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The upper ocean surface layer is directly affected by the air-sea fluxes. The

diurnal variations in these fluxes also cause the upper ocean mixed layer

turbulence and mixing to diurnally vary. The underlying thermohaline structure

also varies accordingly throughout the day. Here we use large-eddy simulation to

quantify the role of surface evaporation in modulating the diurnal mixed layer

turbulence and mixing in the presence of wind forcing. During daytime, the

upper ocean boundary layer becomes thermally stratified, and a salinity inversion

layer is formed in the upper 10m, leading to double diffusive salt-fingering

instability. During nighttime, the mixed layer undergoes convective deepening

due to surface buoyancy loss redfrom both surface cooling and evaporation. We

find that salinity makes a major contribution to the convective instability during

both transitions between day and night. Overall surface evaporation increases

the mixed layer depth and irreversible mixing through convection, both during

nighttime and daytime, and leads to better prediction of the dynamical variables

as sea surface salinity (SSS) and sea surface temperature (SST). Our findings can

help improve the ocean parameterizations to improve the forecasts on a

diurnal timescale.

KEYWORDS

convection, turbulence, upper ocean mixed layer, irreversible mixing, salt-fingering,
turbulence modelling
1 Introduction

The ocean mixed layer (OML) is highly turbulent with nearly uniform vertical

distribution of temperature, salinity and density. The mixed layer mediates the exchange

of mass, momentum, heat and freshwater between the atmosphere and the ocean. The

time-varying surface fluxes and the depth of the OML are both important determinants of

sea surface temperature (SST), sea surface salinity (SSS) and ocean heat content. Thus it is
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imperative to understand the mixed layer dynamics, turbulence and

the associated irreversible mixing under various external conditions

in a rapidly changing climate.

The fluxes of momentum, heat and freshwater at the ocean

surface vary on all time scales, the diurnal scale being one of the

most prominent. The net surface heat flux is the sum of shortwave

radiation, net longwave radiation, latent heat flux and sensible heat

flux. Shortwave (solar) radiation incident at the ocean surface, as

well as net surface heat flux, have well-marked diurnal variability,

tending to heat the ocean in the daytime and cooling the ocean at

night. The other components of heat flux also have diurnal

variations. For example, latent heat flux varies due to diurnal

changes in surface winds (Wallace and Hartranft, 1969; Stull,

1988; de Szoeke et al., 2021).

The ocean responds to the boundary forcing and changes some

of the key variables that define the ocean state. The solar radiation is

absorbed by the water column during daytime, in a volumetric

sense (Paulson and Simpson, 1977), while the combined effect of

non solar components cool the air-sea interface at almost all the

times, also called as the cool skin effect (Fairall et al., 1996). As a

result, the OML generally deepens during the nighttime cooling,

when this convective turbulence tends to dominate, while the near

surface generally gets stratified in the daytime, leaving behind a

remnant mixed layer (Brainerd and Gregg, 1993). The SST also

varies during this time, due to this net heating during the daytime

and cooling in nighttime. These processes are interdependent as the

daytime’s stratification is dictated by how deep the OML was during

nighttime, and consequently the nighttime deepening depends on

the strength of the daytime stratification. Wind shear transfers

momentum flux into the ocean. Under weak winds, the turbulent

mixing is suppressed (Hughes et al., 2020b) leading to strong

diurnal SST variations (Flament et al., 1994; Soloviev and Lukas,

1997; Sui et al., 1997) and vice versa under strong winds (Yan et al.,

2021). Evaporation happens at all times in the ocean, increasing the

sea surface salinity (SSS) but precipitation occurs only during wet

spells. The combined effect of this saltier and cooler skin makes it

always statically unstable (Saunders, 1967; Yu, 2010). The upper

ocean thus experiences diurnal variations in both momentum and

buoyancy (heat) fluxes and undergoes a diurnal cycle of turbulence

and mixing (Lombardo and Gregg, 1989; Brainerd and Gregg, 1993;

Moulin et al., 2018).

Several previous studies have focussed on the response of the

upper ocean to diurnally varying surface forcing using observations

and model experiments. Lombardo and Gregg (1989) took

microstructure measurements at 34°N, made during the

PATCHEX experiment (1986) and gave a similarity scaling for

the turbulence occurring during nighttime convection. The kinetic

energy dissipation was normalized by the sum of scalings obtained

from wind stress driven and convectively driven turbulence. Using

the same dataset, the restratification processes and the daily cycle of

turbulence within the OML were analyzed (Brainerd and Gregg,

1993). Price et al. (1986) used field observations from 30.9°N to

analyze the diurnal response and to further develop the widely used

one-dimensional Price-Weller-Pinkel model (PWP). This is a slab

model, integrating and balancing quantities over the entire OML. In

the equatorial Pacific, a linear stability analysis was used to show
Frontiers in Marine Science 02
that the enhanced near-surface shear that forms in the daytime,

descends in the evening, leaving the nighttime mixing layer above it

(Smyth et al., 2013). This layer merged with the deeper Equatorial

Undercurrent, triggering deep cycle turbulence. This study was

supplemented with ship-based measurements of velocity,

stratification and turbulent dissipation (Moum et al., 2009).

Large-eddy simulations using temperature as a single scalar were

conducted (Pham et al., 2013; Pham et al., 2017) to study the

dynamic processes leading to deep cycle turbulence and its

seasonality. In the equatorial Atlantic, using PIRATA mooring

data, Wenegrat and McPhaden (2015) explored diurnal

stratification, shear and SST. They also hinted at the possibility of

deep cycle turbulence, owing to the presence of marginal instability

between the OML and the thermocline. In the Indian Ocean, the

surface diurnal warm layer was studied during the DYNAMO

experiment (Matthews et al., 2014). From the DYNAMO

measurements, de Szoeke et al. (2021) demonstrated that

convective turbulence in the atmosphere is caused by diurnal

ocean warming. The Bay of Bengal is known for a shallow salinity

-stratified layer due to copious freshwater input from rivers and

rainfall during summer monsoon season. Idealized turbulence-

resolving simulations for the Bay of Bengal were conducted to

explore the diurnal OML turbulence by Sarkar and Pham (2019),

who concluded that the mixed layer salinity changed solely due to

the entrainment of saltier subsurface water. The effects of haline

forcing were studied by Drushka et al. (2016; 2014), who examined

the diurnal salinity cycle in the tropics, and the dynamics of the

upper ocean after rain events using the General Ocean Turbulence

Model (GOTM). The diurnal amplitude of salinity anomalies, with

major contributions from diurnal entrainment and precipitation,

were found to be around ∼ 0.005 PSU. Yu (2010) tried to study the

effect of evaporation on the salty skin. However to the best of our

knowledge, none of the above mentioned studies focused on the role

of evaporative fluxes and resulting changes in SSS in modifying and

quantifying the irreversible turbulent mixing in the OML.

We conduct large-eddy simulations of the ocean, representative

of the Bay of Bengal, using both temperature and salinity as active

scalars, with diurnally varying forcing to quantify the upper ocean

turbulence and mixing. The results provide new insights into the

spatio-temporal character of diurnal turbulence and mixing. We

show that the evaporation can play a major role on diurnal

timescales for controlling the SSS and hence enhancing the

mixing in the surface layer. We also show the existence of a

salinity inversion layer and the presence of salt-fingering

instability, during daytime, for the case of weak winds, due

to evaporation.
2 Methodology

To perform the convection resolving simulations, we take a

cuboidal domain at centered around the Bay of Bengal mooring

(Weller et al., 2016) at 18°N, 89.5°E of dimensions 100m × 100m ×

250m. Periodic boundary conditions are imposed in the horizontal

directions so as to remove the effect of any lateral density gradients.

The domain is bounded at the top by a flat air-sea interface, where
frontiersin.org
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we prescribe the boundary conditions of momentum, heat and

evaporative haline (salt) fluxes. These boundary conditions are

based on smoothed air-sea fluxes (Figure 1A) taken from the

mooring observations during wintertime in the Bay (Weller et al.,

2019). The evaporation rate E (m/s) is calculated from the latent

heat flux QL as:

E =
QL

r0Lv
(1)

where r0 is the reference density and. is the latent heat of

vaporization. We also include the effects of shortwave

penetration by putting it as a source term in the governing

equations. Here we have also put diurnally oscillating wind stress

to give unsteadiness to the system. We also add a sponge layer of

height 50m, extending up to 200m so as to damp any reflections

coming from the bottom boundary thus mimicking open ocean

conditions. Note that this study does not include the effects of
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precipitation, as it has been well documented in an earlier study

(Drushka et al., 2016).

Large-eddy simulations are used to evaluate the velocity and

scalar fields (temperature and salinity) from the incompressible,

non-hydrostatic Navier-Stokes equation, with Boussinesq and f-

plane approximation. Additional model details can be found in the

Supplementary Document. We employ a linear equation of state for

calculating the density field. The LES domain uses a grid of Nx =

Ny = 128 and Nz = 417 which is uniform in both the x and y

directions and stretched in the z direction to achieve higher

resolution near the top boundary in order to resolve the ∼
O(1mm) thick laminar diffusive layer. The required resolution

criteria is discussed in Rosevear et al. (2021). Model runs are

initialized with temperature and salinity profiles, fitted from the

mooring observations prior to the event (Figures 1, S1). The water

has a molecular viscosity of n = 10−5 m2/s, thermal diffusivity kT =

1:4� 10−6 m2/s and salt diffusivity kS = 1:2� 10−8 m2/s. Variable
A
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FIGURE 1

(Left) Upper ocean response to diurnal forcing. (A) Surface boundary conditions of net heat flux Q (W/m2) (orange), wind stress magnitude t (N/m2)
(black) and evaporation minus precipitation E-P (m/s) (blue). (B) Horizontally averaged root mean squared fluctuating vertical velocity w (m/s).

(C) Brunt Vaisala Frequency squared N2 (s −2 ), where white patches indicate N2 < 0. (D) Shear squared S2 (s −2). (E) Reduced shear or Modified

Richardson number S2 - 4 N2 (s −2). (F, G) Initial profiles of T, S and N2 (solid), at day 2.25 (dotted) and day 2.9 (star marked).
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time stepping with a fixed Courant–Friedrichs–Lewy (CFL) number

of 1.2 and typical time steps of the order O(1s) is used. To quantify

the role of evaporation, two sets of simulations have been

performed: a) complete forcing with momentum, heat and haline

fluxes, and b) forcing with momentum and heat fluxes only. Note

that we also performed simulations with constant wind stress, but it

didn’t have much effect on the resulting dynamics (Figure S4). All

the further analysis has been done from the second diurnal cycle

onward, as the model spin-up time was about one day.
3 Results

3.1 Overview of diurnal turbulence

The diurnal nature of the surface fluxes cause the upper ocean

to cyclically stir and restratify. During the nighttime, the negative

net heat flux cools the surface of the ocean (Figure 1A), and results

in unstable stratification (Figures 1C, G) and convective deepening

of the OML. Convective plumes penetrate into the subsurface

depths reaching the diurnal pycnocline, as can be seen from the

horizontally averaged root mean squared fluctuating vertical

velocity, which varies over an order of magnitude, and the Brunt-

Väisäla frequency squared (N2)

N2 =
−g
r0

d 〈 r 〉
dz

(2)

where g is the acceleration due to gravity, r0 is the reference

density and 〈 r 〉 is the total horizontally averaged density,

(Figures 1B, C) which peaks at around 4 � 10−4 s −2 within the

pycnocline (Figure 1G). As the daytime begins and the shortwave is

absorbed by up the ocean bulk, most of the turbulence is suppressed

and thermal stratification begins to build and the OML shallows

(Figures 1F, G). The increased stratification traps horizontal

momentum within a very thin layer, called the diurnal warm

layer, enhancing the near-surface shear. The squared shear S2

(Figure 1D) is calculated as:

S2 =
d 〈 u 〉
dz

� �2

+
d 〈 v 〉
dz

� �2

(3)

where 〈 u 〉 and 〈 v 〉 are the plane averaged zonal and

meridional velocities respectively. This shear layer descends

towards the pycnocline, as the net heat flux begins to decrease

after reaching its peak value. Note that, at all times the oscillating

surface wind stress also continues to produce shear turbulence, but

it is enhanced near the surface during daytime and near the

pycnocline during the nighttime. This phenomena has also been

documented in previous studies (Moulin et al., 2018; Hughes et al.,

2020a). Figure 1E shows the reduced squared shear S2 - 4N2, where

positive values indicate that the water column is unstable to KH-like

shear instability. The competition between this diurnal jet and

stratification makes the near-surface unstable to shear

instabilities. In addition, we also see the subsurface depths getting

unstable as this shear layer descends (Moulin et al., 2018;

Wijesekera et al., 2020). Evaporation leads to a persistent unstable

gradient of near surface salinity (Figure 1F), which is present even
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during daytime. This enhances the convective instability during

nighttime and also compensates for the increase in the overall

stratification during daytime due to thermal heating alone. This also

causes enhanced mixing, especially during daytime, as will be

discussed further.
3.2 Salt-fingering instability in the diurnal
mixed layer

Surface evaporation tends to increase the SSS (Asher et al., 2014;

Drushka et al., 2014; Boutin et al., 2016). The accumulation of heat

and excess salinity in the top layer over colder and fresher deeper

waters are the conditions favorable for double diffusive salt-

fingering instability (Soloviev and Lukas, 1997). This is quantified

using the density ratio R and Turner angle Tu defined as:

R =
aTz

bSz
= − tan  (Tu + 45∘) (4)

where a and b are the thermal expansion and haline

contraction coefficients, and Tz and Sz denote the plane averaged

vertical temperature and salinity gradients (Ruddick, 1983). For

warm/salty waters over cold/fresh, − 45 ° < Tu < 45 °, indicating

salt-fingering (SF) instability is likely, whereas − 45∘ < Tu < 90∘

indicates absolute stability. However Tu < −90∘ or Tu > 90∘ denotes

static instability (N2 < 0). The former is caused due to the

overwhelming effect of destabilizing thermal gradient and the

latter vice versa. Figure 2B shows the temporal evolution of Tu

for two consecutive diurnal cycles. During the daytime, the entire

water column down to the pycnocline is susceptible to salt-fingering

instability. L424 This can also be verified from the T/S profiles in

Figure 2D during daytime. Figure 2E shows the contribution of both

scalar gradients to the overall stratification. They are defined as:

N2
T = ga

〈 ∂T 〉
∂ z

  and  N2
S = −gb

〈 ∂ S 〉
∂ z

(5)

The salinity gradient compensates the temperature gradient in

the daytime, however keeping the overall stratification stable. When

the surface heat flux changes sign from positive to negative,

indicating a shift from daytime to nighttime, both the scalars

contribute negatively to the stratification, causing convective

static instability. This implies that both N2
T ,N

2
S < 0. However,

since the boundary condition of temperature changed from

heating to cooling, it takes some time to adjust. Hence initially,

even if both N2
T ,N

2
S < 0, but jN2

T j < jN2
S j, making the contribution

of salinity gradient the dominant effect in destabilizing the density

gradient. This can also be seen through Turner angle, where the

near surface values are more than 90° just as the heat flux changes

sign from positive to negative. After some time however, the values

of Turner angle become less than -90° indicating that surface

cooling dominates the convective mixing. The convection almost

homogenizes both the T/S profiles, leaving almost negligible

gradient, except near the top, where the localized effects of both

surface cooling and evaporation persist (Figures 2D, E). As soon as

the shortwave begins however, even when the heat fluxis still

negative, the turbulence begins to decrease due to the build up of
frontiersin.org
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thermal stratification and increased potential energy. At that

instant, the convection switches back to being salinity dominated

and the whole cycle repeats the next day.

To supplement the findings above, we also plot the buoyancy

Reynolds number, calculated as:

Reb =
ϵ

nN2 (6)

where ϵ is the turbulent kinetic dissipation (defined in the next

section) and N2 is the squared Brunt Vaisala frequency. This quantity

can be interpreted as the ratio of Ozmidov to Kolmogorov length

scales. For Reb < 20, there is weak buoyancy controlled turbulence,

while for Reb > 100 the turbulence is energetic (Bouffard and

Boegman, 2013). Previous studies have indicated that salt-fingering

can enhancemixing forReb < 200 (Nagai et al., 2015). Figure 2C shows

that during daytime, Reb < 200 almost throughout the diurnal

thermocline, which further supports that salt-fingering is the major

contributor to turbulent mixing. The TS diagram (Figure 2F) provides
Frontiers in Marine Science 05
another description of these dynamics. It has been plotted every 6

hours, for the whole of day 2 (after initialization). By day 2.25, when the

neat heat flux is positive, in the top 7m or so the presence of warm and

salty waters over cold and fresh waters and indication of salt-fingering

can be seen here as well. Soon after nighttime begins (day 2.5), a small

inversion can be seen in both the scalars due to the net surface

destabilizing buoyancy flux. During peak night times, the profiles

have been almost homogenized down to the pycnocline, which can

be seen by both day 2.5 and 3. Note that the changes in these T/S

properties only occur for depths less than about 15m, as the OML itself

is about 13m. These changes in time have profound consequences on

irreversible turbulent mixing, discussed in the next section.
3.3 Turbulence statistics and mixing

Figure 3 shows the evolution of horizontally averaged

turbulence statistics from the ocean’s response. The small scale
A

B

D E F

C

FIGURE 2

(A) Wind stress magnitude t (N/m2) (black), net heat flux Q (W/m2) (orange) and evaporation minus precipitation E-P (m/s) (blue). (B) Turner angle Tu

from LES simulations. (C) Buoyancy Reynolds number Reb contour from LES simulations, where white patches indicate N2 < 0. (D, E) Depthwise

profiles of temperature T, salinity S and N2
T , N

2
S plotted at day 2.25 (dotted) and day 2.75 (star marked). (F) TS diagram plotted at day 2.25, 2.5, 2.75,

3.0 till 20m depth.
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turbulent kinetic energy (Figure 3B) is defined as:

TKE =
1
2
〈 ui

0ui
0 〉 (7)

where, u0i , the fluctuating velocity, is calculated from the

horizontally averaged mean field as u0i = ui − 〈 ui 〉 ( 〈 : 〉 denotes

horizonatlly averaged quantity). During nighttime, TKE is

enhanced within the whole mixed layer due to convection, while

it is restricted to the near-surface during daytime. The mixed layer

depth (MLD) for both the test cases, calculated using a density

threshold criteria of 0.01 kg/m3 is also plotted. It varies diurnally for

both the cases, however the combined case has greater MLD than

the case without evaporation. Using higher thresholds may cause

MLD to not shallow much during daytime. A continued increase

over time of MLD for the combined case, can be observed as the net

surface buoyancy flux integrated over a day is non-zero (and

positive) and the surface wind stress also continues to provide a

source of mechanical turbulence all the time. There is some leakage

of TKE below the mixed layer as well, which is likely due to the

downward propagation of internal waves from the pycnocline. The

shear production P (Figure 3C) shows the variability of

mechanically generated turbulence, given by
Frontiers in Marine Science 06
P = − 〈 ui
0uj

0 〉
∂ 〈 ui 〉
∂ xj

(8)

The enhanced values near the surface are the direct result of the

stress applied, while the descent of the shear layer causes shear

instability and turbulence, as discussed before (Figure 1E). The

subsurface enhancement of shear production within the pycnocline

can be seen during nighttime, producing internal waves. The

turbulent buoyancy flux.

B = −
g
r0

〈 r0w0 〉 (9)

represents the conversion of energy from TKE to available

potential energy (APE) and vice versa (Figure 3E). This includes

contributions from both the scalars respectively. Positive values

indicate APE being converted to TKE, through convection, while

negative values show the energy spent in destroying stable

stratification (conversion from TKE to APE). During nighttime, the

turbulence is mostly convective in nature, while during the daytime, the

shear-induced turbulence has to work against the stable stratification.

The turbulent kinetic dissipation ϵ is the sink of TKE, denoting how

much energy is spent in overcoming the viscous stresses.
A
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FIGURE 3

Turbulence and mixing statistics for the upper ocean. (A) Wind stress magnitude t (N/m2) (black), net heat flux Q (W/m2) (orange) and evaporation
minus precipitation E-P (m/s) (blue). (B) Turbulent Kinetic Energy (TKE) with the mixed layer depth for case with evaporation (black) and without
evaporation (red). (C) Shear Production P . (D) Total kinetic dissipation ϵ. (E) Turbulent Buoyancy Flux B. (F) Mixing cAPE defined as the sink of APE.
(G) Mixing efficiency h. (H) Diapycnal Diffusivity kr calculated following (Osborn and Cox, 1972). Panels (B–D, F, H) show the logarithm of respective

quantities.
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ϵ = n〈 ∂ ui
0

∂ xj

∂ ui
0

∂ xj
〉 (10)

As discussed before, depending on the time of the day, the

turbulence could be either mechanical or convective in nature. The

dissipation also follows this variability (Figure 3D). During the

daytime, the values of ϵ and P are comparable near the surface and

during descent of the shear layer. However, in the convective

regime, the buoyancy flux tries to balance ϵ, throughout the

mixed layer. This has also been reported in previous studies (Shay

and Gregg, 1986; Lombardo and Gregg, 1989; Ivey and Imberger,

1991; 214 Imberger, 1985).

The irreversible mixing, defined as the sink of APE, is calculated

following Gregg (2021) (Figure 3F).

cAPE =
g2

r20N*
2 cr (11)

where cr is the rate of destruction of density variance or scalar

dissipation.

cr = 2kr⟨
∂ r0

∂ xi

∂ r0

∂ xi
⟩

≈ 2r2
0 a2kT⟨

∂T 0

∂ xi

∂T 0

∂ xi
⟩ + b2kS⟨

∂ S0

∂ xi

∂ S0

∂ xi
⟩

� �
(12)

Here kT ,S are the sum of the molecular and eddy diffusivity of

the scalars evaluated from the subgrid scale model and N*
2 is the

buoyancy frequency squared calculated from the sorted density

profile (Arthur et al., 2017). The irreversible mixing also follows a

diurnal cycle, where we observe high values during nighttime, as

convective turbulence is an efficient mixing mechanism. During the

daytime, most of the energy produced by the shear goes into

dissipation, rather than mixing, however, the opposite happens

during nighttime. With the change of sign of net heat flux, different

peaks in mixing can also be seen. The first peak occurs during the

transition from daytime to nighttime due to the fact that now both

the scalars are destabilizing the density gradient. It is here that the

Tu also shifts from showing salt-fingering to salinity dominated
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convective static instability (Figure 2B). The second peak is again

just when the shortwave heating begins and the convection shifts

from being cooling dominated to salinity dominated. Similar

behavior can also be seen in mixing efficiency h (Figure 3G),

which is defined as the ratio of sink of APE to the sum total of

sink of APE and sink of TKE. In other words, it provides the relative

amount of energy going into irreversible mixing, as compared to

viscous dissipation. Here as well, high values of more than 0.5 can

be seen during nighttime, when convective turbulence dominates.

Such high values are also found in previous studies (Gayen et al.,

2013; Wykes et al., 2015; Sohail et al., 2018; Ivey et al., 2021). We

also calculate the turbulent eddy diffusivity following Osborn and

Cox (1972).

kr,eddy =
cr

2 d 〈 r 〉
dz

� �2 (13)

Within the OML, during nighttime, the eddy diffusivity

(Figures 3H, S2) reaches values around 10−1 m2/s, while in the

daytime, it remains about 10−3 m2/s, due to less mixing by shear-

driven turbulence. Note that the presence of evaporation increases

both mixing and diapycnal diffusivity and has a deeper MLD, as

compared to the case without it (Figures 3B, S3). The peaks in both

kr,eddy and h during the transition times are a result of the shifting

nature of convection, as discussed above. These varying regimes of

high and low mixing has consequences on SSS and SST as discussed

in the next section.
3.4 Evolution of SST and SSS:
role of evaporation

Figure 4 shows the comparison between the two cases: with and

without evaporation. Vertically integrated mixing (Figure 4B)

shows that the case with evaporation has about two orders of

magnitude greater mixing than the case without evaporation

especially during daytime. During nighttime, the difference is not

so much although, as nighttime convection is predominantly
A

B

D

E

C

FIGURE 4

(A) Wind stress magnitude t (N/m2) (black), net heat flux Q (W/m2) (orange) and evaporation minus precipitation E-P (m/s) (blue). (B) Vertically
integrated mixing till 250m for both the cases. (C) Logarithm of mixing plotted for both cases. (D) SSS comparison and (E) SST comparison of both
the cases with mooring data.
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controlled by the surface cooling, especially in the later hours. This

can also be seen in the magnitude of mixing, plotted at 5m depth

(Figure 4C). The difference is very evident during daytime, and we

also see the two peaks during transition times, which are missing for

the case without evaporation. But during late nighttime, the

difference decreases as the surface cooling begins to dominate

evaporative flux, for nighttime convection. During transition from

daytime to nighttime and vice versa, peaks in mixing can also be

observed in the case with evaporation (Figures 4C, 3F). These peaks

correspond to the changing nature of convection (from being

salinity dominated to temperature dominated, and vice versa)

during these transition periods, as discussed before. Throughout

the day, evaporation continues to enhance mixing throughout the

water column, which also leads to better prediction of the other

variables. SST and SSS are compared for both the cases with the

available mooring data (Figures 4D, E). Note that the salinity at

0.6m depth is used as a proxy for mooring SSS. It can be clearly seen

that the case with evaporation better predicts SSS than the case

without it. This is due to the enhanced mixing caused by double

diffusive salt-fingering, especially during daytime, which leads to

increase in SSS. The other mechanism of entrainment of saltier

subsurface waters is not efficient so as to increase the SSS. This

mechanism is responsible for SSS evolution for the case without

evaporation, and has been discussed in previous studies (Sarkar and

Pham, 2019). Similarly, the case with evaporation gives a much

better match with the mooring SST. The reduced amplitude of the

diurnal SST in the case with evaporation, especially during daytime

is due to the enhanced mixing caused by the salt-fingering.

However, in the case without evaporation, we are not providing

any salt flux, and hence the mixing is also reduced, causing higher

amplitude of diurnal SST.
4 Discussion

Convection resolving large-eddy simulations have been employed

to study the upper ocean turbulence and mixing in response to a

diurnal forcing of surface fluxes including evaporation, having both

temperature and salinity as scalars. Quantifying the associated

turbulence and mixing, we have especially focused on the role of

evaporation in controlling the SSS and increasing mixing. We present

the first evidence for evaporatively caused salt-fingering instability in

the near surface layer during daytime. The surface evaporation

enhances mixing by almost order of magnitude as compared to the

case without evaporation, during daytime. In addition to above, we

also show that the changing nature of convection when surface

cooling during nighttime is the major contributor towards mixing,

while evaporation plays a secondary role. The overall increase in

mixing also causes deeper OML, as compared to the case without

evaporation. Our simulation results agree well with the mooring

observations. The balance between the evaporative flux and the

interior mixing dictates the evolution of SSS, and the increased

mixing also helps to better predict the SST. The diapycnal

diffusivity differs by almost couple of orders of magnitudes during

daytime and nighttime, and peaks around 10−1 m2/s during

nighttime. Similarly, the irreversible mixing cAPE and its efficiency
Frontiers in Marine Science 08
h are also enhanced during nighttime, reaching values close to 1,

which are previously reported in convection dominated systems.

Future work concerns including the effects of surface waves,

Langmuir turbulence and developing appropriate convective

parameterizations for including the evaporative effects on

turbulence and mixing within the existing ocean models.
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