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Building a high-precision bathymetry digital elevation model is essential for

navigation planning, marine and lake resource planning, port construction, and

underwater archaeological projects. However, existing bathymetry methods

have yet to be effectively and comparatively analyzed. This paper

comprehensively reviews state-of-the-art bathymetry methods, including data

acquisition techniques, model accuracy, and interpolation algorithms for

underwater terrain mapping. First, We assess the merits and drawbacks of

novel data acquisition devices, such as single-beam/multi-beam echo

sounders and light detection and ranging systems. After that, we analyze the

accuracy of the ETOPO1, GEBCO_2022 and SRTM15 to provide valuable insights

into their performance. Furthermore, we evaluate ANUDEM, Inverse Distance

Weighting, Kriging and Nearest Neighbor interpolation algorithms in different

underwater terrains by comparing their applicability, reliability, and accuracy in

various underwater environments. Finally, we discuss the development trends

and challenges in underwater bathymetry technology and offer a forward-

looking perspective on the future of this essential field.
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1 Introduction

1.1 Background

A landform represents any physically discernible form and

features on Earth’s surface (Evans, 2012). Consequently, these

features can be depicted on topographic maps using elevation and

contour lines (MacMillan and Shary, 2009). Elevation data is

acquired point by point during field surveys, and contour lines

are generated following the processing of elevation points. Since the

1960s, land-based terrain surveying and mapping techniques have

evolved, with numerous observation satellites now capable of

providing elevation data at accuracies between 30m and 90m

(Chang et al., 2010). Unmanned aerial vehicles (UAVs)

employing aerial triangulation and automated image-matching

technologies facilitate the acquisition of point cloud data for

digital elevation models (DEMs) (Zongjian, 2008; Samad

et al., 2013).

Analogous to inland topography, seabed undulations constitute

vital information on maps, being indispensable for applications

including oceanographic research, hydrographic surveying, marine

habitat mapping, coastal zone management, and navigational

safety. Currently, three mainstream bathymetric methods prevail:
Fron
1. Ship-borne seabed topography is the most widely used

high-resolution topographic method. Platforms like

vessels, unmanned surface vehicles (USVs), and

autonomous underwater vehicles (AUVs) (Zongjian,

2008; Samad et al., 2013; Rossi et al., 2020) can

incorporate bathymetric equipment like single-beam and

multi-beam echo sounders (SBES and MBES) for

bathymetry. Multi-beam bathymetric technology is

becoming routine in oceanographic surveying, making

the point-and-line seabed topographic surveys have

evolved into planar, full-coverage operation modes

(Dunham et al., 2005; H Simons and Snellen, 2009;

Mohammadloo et al., 2020).

2. Airborne seabed topography primarily encompasses

airborne laser bathymetry (ALB) (Chen et al., 2003;

Guenther, 2007; Kinzel et al., 2013; Chowdhury et al.,

2017; Eren et al., 2018) and airborne synthetic aperture

radar (SAR) (Fan et al., 2008; Pereira et al., 2019). ALB is

well-suited for water depth measurements in offshore

shallow water areas, including nearshore, shallow seas,

islands, and reefs, with a minimum detection depth of

0.15 m and a maximum sounding depth of approximately

50 m. Airborne SAR technology is ideal for acquiring

surface information in non-ideal conditions such as

cloudiness and fog.

3. The spaceborne mode primarily comprises satellite-derived

bathymetry (SDB) (Chenier et al., 2018; Kim and Yun,

2018; da Silveira et al., 2020; Niroumand-Jadidi et al., 2020)

and satellite altimetry (SA) (Smith and Sandwell, 1994;

Smith and Sandwell, 1997; Ablain et al., 2017; Veng and

Andersen, 2021), facilitating the acquisition of a wide range
tiers in Marine Science 02
of bathymetric data with consistent quality. Large-scale

seabed topography can also be conducted by utilizing

satellite altimetry gravity anomalies and ship bathymetry

data or employing multispectral or SAR satellite remote

sensing images to construct inversion models
1.2 Challenges in underwater mapping

Accuracy and resolution are crucial factors in generating

reliable bathymetric digital elevation models (BDEMs). Many

factors can affect the models’ accuracy, such as the type of device,

the water depth, and the seabed topography. It is essential to

calibrate the device and use appropriate corrections to ensure the

accuracy of the model. Additionally, interpolation is vital in

enhancing the resolution of bathymetric maps, which can be

performed using kriging (Zhang et al., 2015) and inverse distance

weighting (IDW) techniques (Amante and Eakins, 2016). However,

the choice of interpolation method depends on the data

distribution, data density, and the intended application (Amante

and Eakins, 2016). In recent years, machine learning techniques

have also been employed to improve the accuracy of

bathymetric maps.
1. Environmental Factors: Various environmental factors can

impact the accuracy and reliability of bathymetric data,

including water clarity, turbidity, surface waves, currents,

and seafloor composition (Ernstsen et al., 2006; Stammer

et al., 2014; Rowley et al., 2020). These factors can cause

signal attenuation, scattering, or refraction, leading to

inaccuracies in the acquired data (Rowley et al., 2020).

2. Technological Limitations: Current bathymetric data

acquisition devices have resolution, coverage, and depth

penetration limitations. These limitations can result in the

incomplete or low-resolution mapping of certain areas,

particularly in complex or deep-sea environments.

3. Data Gaps and Inconsistencies: Bathymetric data is often

acquired from various sources using different devices,

leading to gaps and inconsistencies in the data. These

inconsistencies can result from variations in survey

methods, time periods, and data quality, making it

challenging to create seamless and accurate maps (Shu

et al., 2021).

4. Cost and Accessibility: Acquiring high-quality bathymetric

data can be expensive, especially for large or remote areas.

This can be a major barrier for researchers and

organizations with limited resources, resulting in a lack of

accessible data for certain regions (Sahafi, 2013; Bio et al.,

2020).

5. Integration of Heterogeneous Data: Integrating data from

different sources, such as satellite-derived bathymetry,

LiDAR, and acoustic measurements, can be challenging

due to differences in spatial resolution, data formats, and

accuracy levels. Developing robust methods to combine
frontiersin.org
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and harmonize these datasets is essential for generating

comprehensive maps.

6. Data Processing and Interpolation: The large volume of

data collected during bathymetric surveys often requires

extensive processing and interpolation to generate accurate

and reliable maps. Selecting appropriate interpolation

techniques and addressing data quality issues can be

challenging and time-consuming.
1.3 Objectives of the review

This study is motivated by the escalating demand for accurate,

high-resolution bathymetric data spurred by increased human

activities in coastal and deep-sea environments and the quest for

a more comprehensive understanding of complex marine

ecosystems. Recent technological advancements have fostered

significant progress in data acquisition devices and analytical

methods for processing and visualizing bathymetric data.

Nonetheless, challenges persist concerning data coverage,

resolution, accuracy, and integration of various data sources

and techniques.

This paper delivers a comprehensive review of cutting-edge

bathymetry methods, with a focus on recent advancements in data

acquisition devices and interpolation algorithms. By discerning the

strengths and limitations of these methods, comparing their

applicabil i ty and accuracy across various underwater

environments, and addressing challenges and future trends in

bathymetry, we aspire to contribute to the continued progress in

underwater terrain mapping. Additionally, we assess the accuracy of

three representative bathymetry models, scrutinizing factors that

influence their performance and reliability. This analysis will

facilitate the identification of areas for improvement, along with

trade-offs that must be considered when choosing a model for a

specific application.

Moreover, we assess the performance of four interpolation

algorithms, comparing their applicability, reliability, and accuracy

across diverse underwater environments. Interpolation is a crucial

step in processing bathymetric data and enables depth value

estimation in areas lacking direct measurements. Evaluating the

strengths and weaknesses of different interpolation techniques will

aid researchers and practitioners in choosing the most suitable

method for their requirements. Lastly, we investigate development

trends and challenges in underwater bathymetry technology,

providing a forward-looking perspective on this vital field’s

future. We address emerging technologies and explore the

potential of integrating multiple data sources and techniques to

generate more accurate and comprehensive bathymetric maps.

The rest of the paper is organized as follows. Section 2 provides

a comprehensive review of the state-of the-art bathymetry data

acquisition techniques, including single-beam echo sounders,

multi-beam echo sounders, LiDAR, and satellite-derived

bathymetry. Section 3 summarizes existing DEM interpolation

methods for enhanced resolution. Section 4 presents an in-depth

analysis of the accuracy of three bathymetry models and the factors
tiers in Marine Science 03
affecting their performance. In Section 5, we discuss four

interpolation algorithms and their applicability, reliability,

and accuracy in different underwater environments. Section 6

offers a critical comparison of our results with previous reviews,

highlighting the contributions and advancements made in the field,

and concludes the paper by summarizing the main findings,

discussing the future trends and challenges in underwater

bathymetry technology, and providing recommendations for

further research and development in this essential area. Finally,

Section 7 provides a conclusion of this paper.
2 Sensors for bathymetry

2.1 Single beam echo sounder (SBES)

As the sound wave signal reaches the seabed interface, most of

the energy generates a reflected signal that propagates back to the

transducer. This can be recorded by an SBES, which calculates the

seabed depth based on the propagation time of the acoustic pulse in

seawater and the speed of sound. Stringent on-site control is

necessary to acquire high-quality data and clear reflection images

(Eleftherakis et al., 2018; Popielarczyk, 2022). For instance, if the

transducer draft is too deep, it will be affected by secondary reflected

waves and may compromise the boat’s safety. On the other hand,

when the transducer draft is shallow, air bubbles and water splashes

produced by the carrier may generate substantial noise. This

reduction in the signal-to-noise ratio consequently degrades data

quality (Mopin et al., 2022).

Table 1 shows the key parameters of three popular SBESs.

Although SBES bathymetry surveys are simple and low-cost, they

have limitations (Yamasaki et al., 2017; Bandini et al., 2018). Large-

scale bathymetry surveys require precise depth measurements of

numerous adjacent points on the seafloor, enabling accurate

seafloor topography construction. To achieve this effectively, two

requirements must be met: (1) producing accurate depth

measurements corresponding to specific latitude and longitude

and (2) performing a large number of measurements within a

reasonable time frame. However, SBES falls short in both aspects,

providing low spatial resolution and limited survey area.

Two factors that influence the resolution of the BDEM are the

platform’s operating speed and SBES’s sampling interval, which can

be reduced by conducting surveys at a slow speed while following a

fixed route (Di Matteo and Milli, 2008). Typically, SBES is

performed along both vertical and horizontal routes to cover the

entire area. In a study by Bio et al. (2020), 22 sounding lines

perpendicular to the coastline and three diagonal control lines

separated by 350 meters were used to create bathymetry maps for

small water areas, showing that SBES is cost-effective and efficient.

However, SBES can only obtain bathymetric data for the planned

route, resulting in blank spaces that require interpolation.

The accuracy of the BDEM generated by SBES can be improved

by using smaller sampling intervals and denser survey routes.

However, the operating costs and survey time increase

significantly once the research area is enlarged. To address this

issue, multi-source data fusion is a solution (Eleftherakis et al.,
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2018). A study by da Silveira et al. (2020) combined multi-

resolution satellite images with SBES measurements to create

detailed bathymetry maps. Field data obtained from SBES was

used to calibrate the depth retrieval algorithm, improving the

accuracy of the bathymetry maps. Combining these two

technologies can meet the measurement accuracy requirements

and provide high-quality bathymetry maps for large areas,

including shallow regions with complex terrain.
2.2 Multi-beam echo sounder (MBES)

The limitations of SBES, including low resolution and extended

operating time, have driven the development of more sophisticated

and expensive MBES systems. Table 2 shows the parameters of

three MBES products. Key considerations must be taken into

account when using them for bathymetry tasks:
Fron
1. Sounding resolution: Sounding resolution refers to the

minimum interval between two adjacent target points that

MBES can distinguish in the three-dimensional direction of

the seabed space. This resolution determines the detection

ability of small underwater targets and complex terrain

(Ernstsen et al., 2006). Pulse width, ping sampling rate,

beam width, and speed are the primary factors affecting

multibeam bathymetry resolution (Dunham et al., 2005; H

Simons and Snellen, 2009; Mohammadloo et al., 2020).
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2. Accuracy: The International Hydrographic Organization

(IHO) has published regulations (IHO S-44) on accuracy in

bathymetric surveys. These regulations include sound

velocity refraction compensation, motion attitude

compensation, and tide level compensation. The surface

sound velocity meter can obtain the sound velocity profile

to provide accurate sound velocity refraction compensation

(Ernstsen et al., 2006). The motion sensor provides three-

dimensional offset parameters for the transmitting and

receiving arrays. The transmit beam is corrected for

pitch, roll, and yaw (Kiesel, 2000). In deep sea areas

without t ide level stations, GPS carrier phase

measurement technology is used to determine the

instantaneous change in tide level and tide level

compensation is performed on the bathymetric data

(Giorgi et al., 2012).

3. Coverage: The coverage of multibeam bathymetry directly

affects the mapping efficiency of the system. However, in

deep-sea areas, two-way propagation attenuation affects the

signal-to-noise ratio of the outer (grazing angle) signal, and

the waveform is severely broadened (Kuperman and Roux,

2007). The signal-to-noise ratio of the outer signal can be

improved by optimizing the design of the transmitting and

receiving array and using broadband signals. The problem

of waveform broadening can also be suppressed by using a

wideband signal. Estimating target orientation using a new

method (such as the multi-subarray detection method) can
TABLE 2 Multi-beam echo sounding products.

Parameter SeaBeam 3012 HydroSweep DS Kongsberg EM122

Working principle Beam Steering Coherence Beam Steering

Frequency [kHz] 12 14-16 12

Sounding depth [m] 50-11000 10-11000 20-11000

Maximum bandwidth 5 × depth 5 × depth 5 ×depth

Strip beam 301 320 288

Sounding resolution [cm] 12 6 10

Sounding accuracy 0.2%depth 0.2%depth 0.2%depth
TABLE 1 Single-beam echo sounder products.

Parameter Kongsberg
EA 440

Kon EA 640 gsberg Teledyne
ECHOTRACE 20

Echologger
ETH 400

Maximum Depth [m] 3000 11000 6000 100

Minimum Frequency [kHz] 30 10 10 –

Maximum Frequency [kHz] 500 500 250 450

Minimum Operation Depth [m] 0.1 – 0.2 0.15

Depth Resolution [m] 0.01 0.01 0.01 –

Ping Rate [Hz] Max. 40 Max. 40 – 10

Sounding Accuracy 0.2% depth 0.2% depth 0.2% depth 0.1% depth
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improve the orientation estimation accuracy of the outer

signal (Li et al., 2018; Wei et al., 2019).
MBES bathymetry has two main disadvantages: (1) the covered

area is relatively small, (2) the amount of collected data is too large to

optimize data management, and (3) in areas with flat terrain, the

measurement accuracy of MBES can be affected by sound reflection

and offset. Therefore, a hybrid approach has become the mainstream

of research. One solution is to combine MBES with side-scan sonar,

which provides seamless scan data and improves efficiency (de

Moustier and Allen, 2012; Mohammadloo et al., 2019). This

method obtains a high-resolution backscatter image corresponding

to the water depth data space, which can achieve an accurate fusion of

water depth and backward imaging data for comprehensive terrain

detection (Li et al., 2012). Research has shown that the combined

method of side-scan sonar and MBES meets the measurement

standards of the National Oceanic and Atmospheric

Administration (NOAA) (Mohammadloo et al., 2019). Using a

combined approach of side-scan sonar and MBES can obtain more

accurate measurement data than using each technique in isolation.

However, the cost of operating this combined approach is high.

A low-cost method involves combining MBES with a dual-

frequency differential high-precision Global Navigation Satellite

System (GNSS) to superimpose the two data sets. Evaluation of

vertical accuracy at orbital intersections and known depth positions

has shown that the average square error is reliable and meets the

highest standards for hydrographic surveys (Rowley et al., 2020).

Obtaining a more extensive range of DEM data is typically time-

consuming, expensive, and complicated. The method of combining

LiDAR with MBES has also been extensively studied and has been

shown to produce more accurate data than using MBES alone (Do

et al., 2020; Lebrec et al., 2021).
2.3 Side-scan sonar (SSS)

SSS generates images that intuitively reflect the underwater

microtopography (Coiras et al., 2007). The intensity of the seabed

echo can be used to qualitatively analyze the composition of the

seabed (Wu et al., 2021). SSS can be classified into ship-borne and

towed types. While USVs can tow the SSS, they are affected by ocean

currents during actual work, and the tow attitude varies greatly.

AUVs can be used as ship-borne carriers and adjust the heading in

real-time to improve the SSS’s attitude effectively. SSS has the

advantages of low cost, high resolution, and continuous

acquisition of two-dimensional seabed images, and the

performance parameters of two SSS products are shown in Table

3. However, because the towed SSS’s body must be as close to the

seabed as possible, the detection efficiency is low (Wu et al., 2021).

Therefore, several noteworthy features of SSS are:
1. Underwater positioning: The issue of achieving high-

precision underwater positioning of a SSS has not been

effectively resolved. The traditional method uses GPS or

ultra-short baseline (USBL) systems to determine the tow’s

position. Wu et al. (2021) analyzed the impact of speed on
tiers in Marine Science 05
tow body positioning and developed a correction model to

improve the accuracy of GPS positioning. Le Bas and

Huvenne (2009) analyzed the impact of calibration and

environmental errors on ultra-short baseline positioning.

Sahafi (2013) discussed terrain mapping using AUVs

equipped with sonar instruments and used USBL to

improve the accuracy of long-term underwater

navigation. Researchers have suggested that an AUV

based on the long baseline (LBL) and integrated with

multiple sensors can achieve more precise terrain

detection (Thompson et al., 2001; Melo and Matos, 2017).

2. Image processing: Image processing is required to denoise

the side-scan image after noise estimation. Zhou et al.

(2015) verified the noise reduction effect of the wavelet

function, and compared with functions such as median

filtering, the smoothness and edge preservation effects are

better. Huang et al. (2020) used the curvelet transform to

process side-scan sonar images, and the effects of noise

reduction and edge preservation were better than those

of the wavelet transform. Aiming at the problems of low

segmentation efficiency and poor accuracy, a neutrosophic

set (NS) algorithm and quantum particle swarm

optimization (QPSO) algorithm was proposed (Jianhu

et al., 2016; Zhao et al., 2016). To avoid the influence of

noise, researchers found that the improved Ostu algorithm

can quickly extract the noise (Yuan et al., 2016). To

enhance the applicability of image segmentation,

researchers used bidimensional empirical mode

decomposition (BEMD) and Gaussian-Markov random

field (GMRF) texture to improve the clustering algorithm

(Ye et al., 2011).
2.4 Gravity satellite altimeter (SA)
bathymetry

The altimeter measures the height of the ocean surface, which is

influenced by the underlying topography rather than the ocean’s

depth. Satellite gravity measurements can provide large-scale

gravity data, offering an opportunity to study the seafloor’s

structure (Guan et al., 2016). However, this type of bathymetry

data has a considerably lower horizontal resolution than ship-borne

bathymetry measurements, resulting in inherently uncertain depth

estimates. In an ideal deep ocean strip, the horizontal resolution can

be as small as 6-9km (Watts et al., 2006). In this section, we discuss

the various applications and limitations of satellite altimeters

in bathymetry

Satellite altimeter missions, such as ERS-1 and ERS-2 from the

European Space Agency, and TOPEX/Poseidon, Jason-1, Jason-2,

and Jason-3 from NASA, as well as CryoSat-2 from the European

Space Agency, have provided valuable data for bathymetry

estimation (Ablain et al., 2017; Shu et al., 2021). These missions

have extensively gathered data on sea surface heights, which can be

utilized to calculate gravity anomaly grids and estimate

seafloor topography.
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Estimating bathymetry from satellite altimetry data involves

several techniques that aim to derive seafloor topography by

analyzing underwater terrain variations.
Fron
1. Retracking: The method involves analyzing the radar

altimeter waveform to determine the precise time delay

between the satellite and the underwater terrain. The height

can be calculated by measuring this delay, and this value

can be used to estimate the seafloor topography. Due to

potential interference from noise and other factors,

retracking algorithms have been developed to enhance

the accuracy of bathymetric data (Deng and Featherstone,

2006).

2. Estimation: Dense satellite gravity data is often used by

researchers to complement sparsely available sounding data

in remote regions, thus providing additional details in areas

where no sounding data is available (McMillan et al., 2009).

To evaluate the uncertainty of satellite data, the Monte

Carlo method is commonly employed (McMillan et al.,

2009). The availability of free satellite data enables

researchers to generate various bathymetry maps promptly

3. Submarine Topography and Sediment Structures:

Submarine topography covered by sediments, which are

not visible in soundings, can be revealed by satellite gravity

measurements (Guan et al., 2016). In a particular study,

researchers projected satellite bathymetry data obtained

from ocean gravity measurements onto a vertical grid to

produce a precise three-dimensional model of the

Mendocino fault zone (Kim and Wessel, 2016).

4. Deep Learning Applications: According to recent

research, when combined with satellite data, deep

learning can accurately estimate ocean depths under

various simulation scenarios. Multiple data sources, such

as variations in sea surface height, gravity anomalies, and

other geophysical or oceanographic parameters, can be

incorporated into these methods to forecast seafloor

topography. Sophisticated algorithms, including deep

learning, neural networks, and random forests, are

employed to model complex relationships between input

data and seafloor depths, resulting in better bathymetry

estimates (Jena et al., 2012; Annan and Wan, 2022).

5. Combining Satellite Data and ship-borne bathymetry: By

combining comprehensive satellite and multi-beam

bathymetry data, researchers have determined bathymetry

and structural trends, measured seamount heights,

calculated seamount base areas and volumes, and
tiers in Marine Science 06
constructed large-scale submarine bathymetry maps

(Rodrigo et al., 2014). In a separate study, the Gravity

Geological Method (GGM) was utilized with shipborne

bathymetry data to enhance the accuracy of bathymetry

measurements (Kim and Yun, 2018).Further research is

necessary for different water types to draw definitive

conclusions regarding the requirements and limitations of

this method for estimating bathymetry.
Global and regional bathymetric models, including the GEBCO

(General Bathymetric Chart of the Oceans), SRTM30_PLUS, and

ETOPO1, have been developed using these methods. These models

provide valuable information on seafloor topography in areas where

direct measurements are scarce or unavailable. Despite providing

valuable information on seafloor topography, gravity satellite

altimeter bathymetry has some limitations, including:
• Resolution: Gravity satellite altimeter bathymetry generally

has a lower spatial resolution than direct measurement

methods, such as multibeam echo sounders. This

limitation makes it less suitable for applications that

require high-resolution bathymetric data, such as detailed

seafloor mapping or habitat studies.

• Accuracy: The accuracy of gravity satellite altimeter

bathymetry can vary based on several factors, including

the density of the altimetry data, the quality of the inversion

method, and the local geophysical properties of the seafloor.

• Sensitivity to Sediment Thickness: In areas with thick

sediment layers, the gravity anomaly signal from seafloor

topography can be obscured, resulting in reduced accuracy

in bathymetry estimation.
Despite these limitations, gravity satellite altimeter bathymetry

remains valuable for acquiring seafloor topography information in

remote or poorly surveyed areas, supplementing other bathymetric

data sources and methods.

2.5 Air-borne LiDAR bathymetry (ALB)

Air-borne LiDAR bathymetry has several advantages over sonar

ship-borne detection technology, including high precision, a large

investigation range, high point cloud density, high efficiency, low

cost, and high mobility (Hilldale and Raff, 2008). Furthermore, the

maximum detection depth is 90 m, the accuracy is less than 0.30 m,

and the maximum measurement density can reach 0.12×0.12 m

(Guenther, 2007).
TABLE 3 Side-scan sonar systems.

System Frequency [kHz] Detection Strip width [m] Accuracy [cm] Detection efficiency1 km2·h-1

Edge Tech 4125 400 200 150 2.3 2.70

1600 – 35 0.6 0.64

GEO Swatch 125 200 600 2.3 2.70

500 50 150 0.6 0.64
1Note that when calculating the detection efficiency, the operating speed is 5m/s.
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In the late 1970s, the Swedish National Defense Research

Institute successfully developed an air-borne FLASH laser-

sounding system with a detection depth of 35 m (Wehr and Lohr,

1999). The Optech company developed the SHOALS 200 (Scanned

Hydrographic Operational Airborne Lidar Survey) submarine

geomorphological mapping system, which was mounted on a

helicopter for actual measurement (Irish and Lillycrop, 1999).

The detection source is a Nd: YAG laser, which can emit 0.532

µm green light and 1.064 µm infrared laser (Dubey and Yadava,

2008). In 2002, the Chinese Academy of Sciences developed a set of

air-borne dual-frequency LiDAR (LADM-I) (Chen et al., 2003). The

system has a depth measurement range of 0.5-50 m, a depth

measurement accuracy of 0.3 m, a flight measurement accuracy of

0.25m, a flight height of 250-500m, a scanning width of 250m, a grid

point density of 5 m × 5 m, and a horizontal positioning accuracy of

3 m (Chen et al., 2003). After that, the Shanghai Institute of Optics

and Fine Mechanics of the Chinese Academy of Sciences continued

to optimize the system and successfully developed a new LiDAR

Mapper5000 in 2017 (Xing et al., 2019). The vertical accuracy is

0.23m, the horizontal positioning accuracy is 0.26m, and the grid

point density is 1.1m × 1.1m, significantly improving shallow water

detection ability.

In September 2018, the ICESat-2 was launched, carrying the

Advanced Topographic Laser Altimeter System (ATLAS), which

can accurately measure water depth with high precision and is a

new approach for global nearshore bathymetry (Neuenschwander

and Magruder, 2016; Neumann et al., 2020). Although ATLAS was

not designed specifically for bathymetry, its high-resolution

elevation data can be valuable for mapping shallow water bodies,

such as coastal areas, rivers, and lakes (Neuenschwander and

Magruder, 2016; Neumann et al., 2020). Combining ATLAS data

with other bathymetric datasets and techniques enables researchers

to obtain more accurate and comprehensive bathymetric maps,

contributing to a better understanding of underwater terrain and

associated processes (Parrish et al., 2019). However, the

applicability of ATLAS for bathymetry is limited by the

penetration depth of its laser pulses (Forfinski-Sarkozi and

Parrish, 2016; Parrish et al., 2019), and its performance is

influenced by water clarity. As water turbidity increases, ATLAS’s

ability to measure water depth decreases (Thomas et al., 2021).

Therefore, ATLAS is most effective for bathymetry in clear, shallow

waters, and its utility in deeper or turbid waters is limited.
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Table 4 shows the commonly used airborne LiDAR bathymetry

(ALB) systems, which have broad application prospects for acquiring

high-precision and high-resolution underwater topographic and

geomorphological data in shallow waters, especially offshore.

However, further breakthroughs are necessary for key technologies

to improve detection accuracy andmeet the basic requirements of the

IHO S-44 standard and the actual needs of detection tasks.
1. Precise positioning and orientation: The precise

positioning and orientation of detection points by ALB is

achieved using high-precision aerial remote sensing

Position and Orientation Systems (POS) (Wang et al.,

2013). These systems include the Symmetrical 8-point

vibration-damping and inertial-sensitive component

structure with time delay compensation method (Cheng

et al., 2014), the tightly coupled navigation system using

pseudo-range and pseudo-range rate (Iqbal et al., 2013),

and the forward and backward smoothing algorithm

suitable for the close combination of Precise Point

Positioning (PPP) and Inertial Navigation Systems (INS)

(Gu et al., 2021).

2. Wave and tidal correction: Various methods for wave and

tidal correction have been developed, including tidal

constituent and residual interpolation (TCARI) (Brennan

et al., 2005) and inertial navigation-aided correction

methods (Stammer et al., 2014). These methods aim to

solve the issue of converting between the instantaneous sea

surface and the depth reference level by using the mean sea

level elevation to calculate the seabed elevation of the

detection point and improve the detection accuracy.

3. Errors: Analyzing and correcting detection data errors is

crucial for obtaining high-precision and high-resolution

underwater topographic information. Previous studies by

Hilldale and Raff (2008) and Eren et al. (2018) have focused

on depth reduction technology, providing a reference for

evaluating detection accuracy.

4. Multi-source data: When processing detection data, it is

essential to compensate for multi-source data, including

coverage detection at the edge of the route, segment

detection at different times, and combined detection from

various equipment to improve overall detection accuracy

(Gao et al., 2019).
TABLE 4 Air-borne LiDAR bathymetry systems.

System Flight
Height [m]

Width
[m]

Frequency
[kHz]

Detection
Depth [m]

Vertical Accu-
racy [m]

Horizontal accu-
racy [m]

Point
Density

Detection
efficiency
[km2 · h −1]

CZMIL 400-1000 280-700 70 0.15-80 0.30 3.5 – 35.3-88.2

SHOALS 300-400 225-300 3 0.20-50 0.25 2.5 2m × 2m 28.4-37.8

Hawk
Eye III

400-600 280-420 35 0.20-70 0.15 – 1m × 1m 35.3-52.9

LADS
MK3

360-900 79-585 – 0.20-90 0.25 2.5 2m × 2m 10.0-73.7
1When calculating the detection efficiency, the speed is 70/m, and the overlapping detection coverage is 200%.
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2.6 Bathymetry inversion based on remote
sensing imagery

Bathymetry technology based on remote sensing images

includes two detection technologies: synthetic aperture radar and

optical image information.

2.6.1 Synthetic aperture radar (SAR)
Table 5 presents commonly used Synthetic Aperture Radar

(SAR) systems. A corresponding relationship exists between

shallow sea topography and SAR images in Ka-band air-borne

side-view radar images (Barr, 1969). Subsequently, extensive SAR

data, including underwater terrain, have been used to conduct

research from three aspects: (1)the relationship between SAR

image information and radar and detection environment factors

(Henderson, 1995; Henderson and Xia, 1997), (2) the theory of

underwater terrain SAR imaging mechanisms (Alpers and

Hennings, 1984), and (3) imaging experiments (Schuler et al.,

1996). To address the AH model’s shortcomings, which only

considers first-order disturbance and constant relaxation time

while ignoring the advection term, various improved models have

been proposed, such as the SLM model (Bourqui et al., 2008), the

HSM model (Wang et al., 2016), LB model(Dong et al., 2019), and

the BRM and GBRM models (Cooper et al., 1994).

Research has shown that the P-band is the most suitable band

for underwater terrain detection, followed by the L-band, while the

C-band is slightly better than the X-band (Pereira et al., 2019). The

difference in radar polarization is not significant, and the VV

polarization is slightly more robust than the HH polarization

(Fan et al., 2008). SAR can measure water depths up to 100-200

meters regarding considerable underwater terrain slopes. The

underwater terrain that can be obtained from SAR images

depends on the height of the underwater terrain.

2.6.2 Optical image
Optical Satellite-Driven Bathymetry (SDB) is a method used to

estimate water depth by analyzing remotely sensed data from

satellites equipped with optical sensors. The process involves

analyzing the changes in light properties as it interacts with the

water column and the seabed. This technique works on the

principle that the color of the water’s surface can indicate its

turbidity, which is related to its depth. By analyzing the color of

the water surface in satellite images, it is possible to estimate the

water depth and bottom topography.

Multispectral and hyperspectral SDB methods differ in the

number of spectral bands and the satellite sensors’ spectral
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resolution. Both types of sensors have been employed for SDB

applications, and their differences have implications for the

accuracy and applicability of SDB techniques (see Table 6).

Table 7 lists the comparison of Multispectral and Hyperspectral

SDB algorithms, and factors such as water clarity, bottom type,

atmospheric conditions, and satellite sensor characteristics can

influence their performance. When selecting an SDB algorithm, it

is important to consider the application’s specific needs, the

availability of ground truth data for calibration, and the potential

trade-offs between simplicity and accuracy.

3 DEM data interpolation

Interpolating water depth data is essential for obtaining higher-

resolution Bathymetric Digital Elevation Models (BDEMs) or for

smoothing current BDEM topography information. While

interpolation methods used for terrestrial Digital Elevation

Models (DEMs)can be applied to BDEMs, differences in data

acquisition and underwater environments must be considered.

When using SBES to obtain water depth data, the choice of

interpolation method becomes crucial. Studies have shown that

error, accuracy, and data quality are three important indicators for

verifying interpolation quality, as proposed by Wood and Fisher

(1993). Therefore, different interpolation methods have been

extensively studied under various conditions by researchers

(Polidori and Chorowicz, 1993; Erdogan, 2009; Heritage et al.,

2009; Hu et al., 2009; Drouin and Saint-Laurent, 2010; Zhang,

2013; Shi et al., 2014).
3.1 Traditional interpolation algorithms

Table 8 shows the summary of commonly used interpolation

methods for DEM data. Previous studies have shown that

interpolation methods commonly used for terrestrial DEM can

also be applied to BDEMs (Amante and Eakins, 2016; Diaconu

et al., 2019). However, it is crucial to consider the differences in data

acquisition and underwater environments when selecting an

appropriate interpolation method. This section provides a

comprehensive review of different interpolation methods for

DEM data. The requirement for DEM interpolation was first

proposed by Wood and Fisher (1993), and error, accuracy, and

data quality are three critical indicators used to assess the quality of

the interpolation.

In a study by Zhang and You (2010), the interpolation

parameters of the distance-weighted interpolation method were
TABLE 5 SAR.

System Band Polarization mode Vertical accuracy [m] Spatial/resolution [m] Spatial/resolution [m]

ENVISAT C HH, VV, HH/VV, HH/HV, VV/VH 10-40 6-1000 56-405

ALOS L HH/HV, VH/VV, HH/VV/HV/VH 10-20 10-100 20-350

Radarsat-2 C HH/HV, VH/VV, HH/VV/HV/VH 2-20 3-100 10-500

TerraSAR-X X HH/HV, VH/VV, HH/VV/HV/VH 2-4 6-10 3
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TABLE 6 Comparison of multispectral and hyperspectral SDB satellites.

Parameter Multispectral Satellites Hyperspectral Satellites

Spectral bands 3-10 Hundreds

Spatial resolution Sub-meter to tens of meters A few meters to tens of meters

Example satellites Landsat series, Sentinel-2, Hyperion, PRISMA, EnMAP

WorldView-2

Coverage Larger spatial coverage Smaller spatial coverage

Data processing Less computationally intensive More computationally intensive

Data volume Lower data storage requirements Higher data storage requirements

Spectral information Less detailed spectral profile More detailed spectral profile

Spectral resolution Broader spectral bands Narrower spectral bands

Application accuracy Lower depth estimation accuracy Higher depth estimation accuracy
F
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TABLE 7 Summary of multispectral and hyperspectral SDB algorithms.

Algorithm Strengths Limitations

Multispectral SDB Algorithms

Ratio Transform (Stumpf et al., 2003) Simplicity, Applicability, Good performance in clear
waters

Empirical, Sensitive to environmental factors, Limited
applicability in turbid waters

Multispectral Linear Transform (Lyzenga,
1985)

Water column correction, Applicability,
Adaptability

Calibration required, Sensitive to environmental factors,
Limited applicability in highly turbid waters

Optimal Band Ratio Analysis (OBRA)
(Niroumand-Jadidi and Vitti, 2016)

Designed for turbid waters, Accounts for complex
optical properties, Applicability

Calibration required, May be less accurate in clear waters,
Sensitive to environmental factors

Physics-based SDB (Sentinel-2) (Traganos and
Reinartz, 2018)

Radiative transfer models, Potentially higher
accuracy, Designed for Sentinel-2

Calibration required, Complexity, Sensitive to environmental
factors

Machine Learning SDB (ML-SDB) (Wu et al.,
2022)

Machine learning techniques, Adaptability,
Applicability

Calibration required, Complexity, Sensitive to environmental
factors

Hyperspectral SDB Algorithms

Hydrolight-SRIM (Lee et al., 2002) Physics-based, Hyperspectral, Inversion Complexity, Calibration may be required, Computational
requirements

Hyperspectral Unmixing (Castrodad-Carrau
et al., 2006)

Spectral unmixing, Linear and nonlinear models,
Adaptability

Calibration required, Complexity, Sensitive to environmental
factors

Hyperspectral Optimal Depth Retrieval
(Brando et al., 2009)

Spectral unmixing, Linear model, Enhanced
imagery

Calibration required, Complexity, Sensitive to environmental
factors
TABLE 8 Summary of interpolation methods for DEM data.

Method Advantages Disadvantages

IDW Simple and easy to implement, has fast computation Sensitive to extreme values, and can produce unrealistic results if the power
parameter is not well-chosen

Kriging Provides an estimate of the interpolation error, adapt to local
variations in the data

Time-consuming, requires stationarity and isotropy assumptions

TIN Capable of handling data with irregular spacing, preserves edges
and contours

Sensitive to outlier points, difficult to generate smooth surfaces

ANUDEM Incorporates terrain correction, generates smooth surfaces Requires additional parameters, prone to generating plateaus

Natural
Neighbor

Generates smooth surfaces, handles both point and line data Can produce unrealistic results if the tension parameter is not well-chosen
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analyzed, and the RMSE of the generated DEM was measured. The

study concluded that the weighting index and accuracy of the

interpolated data are positively correlated. In contrast, the search

points involved in the interpolation calculation and the accuracy of

the interpolated data are negatively correlated. Regarding the

uncertainty of seabed topography, Rishikeshan et al. (2014) found

that the IDW method performs better in flat and slope areas, while

the natural neighbor (NN) method performs better in steep slopes

and the whole area. Additionally, the choice of survey configuration

significantly impacts the terrain’s accuracy rather than the

interpolation method because unevenly collecting elevation data

points will affect the interpolated surface and the final generated

model (Santillan et al., 2016).

Zheng et al. (2016) proposed an improved ANUDEM

interpolation method to address voids and anomalies caused by

uneven measurement coverage. This method incorporates the idea

of terrain correction, which is highly correlated with the topological

structure of multi-scale DEM contours. Liu et al. (2017) proposed a

new plane correction/removal algorithm, which can effectively

remove/correct the terrain plane and create a flat-free DEM. To

solve the problem of severe surface distortion caused by

interpolation in areas lacking terrain data, Wang et al. (2021)

proposed a strategy combining high-accuracy surface modelling

(HASM) with classic interpolation methods to construct a DEM.

When the selection of interpolation points contains many

adjacent points, the root mean square error (RMSE) may not be

sensitive enough to detect topographical differences (Zhu et al.,

2019b). As a result, interpolating large-scale DEM data has become

another research direction in recent years. Habib et al. (2020) used

various graphs to represent DEM and employed a cross-validation

method to compare and verify each interpolation. The study found

that the ANUDEM and TIN models were similar and significantly

better than the IDW model.

Different interpolation algorithms can significantly impact the

accuracy and efficiency of large-scale interpolations. Therefore, it is

essential to carefully choose the appropriate algorithm based on the

specific characteristics of the interpolation scene, including the

terrain type, initial data density, and distribution mode. These

factors can affect both the accuracy and computational efficiency

of the interpolation (Tu et al., 2020). However, traditional methods

may not be able to handle the non-linear errors in elevation for

large-scale datasets such as SDB and satellite LiDAR (Salah, 2021).

Increasing the sampling density improves the accuracy of the

generated DEM and increases the raster resolution (Zhu et al.,

2019b). However, surface reconstruction of scattered data is an ill-

posed problem, and as the number of sample points increases, most

calculation algorithms become too time-consuming (Kim et al.,

2016). Kriging methods with low-resolution DEM data are

preferred for underwater terrain as they provide superior terrain

roughness accuracy (Zhang et al., 2015). Kalimuthu et al. (2016)

found that ordinary kriging (OK) and general kriging produced an

average absolute difference of 13.99m and 13.95m, respectively,

when generating high-resolution DEM from low-resolution data.

This indicates that interpolated DEM generated from low-

resolution data can be used for low-cost underwater modelling

research when high-resolution DEM collection is required.
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3.2 Interpolation algorithms with machine
learning

Traditional DEM interpolation algorithms take input from

given sampling points and calculate missing points one by one

based on local terrain similarity without considering the overall

terrain change trend (Hao et al., 2021). In contrast, Bagheri et al.

(2014) optimized sample interpolation using a combination of

genetic algorithm (GA) and artificial neural network (ANN).

Results demonstrate high potential for AI methods in elevation

interpolation. Chen et al. (2016) proposed the robust multi-

quadratic (MQ) algorithm o reduce the impact of outliers on

DEM construction while preserving specific details, unlike

traditional interpolation methods such as NN and OK.

Meanwhile, Hao et al. (2021) connected the unknown elevation

points of the entire calculation area and introduced terrain change

trend features into the DEM construction process to achieve

morphological consistency with the actual terrain surface.

Most traditional methods are unable to deal with non-linear

elevation errors in large-scale data. To address this limitation, an

artificial neural network (ANN) classification model is used to correct

DEM data, reducing the RMSE of the interpolated elevation by 45%

(Salah, 2021). Recently, generative adversarial networks (GANs) have

proven more effective than traditional methods. While the

convolutional neural network (CNN) method provides better

quantitative accuracy, the technique based on GAN produces better

visual quality under complex terrain (Yan et al., 2021).
4 Case study 1: accuracy evaluation of
bathymetry models

The study area in the northern Gulf of Mexico (longitude 93°W

- 91°W, latitude 28°N - 25°N) was selected (Figure 1A). ETOPO,

GEBCO, and SRTM are existing water depth models based on a

fusion of ship survey (sonar) and satellite bathymetry data. To

evaluate the accuracy of ETOPO1, GEBCO2022, and SRTM15

+V2.3 in the study area, SBES ship survey data provided by

NOAA were selected as reference values (Figure 1B).

Table 9 summarizes bathymetry information on three models

and SBES points in the study area. The average water depth in the

study area is approximately -1624 m, with a standard deviation of

around 1345 m. The error statistics on SBES exclude points over

three times the mean error value. After calculating deviations

between three models and SBES, GEBCO_2022 has the smallest

systematic error, with a mean deviation of -2.840 m, a mean

absolute deviation of 29.667 m, and a standard deviation of

34.177 m. SRTM15+V2.3 has a mean deviation of -3.541 m and a

standard deviation of error of 41.486 m, which is slightly worse than

GEBCO_2022. The mean and standard deviation of ETOPO1 are

higher than the other models. In comparing the accuracy between

the models, ETOPO1 has the most significant deviation in both the

mean and standard deviation of the difference compared to

other models.

Figure 2A displays statistics on the absolute value of the error.

The data volume with an absolute error value less than 50 m in the
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ETOPO1 model is only 65.87%, while GEBCO 2022 and SRTM15

+V2.3 have volumes of 99.21% and 98.88%, respectively. GEBCO

2022 achieves 86.42% when the absolute error value is less than 30 m.

Figure 2B shows the standard deviation of each model in different
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water depths. ETOPO1 has the lowest accuracy in each water depth

range, and the other two models have close accuracy. In general,

GEBCO 2022 has the highest accuracy. The three models’ standard

deviation shows a trend of decreasing first, then increasing, and then

decreasing. The combination of Figure 2 and Table 9 indicates that

the GEBCO_2022 model has the highest accuracy in the study area,

followed by SRTM15+V2.3. ETOPO1, due to its earliest release time

and the small amount of measured and satellite data used, has

relatively large errors. These results are consistent with the

experimental data conducted by Hao et al. (2022) in offshore China.
5 Case study 2: accuracy evaluation of
DEM spatial interpolation algorithm
for different underwater topography

The experiment selected three underwater areas with different

landforms in the Gulf of Mexico, including hills (with an elevation

difference of 80-300m), mountains (with an elevation difference of

300-600m), and mountain peaks (with an elevation difference of

over 600m) (Figure 3). This study utilizes the sampling point

analysis method to evaluate the accuracy of the interpolated

BDEM data. The data used is from the BDEM of GEBCO_2022.

Contour data with 50 m spacing is initially generated over the

selected area, and these data are downsampled by a factor of four

(downsample = 4). Finally, the accuracy gap between the DEM data

obtained by interpolation using different methods and the original

resolution BDEM is examined. This experiment ensures that the

only variable was different interpolation methods. The parameter

selection of various interpolation methods uses the default

parameters in GIS software.
5.1 Hilly landform area

The selected hilly landform has a minimum elevation of -887m

and a maximum elevation of -362m (see Figure 4B). Thirty-two

elevation checkpoints, uniformly distributed over the entire study
TABLE 9 Data statistics: bathymetry models and ship survey data.

Datasets Maximum Depth
[m]

Minimum Depth
[m]

Average Depth
[m]

Standard Deviation
[m]

ETOPO1 -3442 -64 -1624.335 1345.589

GEBCO_2022 -3487 -67 -1635.841 1348.135

SRTM15+V2.3 -3487 -66 -1624.385 1347.686

SBES -3456.5 -63.5 -1618.963 1345.589

Deviation Maximum Deviation [m] Minimum Deviation [m] Mean Deviation [m] Mean Absolute Deviation
[m]

Standard Deviation
[m]

ETOPO1 - SBES 287.565 -264.187 4.895 70.330 97.520

GEBCO_2022 -
SBES

66.840 -67.635 -2.840 29.667 34.177

SRTM15+V2.3 -
SBES

71.254 -69.357 -3.541 33.145 41.486
A

B

FIGURE 1

The study area was selected in the Gulf of Mexico. (A) Study area
(longitude 93°W - 91°W). (B) SBES bathymetric data point
distribution map (from NOAA).
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area, were randomly selected on the original BDEM (see Figure 4A)

to record the elevation values of each point as reference data for

analyzing the BDEM accuracy after interpolation. Table 10 displays

the average error, root mean square error, and fitting condition of

the BDEM obtained by different interpolation algorithms. The

ANUDEM interpolation algorithm is the most suitable for hilly

landforms, with higher accuracy and a smaller elevation error. The

IDW algorithm is second in accuracy but has a poor fit. The

difference between Kriging and NN is smaller, and the accuracy

is similar.
5.2 Mountain landform area

A typical mountainous landform area with a 390m elevation

difference is selected (see Figure 5B). Thirty-two elevation sampling

checkpoints, evenly distributed throughout the study area, were

randomly selected on the topographic map of the area (see

Figure 5A). The elevation values of each point were recorded as

reference data for comparative analysis of DEM accuracy.

It can be seen from Table 10 that the RMSE of various

interpolation methods is less than 11m. Statistics on the errors of

various interpolations show that the error values of the ANUDEM
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algorithm are smaller than those of other methods, and the errors of

other algorithms are relatively close. The results of the comparative

analysis are similar to those in the hilly landform area; that is, the

ANUDEM interpolation algorithm has the highest accuracy, all

error indicators are small, and the fitting degree is also the highest.

The second is the IDW algorithm, but its fit is poor. The error

indicators of Kriging and the natural neighbor method have small

differences and similar accuracy.
5.3 Alpine landform area

The selected alpine landform area for the test has an elevation

difference of 1214m (see Figure 6B). Thirty-two elevation sampling

points were randomly selected on the topographic map of this area to

be evenly distributed throughout the entire study area (see Table 6A).

Table 10 shows that the RMSE of each method is less than 19m.

The error value obtained by the ANUDEM algorithm is smaller

than the other three interpolation methods. The error values

obtained by IDW, Kriging, and the natural neighbor methods are

similar. Overall, the accuracy analysis results are similar to those of
A

B

FIGURE 3

(A) Countour map of study area DEM (GEBCO 2022). (B) Study area
3D visualization.
A

B

FIGURE 2

Errors and standard deviation. (A) Error margin statistics. (B) The
standard deviation of each model in different water depths.
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the hilly and mountainous landforms. The ANUDEM interpolation

algorithm has the highest accuracy, with minor elevation errors in

various indicators and the highest fitting degree. The DEM

accuracies generated by IDW, Kriging, and the natural neighbor

method are similar, and the IDW accuracy is slightly better than the

other three algorithms.

Table 10 presents the results of the experiments of the four

commonly used DEM algorithms in different terrains. The table

shows that the ANUDEM algorithm can achieve better

interpolation results under various terrain conditions. The IDW,

Kriging, and Nearest Neighbor methods have different

performances in dealing with different terrain conditions.

However, the correlation between the error of the interpolation

algorithm and whether the 3-D topographic map generated after

interpolation matches the target terrain is not positive.
6 Discussion

6.1 Comparison of data acquisition
techniques

This section aims to compare various data acquisition sensors,

and their summaries are presented in Tables 11, 12. The assessment

of these techniques is based on their suitability for different

underwater environments, spatial resolution and coverage, as well

as operational costs and complexity.

6.1.1 Suitability for different underwater
environments

Table 11 provides a comparison of the effectiveness of various

bathymetric data acquisition in marine and inland water bodies.

Marine environments are characterized by vast areas with diverse

underwater topography, water depth, and clarity, ranging from shallow

coastal regions to deep ocean basins. Inland water body environments,
TABLE 10 Performance of four DEM interpolation algorithms.

Area Algorithm Mean Error [m] RMSE [m] Fitness [%]

Hilly Area ANUDEM 3.047 7.587 98.524

IDW 5.052 8.257 98.245

Kriging 5.579 8.354 98.455

Nearest Neighbor 5.896 8.967 98.387

Mountain Area ANUDEM 6.582 10.587 99.873

IDW 9.254 11.357 99.423

Kriging 8.995 11.753 98.995

Nearest Neighbor 9.247 13.087 98.967

Alpine Area ANUDEM 8.577 11.247 99.940

IDW 9.422 14.577 99.937

Kriging 9.975 17.000 99.903

Nearest Neighbor 10.579 16.500 98.911
A

B

FIGURE 4

(A) Countour map and checkpoints. (B) Hilly area 3D visualization.
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on the other hand, have smaller spatial scales, shallower water depths,

and more variable water clarity compared to marine environments Liu

et al. (2020); Zhu et al. (2019a). Accurate bathymetry information is

critical for understanding sediment transport, water quality, and

ecological processes in both marine and inland water body

environments Liu et al. (2020); Zhu et al. (2019a).
Fron
• SBES is best suited for small-scale marine surveys and

targeted depth measurements, particularly in shallow

coastal regions. It is also ideal for small-scale bathymetric

surveys in inland lakes that require high-resolution and

precise depth measurements. However, SBES is limited in

deeper waters and regions with complex underwater

topography, where it may miss critical features due to its

narrow beam.

• MBES is versatile and can be used in various underwater

environments, including shallow coastal areas and deep

ocean basins. Its capability to collect data from multiple

beams simultaneously provides better coverage and

accuracy, making it suitable for mapping complex

seafloors and larger inland lakes that require more

extensive coverage and detailed underwater topography. It
tiers in Marine Science 14
is ideal for mapping complex underwater topography and

conducting large-scale surveys.

• Side-scan sonar is well-suited for mapping seafloor features

and submerged inland lake features and detecting

underwater objects across a wide range of water depths. It

can provide high-resolution imagery of the seafloor, inland

lakes, and reservoirs, making it useful for applications such

as habitat mapping, underwater archaeology, and geological

studies. However, it does not directly measure depth and

requires additional processing or integration with other

bathymetric data to derive depth information.

• Airborne bathymetry can compensate for the limitations of

ship-borne sonar. Airborne LiDAR is well-suited for

mapping shallow coastal environments, inland lakes, and

intertidal zones. However, its efficiency decreases with

increasing water depth, making it generally unsuitable for

deep-water environments. Additionally, LiDAR ’s

performance is influenced by water clarity, which makes

it less effective in turbid or murky waters. Nevertheless, the

distribution of measurement points is uneven due to the

influence of the flight path. While the LiDAR on ICESat-2

has excellent potential to measure the global nearshore

water depth, the technology is not yet fully mature, and

its accuracy is somewhat limited.
A

B

FIGURE 5

(A) Countour map and checkpoints. (B) Mountain area 3D
visualization.
A

B

FIGURE 6

(A) Countour map and checkpoints. (B) Alpine area 3D visualization.
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• Satellite gravity altimeters are limited by their lower

resolution compared to other techniques. Nevertheless,

they are ideal for mapping large-scale bathymetric

features, such as mid-ocean ridges and deep ocean basins,

and can provide valuable data for studying tectonic

processes and large-scale ocean circulation patterns.

However, gravity data are sensitive only to underwater

topographic fluctuations in the wavelength range of 20-

200 km and cannot distinguish severe topographic changes
tiers in Marine Science 15
less than 2 km. While less useful for small-scale inland lake

environments, they can still provide valuable information

for large lakes and reservoirs where large-scale bathymetric

features are of interest.

• SAR has the ability to image all-day and in all-weather,

regardless of meteorological conditions, with high

measurement efficiency and accuracy. It can be utilized

for bathymetry of coastal and shallow waters and is most

effective in calm and clear waters, where the interaction
TABLE 11 Overview of different bathymetry sensors in marine and inland waterbody environments.

Sensors Marine Environment Inland waterbody Environment

SBES Shallow coastal regions Small-scale surveys

MBES Large-scale surveys Larger lakes and reservoirs

Side Scan Sonar Seafloor feature mapping Submerged feature mapping

Airborne LiDAR Shallow coastal areas Shallow water areas

Satellite Altimeters Large-scale bathymetric features Large lakes and reservoirs

SAR Coastal and shallow waters Shallow lakes (limited)

SDB Shallow, clear waters Shallow, clear lakes
TABLE 12 Comparison of bathymetry sensors.

Sensors Accuracy Max.
detectionrange

[m]

Resolution
[m]

Strength Limitations Control
Factors

Scope of Applications

SBES High 0.1 - 11000 0.1 - 50 Highly
reliable,
wide depth
range, low
cost

BDEM needs
to be

generated
by

interpolation,
Unable to

perform high-
resolution
wide-area
bathymetry

Hull heave,
sampling interval,
sampling path
density

(Bio et al., 2020), (Di Matteo and Milli,
2008), (Yamasaki et al., 2017), (Bandini
et al., 2018)

MBES Very High 0.2 - 14400 0.001 - 0.5 High
resolution,
real-time
visualization

Expensive,
high operating
costs

Hull heave, path
planning

(Rowley et al., 2020), Combined with
SSS: (de Moustier and Allen, 2012), (Li
et al., 2012), (Mohammadloo et al.,
2019), Combined with LiDAR: (Do
et al., 2020), (Lebrec et al., 2021)

LiDAR Very High 0.2 - 70 0.5 - 2 Wide range,
high
resolution

Expensive,
limited water
depth

Water column
effects, Flight
conditions,
bottom reflectivity

(Hilldale and Raff, 2008), (Guenther,
2007)

SAR Very Low 2 - 50 30 - 500 worldwide,
Ignore
clouds and
fog

High
uncertainty

Signal-to-noise
ratio, surface
roughness,
Orbital geometry,
atmospheric
correction

(Pereira et al., 2019)

SA Very Low 1000 - 15000 4000 - 10000 Wide range Low accuracy
and low
resolution

Surface
undulations

(McMillan et al., 2009), (Pe’eri et al.,
2014), (Hodul et al., 2018), (Rodrigo
et al., 2014), (Kim and Yun, 2018),
(Poursanidis et al., 2019)

SDB High 2 - 50 0.1-50 Wide range Limited water
depth

Water quality,
atmospheric
conditions
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between radar waves and the water surface can reveal

bathymetric information. Under appropriate conditions,

SAR can supply significant bathymetric data for shallow

lakes and support water quality monitoring and ecological

assessments.

• Optical satellite-driven bathymetry is well-suited for

mapping shallow and clear water environments. Its

performance is influenced by water clarity and light

penetration, making it less effective in deeper or turbid

waters. Nevertheless, it can provide valuable data for coastal

zone management, coral reef mapping, inland lake

mapping, and reservoir environmental monitoring under

suitable conditions.
6.1.2 Spatial resolution and coverage
SBES systems provide high-resolution depth measurements but

have limited coverage due to their narrow swath width. This results

in a lower overall data density, requiring more survey lines and

longer survey time to achieve adequate coverage. SBES best suits

small-scale bathymetric model surveys and targeted depth

measurements in shallow water environments. MBES systems

offer superior spatial resolution and coverage compared to SBES.

By measuring multiple depth points simultaneously, enable faster

and more efficient surveys, providing a more detailed and

comprehensive representation of the seafloor. MBES is

particularly useful for large-scale surveys and mapping complex

underwater topography. Side scan sonar provides high-resolution

imagery of the seafloor, with wide coverage that can be adjusted

based on the altitude and range settings of the system. The quality

and resolution of the images depend on factors such as frequency,

range, and altitude, as well as the system’s processing capabilities.

Airborne LiDAR has the advantage of rapid data collection over

large areas, resulting in wide coverage and high-resolution datasets.

Satellite gravity altimeters provide global coverage of the ocean

floor, but their resolution is lower than other techniques. They are

best suited for mapping large-scale bathymetric features and

providing a broad overview of the seafloor’s general topography.

While satellite gravity altimeters cannot provide the detailed data

necessary for some applications, they are invaluable for studying

tectonic processes and large-scale ocean circulation patterns. SAR

bathymetry has limited spatial resolution and coverage compared to

other techniques, with its performance dependent on

environmental factors such as water depth, clarity, and surface

conditions. Optical satellite-driven bathymetry can provide high-

resolution bathymetric data in shallow, clear water environments.

The coverage of optical satellite-driven bathymetry is determined by

the satellite’s field of view and revisit time, making it suitable for

large-scale surveys in favorable conditions.

6.1.3 Operational costs and complexity
SBES and side scan sonar systems are relatively simple to

operate and maintain, making them cost-effective for small-scale

surveys and shallow water environments. MBES systems have
tiers in Marine Science 16
higher upfront costs due to the complexity of the equipment and

software involved. However, the increased efficiency, coverage, and

data quality offered by MBES can offset these costs in the long run.

Airborne LiDAR can be expensive to deploy and operate, requiring

specialized aircraft, sensor equipment, and skilled personnel. Its

cost-effectiveness depends on the specific survey requirements and

environmental conditions. Satellite-based techniques, such as

gravity altimeters, SAR, and optical satellite-driven bathymetry,

have lower operational costs but may have limitations in terms of

resolution and accuracy, depending on the application.
6.2 The challenge of high-precision
bathymetry

At present, gravity altimetry satellites have covered the whole

world, and the inversion of ocean gravity data has the advantage of

obtaining global bathymetry. Most of the published bathymetry

models were constructed based on this technology. In addition,

inversion requires certain prior information, so bathymetry

inversion based on gravity data is more effective in open sea areas

with ship bathymetry data constraints or flat seabed terrain.

Using satellite remote sensing to retrieve terrain can collect data

on a large scale worldwide and obtain shallow sea areas that are

difficult for survey ships to reach. However, it is currently only

limited to sea areas shallower than 50 m, and remote sensing images

are greatly affected by radar and spectrometer parameters and the

marine environment. Matching ship bathymetry and hydrological

conditions for verification can improve the accuracy of terrain

inversion, but it is still in the scientific exploration stage.
6.3 Future trends

Altimetry satellite gravity data inversion of seabed topography

is the main contributor to the current global terrain model

products, and the proportion of ship bathymetry data is deficient.

Although the results of gravity inversion of high-resolution seafloor

topography models are limited, it will still be the primary method

for fine modelling of global seafloor topography in the future until

the use of sonar technology to complete global sea area surveys. As

necessary auxiliary means for global submarine terrain information

acquisition, ship-based sonar technology, ALB technology, and

remote sensing image inversion technology will be further

developed in various technical fields. Global seabed terrain

detection generally presents a multi-source measurement

situation, developing towards high-precision, high-resolution,

high-efficiency, automation, intelligence, and clustering.

6.3.1 Emerging technologies in bathymetric data
acquisition

Emerging technologies are expected to improve bathymetric

data acquisition by enhancing the accuracy, resolution, and

efficiency of underwater mapping.
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1. Unmanned Surface Vehicles (USVs): USVs are

autonomous or remotely-controlled surface vessels that

can be equipped with various bathymetric sensors,

including multi-beam echo sounders and LiDAR systems.

USVs offer increased coverage, endurance, and reduced

operational costs compared to traditional survey vessels,

making them an attractive option for bathymetric data

acquisition.

2. Swarms of Autonomous Underwater Vehicles (AUVs): The

deployment of coordinated swarms of AUVs can lead to

more efficient and rapid bathymetric data acquisition. By

operating in parallel, AUV swarms can cover larger areas in

less time, enabling high-resolution mapping of the seafloor.

3. High-resolution Satellite-derived Bathymetry (SDB):

Advancements in satellite remote sensing technologies

and image processing algorithms are expected to improve

the resolution and accuracy of SDB. By combining

multispectral data, machine learning techniques, and

improved atmospheric and water column corrections,

future SDB approaches may offer a cost-effective and

efficient way to map shallow coastal areas.

4. Underwater LiDAR Systems: Emerging underwater LiDAR

systems, such as blue or green laser systems, promise to

enhance the accuracy and depth penetration of bathymetric

data in clear or moderately turbid waters. These systems

may provide higher-resolution data and improved

performance in complex underwater environments

compared to traditional acoustic methods.

5. Integration of Geophysical and Geospatial Data: The

integration of bathymetric data with other geophysical

and geospatial datasets, such as gravity, magnetic, and

sub-bottom profi ler data , can provide a more

comprehensive understanding of the seafloor and its

underlying structures. This interdisciplinary approach

may enable the development of more accurate and

detailed underwater maps.

6. Machine Learning and Artificial Intelligence: The

application of machine learning and artificial intelligence

techniques can improve the processing, analysis, and

interpretation of bathymetric data. These approaches can

help automate data quality assessment, identify features of

interest, and optimize interpolation techniques, leading to

more accurate and efficient mapping processes.

7. New Altimeter Satellites: The limitation of the current

satellite altimetry technology is mainly that the actual

resolution accuracy of the source data is low, and the

correlation and filtering smoothing in the seabed terrain

inversion hinder the improvement of the actual resolution

and accuracy. How to effectively improve the resolution

and accuracy of satellite altimetry and marine gravity data,

optimize the theoretical method of seabed terrain inversion,

and improve the resolution and accuracy of seabed

topography models will be the focus of future fine

modelling of global seabed topography. In the future, it

will be improved in the research of new altimetry satellites,

optimizing the seabed terrain inversion theory under the
tiers in Marine Science 17
consideration of terrain complexity and using artificial

intelligence technology to invert the seabed terrain.
6.3.2 Enhancements in interpolation techniques
As bathymetric data acquisition methods continue to advance,

there is an increasing need for improved interpolation techniques to

generate accurate and high-resolution underwater maps.
1. Adaptive Interpolation Methods: Adaptive interpolation

techniques are designed to account for spatial variability

in the underlying data, adjusting their parameters based on

local conditions. This can lead to more accurate

predictions, particularly in areas with complex seafloor

topography or data gaps.

2. Machine Learning-based Interpolation: Machine learning

algorithms, such as Support Vector Machines, Random

Forests, and Neural Networks, are increasingly being used

for bathymetric data interpolation. These methods can

model complex relationships between variables, identify

patterns in the data, and provide more accurate predictions

than traditional interpolation techniques.

3. Scalable Interpolation Techniques: As the volume of

bathymetric data continues to grow, there is a need for

interpolation techniques that can efficiently handle large

datasets. Scalable techniques, such as parallel computing

and distributed processing algorithms, can help speed up

the interpolation process and generate high-resolution

maps in a timely manner.

4. Integration of Multiscale and Multisource Data:

Interpolation techniques that can effectively integrate

multiscale and multisource data, such as satellite-derived

bathymetry, airborne LiDAR, and in-situ acoustic

measurements, are essential for creating comprehensive

and seamless underwater maps. These methods should

account for spatial resolution, accuracy, and data quality

differences among the various datasets.

5. Real-time and Dynamic Interpolation: With the increasing

availability of real-time bathymetric data, there is a growing

need for interpolation techniques to update underwater

maps as new data becomes available dynamically. These

methods should be able to incorporate new measurements

quickly, account for changes in the seafloor over time, and

provide updated maps in near real-time.
7 Conclusion

This review comprehensively analyzed state-of-the-art

bathymetry methods, focusing on data acquisition techniques,

model accuracy, and interpolation algorithms for underwater

terrain mapping. Our primary aim was to compare these

methods, assess their merits and drawbacks, and identify potential

areas for future research. We examine various data acquisition

techniques, including single-beam and multi-beam echo sounders
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and LiDAR systems. We found that each technique has its own

advantages and limitations in terms of accuracy, resolution, and

applicability in different water conditions.

We also analyzed the accuracy of three different bathymetry

models and found that the choice of model depends on the specific

application and available data. The integration of multiple data

sources can improve the accuracy and completeness of bathymetric

maps. Furthermore, we evaluated four interpolation algorithms,

comparing their applicability, reliability, and accuracy in various

underwater environments. Our findings indicate that there is no

one-size-fits-all solution, and the choice of interpolation method

should be based on the specific characteristics of the dataset and the

intended application.

Finally, we discussed the development trends and challenges

faced by underwater bathymetry technology, offering a forward-

looking perspective on the future of this essential field. Our review

highlights the importance of continued research into novel data

acquisition techniques, improved interpolation algorithms, and the

integration of multiple data sources to advance bathymetric

mapping techniques and applications.

In conclusion, our review serves as a valuable resource for

researchers and practitioners aiming to advance bathymetric

mapping techniques and applications. We believe that future

research should focus on addressing the limitations of current

methods and exploring innovative approaches to improve the

accuracy, efficiency, and applicability of bathymetry data in

various underwater environments.
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Appendix: list of acronyms

Acronym Meaning

A-GWR Adaptive-Geographically Weighted Regression

ALB Airborne Laser/LiDAR Bathymetry

ANN Artificial Neural Network

ATLAS Advanced Topographic Laser Altimeter System

AUV Autonomous Underwater Vehicle

BDEM Bathymetric Digital Elevation Model

BEMD Bidimensional Empirical Mode Decomposition

CNN Convolutional Neural Network

DEM Digital Elevation Model

ETOPO Earth TOPOgraphy

GA Genetic Algorithm

GAN Generative Adversarial Network

GEBCO General Bathymetric Chart of the Oceans

GGM Gravity Geological Method

GMRF Gaussian-Markov Random Field

GNSS Global Navigation Satellite System

HASM High-Accuracy Surface Modelling

ICESat-2 Ice, Cloud and land Elevation Satellite

IDW Inverse Distance Weighting

IHO International Hydrographic Organization

INS Inertial Navigation Systems

InSAR Interferometric Synthetic Aperture Radar

LBL Long Baseline

LiDAR Light Detection and Ranging

MBES Multi-Beam Echo Sounder

MQ Multi-Quadratic

NN Nearest Neighbor

NOAA National Oceanic and Atmospheric Administration

NS Neutrosophic Set

POS Position and Orientation Systems

PPP Precise Point Positioning

QPSO Quantum Particle Swarm Optimization

RMSE Root Mean Square Error

SA Satellite Altimetry

SAR Synthetic Aperture Radar

SBES Single-Beam Echo Sounder

SDB Satellite-Derived Bathymetry

SRTM Shuttle Radar Topography Mission

(Continued)
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Acronym Meaning

SSS Side-Scan Sonar

TCARI Tidal Constituent and Residual Interpolation

TIN Triangulated Irregular Network

UAV Unmanned Aerial Vehicle

USBL Ultra-short Baseline

USV Unmanned Surface Vehicle

V-A-E Volume-Area-Elevation
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