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The El Niño-Southern Oscillation (ENSO) is a quasi-periodic climate type that

occurs near the equatorial Pacific Ocean. Extreme periods of this climate type

can cause terrible weather and climate anomalies on a global scale. Therefore, it

is critical to accurately, quickly, and effectively predict the occurrence of ENSO

events. Most existing research methods rely on the powerful data-fitting

capability of deep learning which does not fully consider the spatio-temporal

evolution of ENSO and its quasi-periodic character, resulting in neural networks

with complex structures but a poor prediction. Moreover, due to the large

magnitude of ocean climate variability over long intervals, they also ignored

nearby prediction results when predicting the Niño 3.4 index for the next month,

which led to large errors. To solve these problem, we propose a spatio-temporal

transformer network to model the inherent characteristics of the sea surface

temperature anomaly map and heat content anomaly map along with the

changes in space and time by designing an effective attention mechanism, and

innovatively incorporate temporal index into the feature learning procedure to

model the influence of seasonal variation on the prediction of the ENSO

phenomenon. More importantly, to better conduct long-term prediction, we

propose an effective recurrent prediction strategy using previous prediction as

prior knowledge to enhance the reliability of long-term prediction. Extensive

experimental results show that our model can provide an 18-month valid ENSO

prediction, which validates the effectiveness of our method.

KEYWORDS

EI Niño southern oscillation, long-term prediction, spatio-temporal modeling, transformer,
deep learning
1 Introduction

The EI Nino-Southern Oscillation (ENSO) is one of the recurring interannual

variability of ocean-atmosphere interactions phenomenon over the tropical Pacific

Ocean and contains three phases (onset, mature and decay) with respect to the changes

of sea surface temperature(SST). When the SST are higher than normal in the central and
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eastern equatorial Pacific Ocean, it is called El Nino, and when it is

lower than normal, it is called La Nina Larkin and Harrison (2002).

With wind and SST oscillations, the ENSO has wide influences, for

example, the global atmospheric circulation Alexander et al. (2002),

crop production Solow et al. (1998), environmental and

socioeconomic (McPhaden et al. (2006)), ecology and economy

Reyes-Gomez et al. (2013). Therefore, accurate prediction of ENSO

occurrence can guide us to take preventive measures and effectively

reduce the impact of natural disasters on human society. However,

due to the predictability barrier and chaos of climate variability Mu

et al . (2019) ENSO prediction remains an extremely

challenging task.

In recent years, there are several related indicators to reveal

ENSO underlying complex climate change, such as Nino3.4 index

and the SST index Yan et al. (2020). All of them utilize the historical

SST or Heat Content (HC, Vertical mean ocean temperature above

300 m) to predict whether the ENSO event will happen in the

future. Among these indicators, the Nino3.4 index is frequently

employed to evaluate phenomenon of ENSO, which calculates

mean SST anomaly(SSTA) maps of three consecutive months in

an area of 5°N-5°S and 170°W-120°W Ham et al. (2019). The

existing ENSO prediction methods can roughly classified into

numerical prediction methods (NWP), traditional statistical

methods and deep learning methods Ye et al. (2021b). The NWP

methods usually adopt the mathematical physics and integrating

governing partial differential equations to predict future Nino3.4

index Bauer et al. (2015). Specifically, Zebiak et al. Zebiak and Cane

(1987) proposed the first coupled atmosphere-ocean model for

forcasting the ENSO phenomenon, and subsequently various

models like Intermediate Coupled Model (ICM), Hybrid Coupled

Model (HCM) and Coupled General Circulation Model (CGCM),

have been proposed to obtain 6-12 months of reliable predictions

He et al. (2019).For example, Zhang et al. Zhang and Gao (2016)

developed an ICM for enso prediction focusing on thermocline

effect on the SST, which reasonably captures the overall warming

and cooling trends from 2014-2016. Subsequently, Barnston et al.

Barnston et al. (2019) validated the ENSO prediction skill in the

North American Multi-Model Ensemble(NMME) and found that

NMME can effectively improve the ENSO prediction skill. Johnson

et al. Johnson et al. (2019) used the European Centre for Medium-

Range Weather Forecasts(ECMWF) to predict ENSO and found

that ECMWF has powerful advantages in ENSO prediction,

especially in the difficult-to-predict northern spring and summer

season. Ren et al. Ren et al. (2019) developed a statistical model to

examine the East Pacific (EP) type and Central Pacific (CP) type

predictability, and the results showed that ENSO predictability is

mainly derived from changes in the upper ocean heat content and

surface zonal wind stress in the equatorial Pacific. However, due to

weather prediction is highly dependent on initial and boundary

conditions, as well as a large variety of physical quantities, which

hinder the application of NWP in long-term prediction Ludescher

et al. (2021). Furthermore, with the horizontal resolution

increasing, the numerical models will lead to an explosion of time

costs and computational resources Mu et al. (2019); Ye et al.

(2021b). Traditional statistical methods summarized and analyze

the shallow patterns in historical data of ENSO, and then, realize
Frontiers in Marine Science 02
the prediction of future ENSO Yan et al. (2020). Concretely, Petrova

et al. Petrova et al. (2017) decomposed the time series into dynamic

components and captured the dynamic evolution of ENSO to

obtain efficient predictions. Subsequently, PETROVA et al.

Petrova et al. (2020) added a stochastic periodic component

associated with the ENSO time scale, which further improved the

prediction. Wang et al. Wang et al. (2020) proposed a

nonparametric statistical approach based on simulation

prediction to address the limitation of long-term prediction for

statistical methods raised by highly non-linear and chaotic

dynamics. Rosmiati et al. Rosmiati et al. (2021) proposed the auto

regressive ensemble moving average (ARIMA) model to predict the

Niño3.4 Index and found that ARIMA was very effective in

predicting ENSO events. However, ENSO is non-linear ocean-

atmosphere phenomenon over time, traditional statistical

methods can not well capture the complex patterns and

knowledge to effectively predict the ENSO phenomenon Yan

et al. (2020).

As deep learning techniques have developed, researchers have

began to design neural networks for predicting weather elements

(e.g., rainfall), which can well mine complex and intrinsic

correlations, such as artificial neural networks (ANN) Feng et al.

(2016), convolutional neural networks (CNN) Ham et al. (2019); Ye

et al. (2021b); Patil et al. (2021), long short-term memory networks

(LSTM) Broni-Bedaiko et al. (2019), convolutional long short-term

memory networks (ConvLSTM) Mu et al. (2019); He et al. (2019);

Gupta et al. (2022), CNN-LSTM Zhou and Zhang (2022), graph

neural networks (GNN) Cachay et al. (2020), recurrent neural

network (RNN) Zhao et al. (2022), transformer Ye et al. (2021a)

etc. Feng et al. Feng et al. (2016) propose two methods to predict the

existence of ENSO, and the time evolution of ENSO scalar features,

which provided a new prediction direction for predicting the

occurrence for ENSO events. Broni-Bedaiko et al. Broni-Bedaiko

et al. (2019) used the LSTM networks for multi-step advance

prediction of ENSO events, which complemented the previous

models and predicted the ENSO phenomenon 6, 9, and 12

months in advance. Mu et al. Mu et al. (2019) defined ENSO

prediction as a spatio-temporal series prediction issue and used a

mixture of ConvLSTM and rolling mechanism to predict the

outcome over a longer range of events. The GNN was first used

in Cachay et al. (2020) for seasonal prediction, it predict the result

in a longer lead time. Zhao et al. Zhao et al. (2022) designed an end-

to-end network, named Spatio-Temporal Semantic Network

(STSNet), it provided a multiscale receptive domains across

spatial and temporal dimensions. The significant breakthrough

work is the CNN-based model designed by Ham et al. Ham et al.

(2019), which is proficient in predicting ENSO incidents for as long

as 1.5 years, significantly higher than most existing methods.

Subsequently, Ye et al. Ye et al. (2021b) adapted the different

sizes of the convolutional kernel to capture the different scale

information and further improved the accuracy than Ham et al.

(2019). Patil et al. Patil et al. (2021) trained CNN models using

accurate data with the all season correlation skill greater than 0.45 at

lead time of 23 months. Another major breakthrough is the

combination of the POP analysis procedure with the CNN-LSTM

algorithm by Zhou and Zhang (2022), which explores hybrid
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modeling by combining physical process analysis methods with

neural network and proves its effectiveness. In addition, deep

learning in the field of spatio-temporal prediction is now well

developed, Li et al. Li et al. (2022) developed an adversarial

learning method fully considering the spatial and temporal

characteristics of the input data to produce accurate wind field

estimates, and Lv et al. Lv et al. (2022) proposed a new generative

adversarial network model to simulate the spatial and temporal

distribution of pedestrians to generate more reasonable future

trajectories, which provides new ideas for ENSO prediction.

Although certain advances have been made in ENSO-related

studies, there are still quite limited predictions due to the following

reasons: (1) The ENSO phenomenon contains prominent spatio-

temporal characteristic, and even if the temperatures of two stations

with long time intervals and far apart locations, they may still have

complex interactions with different implications for future ENSO

prediction. The traditional CNN convolution kernel suffers from

the problem of local receptive field, for example, to obtain the SST

anomaly relationship between the North Pacific and South Atlantic,

it is necessary to stack the deep layers to obtain these two areas, but

the amount of information decays as the number of layers increases

Ye et al. (2021a). The transformer-based methods explored the

attention mechanism to capture the global receptive field. However,

these methods mainly model the spatial information, resulting in

confusing spatio-temporal features Nie et al. (2022). (2) Due to the

variable rate signal and high frequency noise in atmosphere-ocean

system, it is a challenge for predicting long-time ENSO in advance.

The previous close calendar months have significant effect on the

next month prediction, while those with longer intervals have low

effect. Existing methods ignore the nearby prediction results when

they mine the spatial-temporal patterns in the next time, resulting

large errors due to the large magnitude of ocean climate variability

over long intervals. (3) The ENSO phenomenon has an obvious

statistical characteristic of annual cycle Zhou and Zhang (2022),

and how to effectively use this interannual characteristic to capture

the correlation between historical and predicted data is the key to

improve the prediction of the future trend change in atmosphere-

ocean system.

To solve the above limitations, we designed a novel Spatial-

temporal Transformer Network for Multi-year ENSO prediction,

which is named STTN. First, as the ENSO phenomenon has

large-scale and long-term dependencies across both spatial and

temporal dimensions, we employed a multi-head spatial-

temporal network to adaptively model the variations along

with the changes in space and time, which can effectively

captures the global and successive characteristics of climate

change. Second, we designed an effective recurrent prediction

strategy to utilize the previous predictions as prior knowledge for

long-term prediction by a single model. To mitigate the negative

influence of false predictions, we encoded the contextual

information of successive predictions by temporal convolution

operation to fully exploit the historical contextual time series.

Third, we integrated the month information into the procedures

of SSTA and HC anomaly (HCA) maps feature encoding and

predictions, which guides the model to better capture the

seasonality and periodicity of the ENSO phenomenon.
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The main contributions from our work are summarized below:
• We proposed a novel spatial-temporal transformer network

to model the variations of SSTA and HCA along with the

changes in space and time, which can adaptively captures

the inherent characteristics of climatic oscillation.

• We introduced an effective recurrent prediction strategy to

treat previous predictions as prior knowledge for long-term

predictions and utilize the context of predictions to mitigate

the error accumulation during recurrent prediction.

• We integrated the temporal index as position embedding

into the feature learning procedure to facilitate mining the

influence of seasonal variation on predicting ENSO.

• The extensive experiments indicated that our single model

outperforms the state-of-the-art methods with multiple

ensemble models, which demonstrates the effectiveness of

our method at dynamic prediction.
2 Methodology

2.1 Data processing

The ENSO prediction has been defined as a spatio-temporal

prediction issue, where the objective is to use the ENSO historical

data xt-T+1,…,xt-1, xt to predict the Niño3.4 indexes for the next l

months. This process is formulated as:

½yt+1, yt+2 … yt+l� = F(xt−T+1, xt−1 … xt)   (1)

where F denotes the deep learning model, l denotes the lead month,

T denotes the length of historical input data. The illustration of our

proposed network is illustrated in Figure 1.

The time unit of ENSO historical input data contains T

consecutive months, denoted as xsstaϵ RT×H×W and xhcaϵ RT×H×W

for SSTA and HCA, respectively. T, H, and W indicate time, height,

and width for the input data, respectively. To model the spatial and

temporal correlation with a global perspective, we adopt the

transformer structure as the backbone of our method. To meet

the requirement of transformer structure, we first reshape the SSTA

and HCA 2D data into a sequence of flattened 2D patches. Taking

xssta as an example, each grid map is divided into N patches with

same size: x
0
ssta ∈ RT�N�p1�p2 , N=H×W/(p1×p2). The p1 and p2 is

the size of each patch, then each patch is converted into a one-

dimensional vector with p1×p2 dimension. Then, we adopt a linear

layer to project these vectors into D dimension. Finally, the features

of the SSTA or HCA can be represented as fssta∈RT×N×D and

fhca∈RT×N×D .
2.2 Spatial-temporal position encoding

Due to the complex historical input data with periodic

characteristics, we need to assign the position indexes for each

patch to let the network know the location and order of each patch,

so that the model can explore the correlations among different
frontiersin.org
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locations or at different times. To encode the temporal information,

we adopt different sine and cosine functions Vaswani et al. (2017),

which are periodic and can explore the temporal characteristic of

abnormal temperature. Take fssta as an example:

PO(i, 2j) = sin  (i =100002j=D)

PO(i, 2j + 1) = cos  (i =100002j=D)
(2)

where i is the time step of the input sequence or the calendar month

in the period of C, and j is the index of dimension, PO∈RT×D . For

the location of each patch within space, we learn spatial positional

embedding E∈N×D . Finally, the spatio-temporal position is added

to the feature fssta and to obtain the embedding vector z(0)ssta.

z(0)ssta = Norm(fssta + E + PO) (3)

where Norm is the LayerNorm operator, and the embedding vector

z(0)hca of HCA can also be obtained by the above process. In addition,

the calendar month information and the time step of the input

sequence also contributed to the recurrent prediction strategy

which will be presented later.
2.3 Spatial-temporal attention module

To better model the spatial and temporal characteristics of ENSO,

we adopt a multi-head attention to encode the variability. Without

losing generality, we take SSTA data as the input. The encoder

structure is shown in Figure 2A, which consists of spatial and

temporal attention, multi-layer perceptron, and residual connection

to obtain the feature representation. To capture the temporal

dynamics, we first use the self-attention mechanism in the time
Frontiers in Marine Science 04
dimension. For example, in the case of temporal attention, exclusively

using keys from the same patches but different frames as the query,

the query, key, and value vectors in the m-th Encoder block can be

computed from the feature vector z(m−1)∈RN×T×D as follows.

q(m,a)
t = W(m,a)

q Norm(z(m−1)) ∈ RDh

k(m,a)
t = W(m,a)

k Norm(z(m−1)) ∈ RDh

v(m,a)
t = W(m,a)

v Norm(z(m−1)) ∈ RDh

(4)

where t = 1,…,T, and Norm is the LayerNorm operation, a = 1,…,A

is the index of attention heads, and A is the sum of attention heads,

the dimension of the attention head is given as Dh = D/A. W(m,a)
q ,

W(m,a)
k ,W(m,a)

v are the parameters for the projection layers. The

weights of temporal patches are obtained by a dot product

calculation as follows.

a(m,a)
t = s ( q

(m,a)T

t ffiffiffiffi
Dh

p k(m,a)
t 0

n o
t0=1,…,T

) (5)

where s is the softmax activation function and a(m,a)
t ∈ RT�T is the

temporal attention layer m in terms of a-th head. The patch

representations are calculated by these weights.

p(m,a)
t = o

T

t0=1
a(m,a)
tt 0 v(m,a)

t 0 (6)

Then, these vectors from all the attention heads are

concatenated and projected:

z(m)
t = Wt

p(m,1)
t

⋮

p(m,A)
t

2
664

3
775 (7)
FIGURE 1

The proposed STTN model architecture, which contains Input data, Patch Divide, Spatial-temporal position encoding, Encoder, SSTA and HCA
Features, and Recurrent prediction strategy. The SSTA and HCA encoder consist of multiple transformer encoder blocks. The Recurrent prediction
strategy predicts the Niño3.4 index according to the time step. Input variables are SSTA (in units of °C) and HCA (in units of °C) from t-T+1 to t (in
units of month).The STTN model outputs the Niño3.4 indexes for the next l months.
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where Wt is the parameter of the linear layer and [] indicates

concatenation operation. Further, to capture the spatial dynamics,

we use the spatial attention immediately after the temporal

attention. The spatial attention calculates the weights in the

spatial dimension, exclusively using keys from the same frame as

the query. When implementing the spatial attention, we can

exchange the spatial and temporal dimensions of zmt ∈ RN�T�D,

then the query, key, and value vectors can be computed from the

feature vector zmt ∈ RT�N�D as follows:

q(m,a)
s = W(m,a)

Q Norm (zmt ) ∈ RDh

k(m,a)
s = W(m,a)

K Norm (zmt ) ∈ RDh

v(m,a)
s = W(m,a)

V Norm (zmt ) ∈ RDh

(8)

Then, the weight of each space patch also can be computed by the

dot product calculation:

a(m,a)
s = s ( q

(m,a)T
s ffiffiffiffi
Dh

p k(m,a)
s 0

n o
s0=1,…,N

) (9)

where a(m,a)
s ∈ RN�N and s is the softmax activation function. The

encoding of the spatial attention at layerm can be similarly obtained

by Eq. 6

p(m,a)
s = o

N

s0=1
a(m,a)
ss 0 v(m,a)

s 0 (10)

Finally, we can also obtain the output z(m)
s of spatial attention as

follows:

z(m)
s = W

0
p

p(m,1)
s

⋮

p(m,A)
s

2
664

3
775 (11)

where Wp is the parameter of the linear layer and [] indicates the

concatenation operation. After using the temporal and spatial

attentions, we use the residual connection and multilayer
Frontiers in Marine Science 05
perceptron (MLP) to ensure the stability of the gradient and mine

the spatio-temporal features.

z(m)
s = Norm (z(m)

s + z(m−1))

z(m) = Norm (MLP(z(m)
s ) + z(m)

s )
(12)

After encoding SSTA and HCA data, we get the spatio-temporal

features of SSTA and HCA respectively, and in order to perform

joint prediction, we concatenate the features of SSTA and HCA to

get the feature Z∈R(2×T×N)×D .
2.4 Recurrent prediction strategy

In order to use previous predictions as prior knowledge for

long-term prediction, we introduced an effective recurrent

prediction strategy (RPS). Specifically, we first utilized the self-

attention,cross-attention blocks, MLP layer, and residual

connection to construct the decoder of the spatial-temporal

characteristics. The structure of the decoder is depicted in

Figure 2B. Then, the temporal convolutional block with one-

dimensional convolution was adopted to encode the prediction

context, which can help reduce the error accumulation in the

recurrent prediction process. Finally, the fully connected layer

maps the feature vector into the Niño3.4 index to optimize the

whole network. It is worth noting that these operations are used in

each step of the recurrent prediction. Since the Niño3.4 index is

calculated by SSTA, we averaged the features of the SSTA to

generate the start character CLS Vaswani et al. (2017). When

predicting the Niño3.4 index for the l-th lead month, the

complete calculation is as follows. First, the output of the decoder

before the (l-1) th month is concatenated with CLS to generate the

input e0∈Rl×D , which is used for the decoder query. Meanwhile, the

time sequence position encoding and calendar month information

in the period of C are added to the output of the decoder before the

concatenation, and then e0 is input to the decoder to predict the
BA

FIGURE 2

The Encoder and Decoder Blocks. The input to the Encoder Block is the SSTA (HCA) feature output by the upper-level block. The input to the
Decoder Block is the Niño3.4 index feature output by the upper-level block.
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Niño3.4 index for the l-th lead month. The process of the decoder is

shown below:

e
0 (m) = Norm(SA(em−1) + em−1)

e
0 0 (m) = Norm(CA(e

0 (m),Z) + e
0 (m))

e(m) = Norm(MLP(e
0 0 (m)) + e

0 0 (m))

(13)

where em-1 is output of the m-1 layer decoder block, SA is self-

attention. To prevent future information leaks, we use the mask[31]

to ensure that the l-th lead month feature can only depend on known

outputs smaller than the l feature location in em-1. CA is cross-

attention, and its query/key/value can be computed by e'(m)/Z/Z. em is

the output of decoder for the l-th lead month, then we can get the l-th

lead month Niño3.4 index after through a fully connected layer.

Moreover, in order to use previous predictions as prior knowledge for

long-term projection, we concatenate eml into the input features Z of

the CA, l is an index of em, and use a one-dimensional convolution

with k convolution kernels to mitigate the error accumulation.
3 Experiments

3.1 Dataset and Evaluation metrics

3.1.1 Dataset
Following the existing work Ham et al. (2019), we validate our

proposed method on Coupled Model Intercomparison Project

Phase 5 (CMIP5, details in Table 1 Ham et al. (2019)) Taylor

et al. (2012), Simple Ocean Data Assimilation (SODA) Giese and

Ray (2011), and Global Ocean Data Assimilation System (GODAS)

Behringer and Xue (2004). These datasets contain the anomaly

maps of SST and HC from 180°W-180°E and 55°S-60°N, the spatial

resolution of each map is 5° x 5°. The goal of these datasets is to

predict the Niño3.4 indexes in the next consecutive months. The

details of the data are shown in Table 2. The training dataset

includes simulated data from the CMIP5 Taylor et al. (2012) in the

period from 1861 to 2004, the validation dataset includes the

reanalysis data from the SODA Giese and Ray (2011) in

the period from 1871 to 1973, and the test dataset includes the

reanalysis data from the GODAS Behringer and Xue (2004) in the

period from 1982 to 2017. All methods utilize the same data for

training, validation and evaluation. In addition, following the

existing work Zhou and Zhang (2022), we also validated our

proposed method in Coupled Model Intercomparison Project

Phase 6 (CMIP6 Eyring et al. (2016)), SODA, and GODAS. These

datasets contain the anomaly maps of SST and HC from 175°W-

175°E and 50°S-50°N, the spatial resolution of each map is 5° x 5°,

and the details of the data are shown in Table 3. It is worth noting

that the dataset in Table 3 was used only for comparison with Zhou

and Zhang (2022).

3.1.2 Evaluation metrics
To fairly evaluate the performances of the proposed method

and competing methods, we adopted Temporal Anomaly

Correlation Coefficient Skill (Corr) and Root Mean Square Error

(RMSE) between the predictions and observations with different
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leading months l, as used in Ham et al. (2019). Corr is a measure of

linear correlation between predicted and observed values, and

RMSE is the standard deviation of the residuals, which is a

standard measure of prediction error between predicted and

observed values. In addition to the above metrics for evaluating

the performance of ENSO prediction, we also calculated the Mean

Absolute Error (MAE) to evaluate the average absolute values. The

formulations of Corr, RMSE, and MAE are as follows:

Corr
l

= o
12

m=1

oe
t=s(Yt,m − Ym)(Pt :m : l − Pm,l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oe
t=s(Yt,m − Ym)

2oe
t=s(Pt :m : l − Pm,l)

2
q   (14)

RMSEl = o
12

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oe

t=s(Yt,m − Py·m,l)
2

e − sj j

s
  (15)

MAEl = o
12

m=1

oe
t=s Yt,m − Py·m,l

�� ��
e − sj j   (16)

where P is the predicted value, Y is the observed value, Pm,l is the

mean of P, Ym is the mean of Y, m is the calendar month, ranging

from 1 to 12. s and e are the start and end years of the

data, respectively.

3.1.3 Implementation details
Our approach was implemented on the Pytorch framework, and all

experiments were performed on an NVIDIA RTX3090ti with 24 GB of

memory. We adopted the strategy of Adaptive moment estimation

(Adam) to optimize the network learning. Following the Noam

Optimizer Vaswani et al. (2017), we adjusted the learning rate during

training. In order to clearly understand the experimental setup, we list

the main hyperparameter symbols, descriptions, and the values being

set in Table 4, the B1, B2, p
0
1, p

0
2, p1, p2 are set to 160, 80, 8, 12, 10, 14,

respectively. The number of layers M of Encoder and Decoder is fixed

to 6, the value for attention headA is fixed to 6, andD1 andD2 are set to

384 and 768. The convolution kernel of the temporal convolutional

network is k=4. The dropout rate d is set to 0.1. The pos in the input

sequence of the Encoder is set to 0, 1, 2 and it is set to 3,…26 in the

Decoder. The ENSO cycle C is set to 2. For the reproducibility of the

experiments, the seeds of CPU and GPU are both 5 when we initialize

the parameters, and the GPU seed is 0 when the model is training.
3.2 Comparisons with state-of-the-arts

We compare our method with several representative methods,

including numerical prediction and deep learning methods,

respectively. The numerical weather prediction contains Scale

Inter-action Experiment-Frontier(SINTEX-F) Luo et al. (2008)

and the North American MultiModal Ensemble (NMME)

Kirtman et al. (2014) with CanCM3, CanCM4, CCSM3, CCSM4,

GFDL-aer04, GFDL-FLOR-A06 and GFDL-FLOR-B01. The deep

learning method consists of multiple ensemble CNN Ham et al.

(2019) and multi scale CNN with parallel deep network(MS-CNN)

Ye et al. (2021b), and ensemble model ENSOTR Ye et al. (2021a)

with Transformer module. The results are shown in Figure 3. It
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TABLE 2 The training, validation and testing subsets for Niño3.4 index prediction on CMIP5 dataset.

Data Models Type Period

Training CMIP5 21 Historical run 1861–2004

Validation SODA 1 Reanalysis 1871–1973

Testing GODAS 1 Reanalysis 1982–2017
F
rontiers in Marine Science
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TABLE 1 Details of the CMIP5 models used in this study.

CMIP ID Modeling Group Integration
Period

Number of ensem-
ble Members

BCC-
CSM1.1-m

Beijing Climate Center, China Meteorological Administration JAN1850 -
DEC2012

1

CanESM2 Canadian Centre for Climate Modelling and Analysis JAN1850 -
DEC2005

5

CCSM4 National Center for Atmospheric Research JAN1850 -
DEC2005

1

CESM1-
CAM5

Community Earth System Model Contributors JAN1850 -
DEC2005

1

CMCC-
CM

Centro Euro-Mediterraneo per l Cambiamenti Climatici JAN1850 -
DEC2005

1

CMCC-
CMS

1

CNRM-
CM5

Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancee en
Calcul Scientifique

JAN1850 -
DEC2005

5

CSIRO-
Mk3-6-0

Commonwealth Scientific and lndustrial Research Organization in
collaboration with Queensland Climate Change Centre of Excellence

JAN1850 -
DEC2005

5

FIO-ESM The First Institute of Oceanography, SOA, China JAN1850 -
DEC2005

1

GFDL-
ESM2G

NOAA Geophysical Fluid Dynamics Laboratory JAN1861 -
DEC2005

1

GISS-E2-H NASA Goddard lnstitute for Space Studies JAN1850 -
DEC2005

5

HadGEM2-
AO

National lnstitute of Meteorological Research/Korea Meteorological
Administration

JAN1860 -
DEC2005

1

HadCM3 DEC1859 -
DEC2005

1

HadGEM2-
CC

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by
Instituto Nacional de Pesquisas Espaciais)

DEC1859 -
NOV2005

1

HadGEM2-
ES

DEC1859 -
NOV2005

4

IPSL-
CM5A-MR

Institut Pierre-Simon Laplace JAN1850 -
DEC2005

1

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National lnstitute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology

JAN1850 -
DEC2012

1

MPI-ESM-
LR

Max-Planck-Institut fur Meteorologie (Max Planck lnstitute for Meteorology) JAN1850 -
DEC2005

3

MPI-
CGCM3

Meteorological Research lnstitute JAN1850 -
DEC2005

1

NorESM1-
M

Norwegian Climate Centre JAN1850 -
DEC2005

1

NorESM1-
ME

1
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display the all-season Corr(ACorr) for three-month-moving-

average Niño3.4 index in 1982-2017 and there are several

conclusions can been observed:

3.2.1 Numerical prediction vs deep learning
All deep learning methods (e.g. CNN, MS-CNN and Transformer,

etc.) outperform the numerical prediction methods (e.g. SINTEX-F

and NMME). The main reason is that the numerical prediction

methods design mathematical models of the atmosphere and ocean

to mine complex variations with complex calculation processes, while

the data-driven deep model can automatically explore the variant

characteristics of the EI Niño-Southern Oscillation.

3.2.2 CNN-based method vs transformer-based
method

The ACorr of single CNN model is above 0.5 for a lead of 13

month prediction Ye et al. (2021b), while the ACorr of multi-scale

CNN model is above 0.5 for a lead of 15 month prediction Ye et al.

(2021b), which demonstrates that different scales of convolutional

kernel sizes utilize multiple receptive fields to better obtain the

region correlations. Moreover, the transformer-based methods (e.g.

Transformer and ENSOTR) adopt the attention mechanism to

conduct spatial interactions and easily obtain global correlations

between different regions and outperform the CNN-based methods.
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3.2.3 Transformer-based mehtod vs ours
Our proposed method dramatically outperforms the state-of-

the-art methods. Specifically, our method without using ensemble

multiple models outperforms the ensemble model ENSOTR for all

predicted lead months, especially for 3-10 lead months. Comparing

to Transformer and ENSOTR, our method not only designs the

attention mechanism across both spatial and temporal dimensions

but also incorporates the knowledge of prediction and influence of

seasonal variation into the learning procedure, which better

facilitates the EI Niño prediction.

Figure 3B shows the Corr of the Niño3.4 index variation for

each calendar month. The figure shows that our model (right)

predicts more months with a Corr of the Niño3.4 index higher than

0.5. In particular, when the target season is May-June-July (MJJ),

the SINTEX-F only contains 4 months Ham et al. (2019), the MS-

CNN contains 10 months Ye et al. (2021b), and the CNN ensemble

model (left) contains 11 months with a correlation coefficient skill

higher than 0.5. Our method has 15 months for which the

correlation coefficient skill is up to 0.5, which shows that our

method can effectively mitigate the drifts of SST and HT due to

the springtime equatorial Pacific trade winds. In summary, the

ACorr of the Niño3.4 index of our model outperforms all

competing methods and can skillfully predict the EI Niño3.4

index over 18 months.
TABLE 4 The hyperparameter symbols, descriptions and values in this study.

Symbol Description Value

B1 batchsize on CMIP5 dataset training 160

B2 batchsize on CMIP6 dataset training 80

p1 the height of patch on CMIP5 dataset training 8

P2 the width of patch on CMIP5 dataset training 12

p
0
1

the height of patch on CMIP6 dataset training 10

p
0
1

the width of patch on CMIP6 dataset training 14

M the number of layers of Encoder and Decoder 6

A the numbers of attention head 6

D1 the dimensions of fully connected layer 384

D2 the dimensions of MLP 768

k The convolution kernel of temporal convolutiona network 4

d dropout 0.1
fronti
TABLE 3 The training, validation and testing subsets for Nino3.4 index prediction on CMIP6 dataset.

Data Models Type Period

Training CMIP6 23 Historical run 1850–1980

Validation SODA 1 Reanalysis 1871–1980

Testing GODAS 1 Reanalysis 1994–2020
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3.2.4 Comparison on the CMIP6 dataset
We also compare our method with POP-Net Zhou and Zhang

(2022), which is currently the best performing method trained on

the CMIP6 dataset. The results are shown in Figure 4. The ACorr of

POP-Net model is above 0.5 for a lead of 17 month prediction,

while the ACorr of our model is above 0.5 for a lead of 18 month

prediction. In general, the ENSO prediction skill of our model is

better relative to POP-Net, especially when the lead month is in the

range of 12-24. The main reason is that the STTN model can use

previous predictions as a priori knowledge for future predictions,

which can provide reliable long-term forecasts.
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3.2.5 Comparison of computational resources of
different models

Table 5 compares the number of parameters and time cost for the

training and testing of the CNN model Ham et al. (2019) and our

model. Since the CNN model uses integrated learning, the total

number of models is 11040 (23 leadmonths, 12 target months, 4

network settings, and 10 training sessions per model). The number of

parameters in the four network settings is 0.12M, 0.18M, 0.21M, and

0.32M, respectively, and the total number of parameters is 2290.8M,

which is much larger than our model. In addition, the training and

testing time of our model is much lower than that of the CNN model,

because STTN only uses the single model instead of the integrated

model. The Niño 3.4 index for the next 23 lead months is available in a

single run using the STTN model, which indicates that our model can

predict the occurrence of El Niño in a more timely and rapid manner.
3.3 Ablation study

In order to verify the importance of our different modules, we

performed ablation experiments for each module. To keep the

experiment fair, we use the same experimental setting during training

as well as testing, including data partition and network hyperparameters.

We remove the proposed module from the final network model STTN

to demonstrate the effectiveness of using the monthly index of period,

the previous prediction as prior knowledge, and TCN, respectively.W/O

X indicates the removal of the X module. Figure 5 shows the ACorr,
B

A

FIGURE 3

ENSO predicts all-season Temporal Anomaly Correlation Coefficient Skill (ACorr) in the STTN model. (A) The ACorr of the three-month-moving-
averaged Nino3.4 index with Several lead times from ˜ 1982 to 2017 in the STTN model(red), Convolutional Neural Network (CNN) model (black),
parallel deep CNNs with heterogeneous Architectures MS-CNN(Light purple), ENSO transformer(ENSOTR)(Orange color), Transformer(Lemon-
green), Scale Interaction Experiment-Frontier dynamical prediction system (Sky blue), including additional dynamic prediction systems in the North
American Multi-Modal Ensemble (NMME) project (other colors). The ACorr of the Nino3.4 index of every season in the ensemble CNN ˜ model
(B.left) and the STTN model (B.right). The light black line indicates that ACorr is equal as 0.5.
FIGURE 4

ENSO predicts all-season Temporal Anomaly Correlation Coefficient
Skill (ACorr) in the STTN model.The ACorr of the three-month-
moving-averaged Nino3.4 index index with Several lead times from
˜ 1994 to 2020 in the STTN model(red), POP-Net(Lemon-green).
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RMSR, and MAE when the monthly index of period (w/o p), previous

prediction as prior knowledge (w/o F-T N), and TCN (w/o TCN) are

removed, respectively. In addition, We also compared the effectiveness

of spatio-temporal attention and input data of different lengths.
Frontiers in Marine Science 10
3.3.1 W/o P
The overall performance of the STTN model decreased after

removing the monthly index of period, which indicates that

although the neural network can capture the correlation between
TABLE 5 Comparison of the computational costs required for different models.

Model Number of Parameters Training time cost Testing time cost

CNN [11] 2290.8M 2700384s 1256.32s

STTN 5.7M 1395.23s 1.10s
B

C

A

FIGURE 5

Comparison of (A) Corr, (B) RMSE, and (C) MAE between Niño3.4 index predictions and observations obtained with different modules. w/o X
indicates removal of the X module. The purple line indicates the result of the CNN model.
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data, it cannot capture the period of ENSO. By adding monthly

indicators of periodicity, the model can be guided to effectively

capture the seasonality and periodicity of the El Niño phenomenon,

reducing the complexity of the model in extracting valid features

from the input data and helping the model to accurately predict the

Niño3.4 index.

3.3.2 W/o F-TCN
After removing the previous predictions as prior knowledge, the

ACorr between the predicted and observed Niño3.4 index decreased

sharply, especially in the long-term prediction, which indicates that

the model does not predict the trend of evolution of El Niño over

the next 23 months well when considering the input data alone. As

shown in Figures 4B, C, where the MAE and RMSE increase after

removing the previous prediction, it indicates that the previous

predictions can compensate over long intervals and provide reliable

long-term predictions.
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3.3.3 W/o TCN
With the removal of the TCN module, we observed a low

degradation in the performance of the model, which indicates that

the cycle and future features are very important information.

Compared to STTN, the model relies more on thepredicted

Niño3.4 index series after lead month 12, which suggests that the

temporal semantics are significant in the later stage for Niño3.4

index prediction.

3.3.4 Effectiveness of spatio-temporal attention
We compared the performance of the models using spatio-

temporal attention and without using spatio-temporal attention.

Figure 6A-C plots the ACorr, RMSR, and MAE of the prediction

results. We first observed that the model with spatio-temporal

attention performs better than the model without spatio-temporal

attention. The spatio-temporal attention semantically learns more

separable features and effectively reduces the spatio-temporal chaos,
B CA

FIGURE 6

Comparison of (A) Corr, (B) RMSE, and (C) MAE between Niño3.4 index predictions and observations obtained using spatio-temporal attention or
attention. The purple line indicates the result of the CNN model.
TABLE 6 The RMSE and MAE between Niño3.4 index predictions and observations obtained using different modules and the CNN model.

Model RMSE MAE

STTN-w/o C 0.6883 0.5264

STTN-w/o F-TCN 0.6849 0.5178

STTN-w/o TCN 0.65360 0.4949

STTN-w/o SA 0.6941 0.5246

CNN 0.6797 0.5350

STTN 0.6404 0.4930
frontie
The best results are in bold.
B CA

FIGURE 7

Comparison of (A) Corr, (B) RMSE, and (C) MAE between Niño3.4 index predictions and observations for different lengths of input data. The STTN-3,
STTN-6, STTN-9, STTN-12 indicate that the length of input data is 3, 6, 9, 12 months, respectively.
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allowing the model to better fit the ENSO phenomenon. As can be

seen from Table 6, these modules all favor ENSO prediction, and

removing any of the modules would harm the performance.

3.3.5 Compare input data of different lengths
We compared the performance of different lengths of input

data. Figure 7A-C plots the ACorr, RMSR, and MAE of the

predicted results. We observed that the best performance is

achieved when the input data length is 3 in lead months 1-8,

better performance is achieved when the input data length is 6 or 9

in lead months 8-15, and relatively better performance is achieved

when the input data length is 12 in lead months 15-23, so we can

conclude that: (1) the early prediction may simply require the SSTA

and HCA data that are close in time to the predicted month, and the

earlier month may cause noise in the input data; and (2) longer-

term predictions require longer inputs, which we speculate may be

due to the longer inputs containing more physical laws of ENSO as

a result of the westward shift within the ocean.
3.4 Case study

To clearly show the difference between the observed and predicted

results from 1982 to 2017, we visualized the Niño3.4 index on the

GODAS dataset for 1, 3, 6, 9, 12, and 15 lead months ahead, as shown in
Frontiers in Marine Science 12
Figure 8. From the results, we found that the Niño3.4 indexes at 1-, 3-, 6-,

and 9-lead months are accurately predicted and obtain a correlation

coefficient skill of 0.97, 0.91, 0.82, and 0.74, respectively. When the lead

month increased, the correlation coefficient skill decreased due to the

absence of evidence for a long time series and the complex climate

variation. Nonetheless, the correlation coefficient is 0.61 and over 0.5

when predicting the index for 15 lead months, which verifies the

effectiveness of our method to predict the multi-year ENSO trend.

To explore the seasonal impacts, we show the predicted Niño3.4

index of averaging the December-January-February(DJF) season of

1, 6, 12 and 18 lead months in Figure 9. It can be observed that our

method successfully predicts the amplitude of the Niño3.4 index at

6 lead months in advance. Even when we increase the lead time up

to 18 months, the trend of our predicted results still fits the curve

well when a strong El Niño or La Niña occurs. Moreover, we

visualize the predicted results of a typical Super El Niño during (A)

1982-1983, and (C) 2015-2016 as well as a Super La Niña during (B)

1988-1989 in Figure 10. The predictions are the continuous outputs

of our method from 1 to 23 lead months, and we can see that our

model can successfully predict the evolution of these strong EI Niño

phenomena and the results are consistent with the observed results

even for longer lead times.

As both the SSTA and HCA influence the ENSO phenomenon,

we visualize the contributions of these two factors in Figure 11. This

figure shows that when we input three consecutive months during
B

C D

E F

A

FIGURE 8

The Niño3.4 index of STTN model predictions and observations from 1984 to 2007 with (A) 1, (B) 3, (C) 6, (D) 9, (E) 12, and (F) 15 of lead months,respectively.
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the 1997-1998 Super El Niño event, they have different weightings

to predict the Niño3.4 index in the next 23 months, which can help

us understand how our method can predict El Niño for such a long

time. The first row indicates the heat map of SSTA and another row

indicates the heat map of HCA. Three columns indicate the time

series from December 1997 to February 1998. The darker color

represents the more important. From the figure we have the

following observations:
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• SSTA and HCA show different contributions in both the

spatial and temporal dimensions. With the increasing of

time, their importance in different spatial locations

gradually increase.

• SSTA plays a more important role than HCA at earlier

times (first two columns) in predicting the Niño3.4 index.

The third column shows that the contributions of SSTA and

HCA close to the predicted future are almost equal, which
B

C D

A

FIGURE 9

Predicted and observed values of Niño3.4 index for the December-January-February season, with (A) 1, (B) 6, (C) 12, (D) 18 months for lead months.
B

C

A

FIGURE 10

The 23 consecutive months output of STTN model in Super El Niño event at (A) 1982-1983, (C) 2015-2016 and Super La Nina at (B) 1988-1989.
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Fron
demonstrates that our method takes full advantage of these

two inputs and their complementary relationship.

• The global heat map induces a similar observation to Ham

et al. (2019) that the anomalies over the tropical western

Pacific, Indian Ocean, and subtropical Atlantic are the main

regions to accurately predict the 1997/98 El Niño

phenomenon.

• With the change over time (from first column to third

column), the contributions of the western part of the map

are increasing due to the westward movement that occurs

within the ocean.
4 Conclusion

In this paper, we propose a novel spatial-temporal transformer

network for multi-year ENSO prediction. Motivated by the

attention mechanism, we designed a spatial-temporal attention

mechanism to model the contributions of different ocean

locations with change over time. For long-term prediction, this

article proposes utilizing the accurate previous prediction as prior

knowledge and fusing the seasonal variation during the encoding of

the temporal information to facilitate the ENSO prediction.

Moreover, we use a single model instead of a multi-model

architecture to reduce computational resources, which is more

convenient for predicting ENSO with different lead times.

Extensive experiments using the model on the Coupled Model

Intercomparison Project phase 5 (CMIP5) and the Coupled Model

Intercomparison Project phase 6 (CMIP6) have shown that our

method can provide a more accurate prediction over the existing

methods, which verifies the effectiveness of the spatial-temporal

attention mechanism, the prior knowledge of previous prediction

and the temporal index for modeling the seasonal variation. In the

future, we will add more variables and fully explore the relationship

among their sea-air interactions to facilitate the reliability of multi-

year ENSO prediction.
tiers in Marine Science 14
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FIGURE 11

The heat map of the contribution of SSTA (in units of °C) and HCA (in units o °C) data to the prediction of the STTN model for the 1997/1998 Super
El Niño event for the following 23 consecutive months (The dashed and solid line distributions indicate negative and positive values of SST or HC
anomalies). The SSTA and HCA input data are from 1997-December, 1998-January, and 1998-February, respectively.
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