounding ecosystem.

Heatwaves have been found to alter the aggregation of bivalve

microbial communities (Neu et al., 2021). An increased aggregation

has been observed, potentially as a response to increased

competition and changes in microbial interactions. This

adaptation may affect the transport and processing of nutrients

and organic matter in the bivalve microbial community (Paillard

et al., 2022).
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5 Ocean warming and the emergence
of bivalve food poisoning

Seawater and bivalve hosts may harbor pathogenic

microorganisms that significantly threaten human health

(Table 2). These microorganisms can survive and reproduce

under specific physiochemical conditions (Chahouri et al., 2022).

Bivalve shellfish is a popular food source worldwide, with

consumption reported across all five continents, as documented

by the United Nations Food and Agricultural Organization (FAO,

2000). Despite its popularity, only a few nations, precisely 12, have

recorded instances of bivalve-associated illnesses. These cases are

distributed evenly across the continents, with four countries from

Europe, Asia, North America, and Australia each reporting

outbreaks. Among these, the largest-ever recorded outbreak

occurred in Shanghai, China, in 1988, affecting 290,000

individuals infected with hepatitis A after consuming clams (Tang

et al., 1991). This outbreak is particularly noteworthy for the high

number of deaths it caused, with 47 fatalities recorded. Additionally,

three other significant outbreaks of bivalve-associated illnesses were

documented in Australia in 1979, the United States in 1986, and

Japan in 1991, involving over 800 patients in each case (Murphy

et al., 1979; Morse et al., 1986; Otsu, 1999).

Escherichia coli strains, including Shiga toxin-producing ones,

can cause severe symptoms, such as stomach cramps, vomiting, and

bloody diarrhea (Cabrera-Sosa and Ochoa, 2020; Vishram et al.,

2021; Butt et al., 2022). Research shows that increased temperatures

can modify E. coli gene expression, leading to the emergence of

more hazardous strains (Kinghorn et al., 2002; Chung et al., 2006;

Kumar and Libchaber, 2013). Studies on temperature adaptation

indicate that mutations in genes that affect cellular processes can

enhance E. coli’s fitness at elevated temperatures (Hirota et al., 1970;

Rudolph et al., 2010). Salmonella is another pathogen that can cause

gastroenteritis, leading to severe dehydration, especially in children

and the elderly (Dennehy, 2005; Barrett and Fhogartaigh, 2017).

While large outbreaks of Salmonella make headlines, most cases go

undiagnosed and are not part of any known outbreak. Salmonella

infections result in an estimated 93.8 million cases of gastroenteritis

and 155,000 deaths globally every year (Moura et al., 2018; Gong

et al., 2022).

It is vital to comprehend the factors that can influence the

emergence and spread of these pathogenic microorganisms to

prevent future outbreaks and safeguard public health. Studies

consistently show that the incidence of Salmonella infection is

positively associated with higher ambient temperatures (Yun

et al., 2016; Wang et al., 2018). This is likely because warmer

temperatures facilitate more rapid bacterial replication, increasing

infection rates. In South Korea, 17,638 cases of the Hepatitis A virus

were reported (Lee D. Y.et al., 2021; Jeong et al., 2021); the primary

source was Jogaejeot, seasoned Venerupis philippinarum, a

traditional fermented food of Korea, and Jogaejeot is eaten raw.

According to the Korean Centers for Disease Control and

Prevention (KCDC), theHepatitis A virus resists high temperatures.

Therefore, it is associated with considerable risk during times of

ocean warming. Ocean warming has been identified as a significant
frontiersin.org
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factor in the emergence of bivalve food poisoning caused by harmful

microbes. As ocean temperatures continue to rise, the distribution

and abundance of these harmful microbes in bivalve populations may

increase, leading to a greater risk of foodborne illness for humans who

consume contaminated seafood. Therefore, continued monitoring of

ocean temperatures and the presence of harmful microbes in bivalve

populations is necessary to mitigate the potential health risks

associated with consuming contaminated seafood.
6 Conclusion and implications for
bivalve aquaculture and coastal
ecosystem health in a
changing climate

In conclusion, this scientific review paper highlights the

significant impacts of heatwaves on bivalve microbial

communities and their implications for both bivalve and human

health. The review demonstrates that heatwaves have the potential

to alter the composition and diversity of microbial communities

within bivalves, leading to changes in nutrient cycling,

metabolism, and immune function. These alterations can

ultimately impact bivalve health and may have implications for

human health through the consumption of contaminated

shellfish. The evidence presented in this review suggests that

heatwaves may increase harmful bacteria and toxins in bivalves,

including Vibrio spp. and norovirus, which have been associated

with foodborne illness outbreaks. Furthermore, the impacts of

heatwaves on bivalve microbial communities may exacerbate
Frontiers in Marine Science 06
existing stressors on bivalve populations, including pollution

and habitat destruction, further threatening bivalve health and

ecosystem resilience.

Therefore, further research is needed to understand better the

complex interactions between heatwaves, bivalve microbial

communities, and human health. This research should improve

our understanding of the underlying mechanisms driving changes

in microbial community composition and function and the

implications for bivalve and human health. Overall, this review

emphasizes the urgent need for action to address the impacts of

heatwaves on bivalves and their associated microbial communities.

This includes efforts to mitigate the effects of climate change, reduce

pollution, and protect critical bivalve habitats. Such actions are

critical not only for the health of bivalve populations and the

ecosystems they support but also for the health and well-being of

human populations that rely on these valuable shellfish as a source

of food and nutrition.
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TABLE 2 Provides a summary of harmful microbial communities identified in various bivalve species, including bacteria, viruses, and parasites.

Microbe Function References

Campylobacter Campylobacter is a bacterium that can cause diarrhea, cramping, and fever and can be transmitted through contaminated
bivalves.

Pereira et al.,
2021

Clostridium
botulinum

Clostridium botulinum is a bacterium that produces a powerful toxin that can cause botulism, a potentially life-threatening
illness that contaminated bivalves can transmit.

Ziarati et al., 2022

Escherichia coli Escherichia coli is a bacterium that can cause severe diarrhea and other symptoms and can be transmitted through
contaminated bivalves.

Leoni et al., 2017

Hepatitis A virus Hepatitis A virus can cause liver inflammation and is associated with contaminated bivalves. Jeong et al., 2021

Listeria
monocytogenes

Listeria monocytogenes is a bacterium that can cause severe illness, particularly in pregnant women and people with weakened
immune systems, and can be transmitted through contaminated bivalves.

Bintsis, 2017

Norovirus Norovirus is a virus that can cause vomiting and diarrhea and is commonly associated with bivalve shellfish such as clams and
mussels.

Wright et al.,
2018

Salmonella Salmonella is a bacterium that can cause diarrhea, fever, and abdominal cramps and can be transmitted through contaminated
bivalves.

Gökoğlu and
Gökoğlu, 2021

Shigella Shigella is a bacterium that can cause diarrhea, fever, and abdominal cramps and can be transmitted through contaminated
bivalves.

Elbashir et al.,
2018

Vibrio
parahaemolyticus

Vibrio parahaemolyticus is a bacterium that causes human gastrointestinal illness and is commonly found in bivalves. Normanno et al.,
2006
The identified microbial communities and their associated health risks are described, highlighting their potential impact on human health and the bivalve aquaculture industry. The information
presented in the table serves as a valuable reference for researchers and policymakers seeking to understand better and mitigate the risks associated with harmful microbial communities in bivalves.
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