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Effects of hypoxia on benthic
eggs of calanoid copepods in the
Southern Sea of Korea
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Seung Won Jung3 and Min-Chul Jang2*
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Technology (ICT), Chonnam National University, Yeosu, Republic of Korea, 2Ballast Water Center,
Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea, 3Library of Marine
Samples, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
Global warming is affecting the composition, structure, and function of marine

ecosystems. The increase in hypoxic regions due to stratification is a major

environmental problem worldwide. Off the southern coast of Korea, hypoxia

occurs frequently in summer, and the area of water affected is gradually

expanding. In this study, we investigated the effects of hypoxia on the eggs of

copepods in the order Calanoida. Data on the distribution and abundance of

eggs in benthic sediments were collected from 17 stations, using a piston core

sampler (64 mm internal diameter, 50 cm length), from August 1 to 7, 2012.

Significant variations in the distribution of calanoid eggs and the occurrence of

abnormalities in egg development were found between stations. The abundance

of eggs found in the sediments ranged from 0.004 to 2.389 × 106 eggs·m−2, with

higher abundances identified in hypoxic than in normoxic areas. The proportion

of abnormal eggs ranged from 0 to 92.7%. In particular, there were significantly

more abnormal than normal eggs in areas where hypoxia occurred (p < 0.01).

These results show that hypoxia can have a lethal effect on calanoid eggs and

further affect population and community dynamics.

KEYWORDS
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1 Introduction

Worldwide, the concentration of dissolved oxygen in coastal waters has changed

dramatically over recent decades, and widespread anthropogenic eutrophication-induced

hypoxia is a major environmental problem in coastal systems (Diaz and Rosenberg, 2008;

Rabalais et al., 2010; Kodama and Horiguchi, 2011). Hypoxia can be a serious stressor to

marine organisms and ecosystems, and low dissolved oxygen concentrations can reduce the

range of organisms and suitability of habitats, and even further accelerate community

change (Rabalais et al., 2001; Breitburg, 2002; Lai et al., 2022). Vaquer-Sunyer and Duarte

(2008) showed that the number of coastal areas where hypoxia has been reported has

increased at a rate of 5.5%·year−1. Examples of marine regions with permanent, seasonal,
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periodic, or episodic hypoxia include the Baltic Sea, Black Sea, Gulf

of Mexico, Chesapeake Bay, Yangtze River Estuary, Masan Bay, and

Gamak Bay (Hagy et al., 2004; Conley et al., 2009; Rabalais et al.,

2010; Chen et al., 2015; Choi et al., 2016; Jessen et al., 2017; Du et al.,

2018; Choi et al., 2021).

Most marine species of the order Calanoida lay their eggs freely

in the water column; relatively few species place them in egg sacs

(Hansen, 2019). Marine calanoids may produce subitaneous eggs,

which can develop without delay, or diapause eggs, which enter an

obligatory refractory phase during which they cannot hatch (Grice

and Marcus, 1981; Baumgartner and Tarrant, 2017; Belmonte and

Rubino, 2019). Hatching of diapause eggs replenishes the

population of copepods in the water column for portions of the

year, and the presence of subitaneous eggs is important for

maintaining the population during active seasons (Marcus, 1979;

Marcus, 1996). Many studies have been reported that the onset of

adverse conditions induce quiescence (subitaneous), whereas

diapausal eggs are produced during normal conditions (Belmonte,

1992; Onoue et al., 2004; Tachibana et al., 2019; Takayama and

Toda, 2019). It has been confirmed that before population biomass

declines, females release diapause eggs that can survive for a long

time in anoxic sediments (Marcus, 1984; Katajisto, 1996).

Calanoid egg abundances are high in sediments, varying

between 104 and 107 eggs·m-2 (Belmonte et al., 1995; Marcus,

1995; Uriarte and Villate, 2006; Choi et al., 2021); high egg

abundance is found in bays or estuaries rather than in the open

ocean (Masero and Villate, 2004; Glippa et al., 2011). The eggs of

marine calanoids sink because they are denser than the surrounding

seawater (Tang et al., 1998). The accumulation of a large number of

eggs contributes to the recruitment of nauplii (larvae), as well as

serves as an “egg bank” for long-term persistence of the species

(Marcus, 1984; Marcus et al., 1997; Katajisto, 2006). Most of the

sunk calanoid eggs spend weeks to years on the seabed during their

benthic resting phase (Marcus and Boero, 1998). Therefore, eggs

that quickly sink to the seabed in shallow water habitats can be

buried by sedimentation processes and may be exposed to stressful

conditions, such as hypoxia and anoxia.

Uye and Fleminger (1976) demonstrated the importance of

oxygen in calanoid embryo development, as eggs did not hatch in

deoxygenated water, even under favorable temperature conditions.

Choi et al. (2021) showed that long-term exposure of calanoid eggs

to hypoxic conditions reduces hatching rates and increases the

relative proportion of abnormal eggs (unhatched egg or missing egg

contents). Marcus et al. (2004) suggested that exposure to hypoxia

could substantially reduce egg hatching, which in turn could have

considerable impacts on population and community dynamics in

coastal systems, which may be exacerbated by prolonged exposure

to low oxygen or hypoxic conditions.

The IPCC Assessment Report (AR6) shows that, by the end of

the 21st century, the global average sea surface temperature will rise

by 1.4–3.7 °C compared to current conditions. Global warming can

increase sea level rise, temperature, precipitation and increase

coastal hypoxia (Altieri and Gedan, 2015). In the Southern Sea of

Korea, there are continuous inputs of industrial wastewater and

domestic sewage; consequently, low oxygen or hypoxic conditions

arise in summer in some semi-closed bays where the rate of
Frontiers in Marine Science 02
seawater exchange is relatively low (Kim et al., 2006; Lee et al.,

2019). Such conditions are expected to have a significant impact on

calanoid copepod eggs that form near the bottom.

The study area in South Korea is affected by various ocean

currents that change seasonally. These relatively shallow coastal

waters are important as spawning grounds for various species offish

and shellfish (Kim and Pang, 2005; Baek et al., 2010; Ko et al., 2010).

However, the area is surrounded by populated cities in the

southeastern (Masan, Changwon, and Jinhae) and south–central

(Yeosu, Namhae) parts of the country, extending up to the east

coast, with the establishment of the Imhae Industrial Complex

along the Namhae coast (Lee and Min, 1990; Lee and Kim, 2008).

As a result, constant hypoxia or anoxia occurs in summer (July to

September) in semi-closed bays (Gamak Bay, Jinhae Bay), where the

rate of seawater exchange is low.

The response and abundance of mesozooplankton to hypoxia

have been the focus of many studies, but there have been relatively

few investigations of the relationship between calanoid eggs and

hypoxia. Calanoid egg abundance is a key factor in nauplii

recruitment and drives the continuation of active populations

(Marcus, 1984; Belmonte and Pati, 2007). The occurrence of

hypoxic conditions associated with climate change may threaten

the existence of zooplankton, which have an important position in

food webs. Accordingly, the objectives of this study were to

indirectly evaluate the effects of hypoxia on (1) the distribution

characteristics of normal and abnormal eggs, and (2) the abundance

of calanoid eggs in the Southern Sea of Korea, where hypoxia occurs

frequently in summer.
2 Materials and methods

2.1 Study area and environmental variables

Data were collected from a total of 17 stations along the

southern coast of South Korea. Four stations (S1 to S4) were

located in Jinhae Bay in the north of Geoje, and three stations (S5

to S7) were west of Geoje (Figure 1). Two stations were located in

Jinju Bay (S8, S9), north of Namhae. Station S10 was located within

Gwangyang Bay, and stations S11 and S12 were located outside

Gwangyang Bay. Stations S13 and S14 were located in Gamak Bay,

S15 was within the inner bay, S16 in the center, and S17 further out,

in Yeoja Bay. The water depth of the survey stations varied from 3

m (S15) to 39 m (S6).

The environmental variables (water temperature, salinity,

chlorophyll-a fluorescence, and dissolved oxygen [DO]

concentration) were measured at these 17 sites, with vertical

profiles measures in the field, using a water quality multi-meter

(Model 6600; Xylem Inc., Yellow Springs, OH, USA).
2.2 Calanoids in the water column

Zooplankton and sediment samples were collected from August

1 to 7, 2012. Zooplankton samples were collected vertically, from

the near-bottom water to the surface layer, using a conical net
frontiersin.org
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(mouth opening diameter 45 cm, mesh size 200 µm) to filter an

adequate water volume. Zooplankton samples were immediately

fixed to a final concentration of 5%, using neutralized formalin

solution in situ. The water volume was measured by attaching a flow

meter (model 438115; Hydro-Bios, Altenholz, Germany) to the net

mouth and measuring the amount of filtered seawater that passed

through the net. Zooplankton were counted using a Bogorov

counting chamber using a stereomicroscope (Nikon SMZ 1000;

Nikon, Japan), and identified using a high-magnification optical

microscope (Nikon ECLIPSE 80i; Nikon, Japan). Calanoid

abundance was converted to the number of individuals per cubic

meter (individuals·m-3). Only adults were counted.
2.3 Distribution and abundance of eggs
in the sediments

The distribution and abundance of calanoid eggs in the sediments,

and the ratio of normal and abnormal eggs, were determined at each

sediment core collected, using a piston core sampler (64 mm internal

diameter, 50 cm length), from August 1 to 7, 2012 (Figure 1). The

sediment samples were placed in a dark-treated icebox and

immediately transferred to the laboratory. The sediment obtained by

cutting the upper 1 cm of each core sediment sample was washed

through a 40 µm mesh, and the remaining eggs were recovered from

the mesh, fixed in 5% formalin solution, and placed in a conical 50 mL

tube (SPL Life Science Co., Ltd., GyunggiDo, Korea). The potential

impact of the egg isolation method on eggmorphology cannot be ruled

out, as it could induce physical and osmotic stresses that may cause

abnormal egg shapes. The common sugar floating isolation method,

which has been shown to have a direct effect on eggmorphology (Lukic

et al., 2016), was not used in this study. Therefore, it is important to

acknowledge the limitations of the egg isolation method used in this

study and its potential impact on the results. After placing 1 mL of the
Frontiers in Marine Science 03
concentrated sample in the Bogorov counting chamber and diluting it

with filtered seawater, calanoid eggs were counted as the average of

three replicates under a dissecting microscope (Olympus, SZX7,

Tokyo, Japan). The egg abundance was converted to eggs per unit

area (eggs·m−2), and the proportion of normal and abnormal eggs was

simultaneously confirmed while counting the eggs.

Calanoid eggs were identified based on published descriptions

(Kasahara et al., 1974; Belmonte et al., 1997). Normal and abnormal

calanoid eggs were identified following the procedures of Poulet et al.

(1995); Ban et al. (2000) and Choi et al. (2021), and the eggs were

photographed using a high-magnification optical microscope (Nikon

ECLIPSE 80i; Nikon, Japan). In this study, abnormal eggs were sorted

into various categories based on particular characteristics, such as

eggs with unusual shapes and leaking egg contents, eggs that failed to

develop and hatch, eggs that produced deformed nauplii, and eggs

with no cracks but missing egg contents (Figure 2).
2.4 Statistical analysis

Weperformed Pearson’s test to determine the correlation between

the ratio of normal to abnormal eggs and the following parameters:

DO concentration, egg abundance, and chlorophyll-a concentration.

The confidence interval was 95% for each of the correlations. All

statistical tests were performed using SPSS version 18.0 (SPSS Inc.,

Chicago, IL, USA), with a significance level of p < 0.05.
3 Results

3.1 Environmental variables

The water temperature in the survey area ranged from 24.3 to

31.1 °C in the surface layer and 15.8 to 30.3 °C in the near-bottom
FIGURE 1

Location of 17 sampling stations in the Southern Sea of Korea in summer.
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water (Figures 3A, B). Based on measurements at Namhae, the

water temperature of the eastern stations (S1 to S7) at the bottom

was lower than that of the western stations (S8 to S17), by more

than 5 °C on average. The surface and bottom salinities were 29.4 to
Frontiers in Marine Science 04
32.7 and 29.6 to 34.1, and the average salinity was 31.3 and 32.2,

respectively (Figures 3C, D). At S3, located in Jinhae Bay, the

salinity of the surface and near-bottom water was significantly

different. Salinity of less than 30 was observed in the surface and
FIGURE 2

Normal and abnormal eggs of calanoid copepod, collected from benthic sediments in the Southern Sea of Korea in summer.
D

A B

C

FIGURE 3

Horizontal distribution of water temperature (°C) (A, B) and salinity (C, D) between the surface (0 m) and near-bottom water (B-1 m) of the Southern
Sea of Korea in summer.
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near-bottom water in S15, the inner station of Yeoja Bay. The

surface layer chlorophyll-a concentration in the study area ranged

from 1.4 to 26.2 mg·L-1, and that of the near-bottom water ranged

from 1.6 to 10.8 mg·L-1 (Figures 4A, B). The highest surface and

bottom chlorophyll-a concentrations were found in S1 (26.2 mg·L-1)
and S15 (10.8 mg·L-1), respectively. The range of dissolved oxygen in

the surface layer varied between 3.71 and 7.72 mg·L-1, and in the

bottom ranged from 0.55 to 5.58 mg·L-1 (Figures 4C, D). A low DO

concentration of 2 mg·L-1 or less was observed at some stations (S1,

S2, and S3) in Jinhae Bay.
3.2 Diversity of calanoids in the
water column

A total of 12 species of Calanoida were observed in the

summer (early August) in the Southern Sea of Korea, and

showed different prevalence characteristics depending on the

station (Figures 5A, B). Paracalanus sp. accounted for more

than 63% of the calanoid copepod population in the surveyed

area and reached population abundances of more than 1,000

individuals·m-3 in S5, S8, and S16. Acartia erythraea was absent

at three stations (S10, S12, and S17); in contrast, the abundance of

this species was found to be greater than 1,000 individuals·m-3 at

S13. Acartia erythraea showed high abundance, especially at the

stations in the inner bay (Jinhae, Gamak and Yeoja Bay), and was

almost ubiquitous. Acartia ohtsukai appeared at S8 and S9 located

in Jinju Bay, and S10 located in Gwangwang Bay, and A. sinjiensis
Frontiers in Marine Science 05
only appeared at S4, S5, and S6 located nearshore waters of Jinhae

Bay. Tortanus forcipatus appeared at all of the western stations

(S10 to S17), but only at S5 among the eastern stations. Acartia sp.

accounted for more than 5% of the population of Calanoida in the

surveyed area and represented more than 80% of the calanoid

species at S1.
3.3 Egg abundance and normal:
Abnormal ratio

Overall, the abundance of calanoid eggs was higher at the

nearshore stations located in the bay (Figure 6A). Egg abundance

ranged from 0.004 to 2.389 × 106 eggs·m−2, being highest at S1 and

lowest at S6. An egg abundance of 0.2 × 106 eggs·m−2 or more was

confirmed at a total of five stations (S1, S9, S13, S15, and S17).

The ratio of abnormal eggs ranged from 0 to 92.7% (Figure 6B).

At S1, S2, and S3, the proportion of abnormal eggs accounted for

more than 80%. Approximately 54% of eggs collected at station S13,

in the nearshore waters of Gamak Bay, were abnormal. At stations

located to the west of Geoje (S5, S6, and S7), and the stations located

in Gwangyang Bay (S10, S11, and S12), the collected eggs were

100% normal. We found an increasing incidence of abnormal eggs

in areas with decreasing DO concentrations (r2 = 0.734, p < 0.01)

(Figure 7A), indicating a clearly negative correlation between the

proportion of abnormal eggs and the DO concentration. The

abundance of calanoid eggs was positively correlated with

chlorophyll-a concentration (r2 = 0.485, p < 0.05) (Figure 7B).
D
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C

FIGURE 4

Horizontal distribution of chlorophyll-a concentrations (mg·L-1) (A, B) and dissolved oxygen concentrations (mg·L-1) (C, D) between the surface (0 m)
near-bottom water (B-1 m) of the Southern Sea of Korea in summer.
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4 Discussion

The near-bed strata of the water column DO concentration was

in the range of 0.55 to 5.58 mg·L-1, and hypoxia was evident at several

stations, with a range similar to that previously reported (Choi et al.,

2005; Kim et al., 2006). Dead zones created by the depletion of

dissolved oxygen in coastal waters are one of the most widespread

and harmful anthropogenic threats to marine ecosystems worldwide

(Gooday et al., 2009; Rabalais et al., 2010). The decrease in DO

concentration in summer and hypoxia of the near-bed water on the

southern coast of Korea affected the ratio of normal to abnormal eggs.

Previous studies have shown that eggs exhibit varying responses

depending on the duration of exposure to low oxygen or anoxic
Frontiers in Marine Science 06
conditions (Invidia et al., 2004; Katajisto, 2004; Nielsen et al., 2006).

In laboratory experiments, low DO concentrations have been

shown to negatively affect the hatching success of non-diapause

calanoid eggs (Marcus and Lutz, 1994; Marcus et al., 1994).

Furthermore, Marcus (2001) reported that diapause eggs were able

to withstand significant periods of exposure to anoxic conditions and

toxic levels of hydrogen sulfide. Only calanoid eggs (as a stage) were

considered in the present study. Calanoid eggs can be functionally

different: diapausal and quiescent (subitaneous). Thus, a limitation of

this study was that subitaneous eggs were not differentiated from

diapausal ones; therefore, we cannot draw conclusions on how the

functional status of the eggs (subitaneous vs. diapausal) might be

correlated with egg abundance and/or abnormalities.
A B

FIGURE 5

Horizontal distribution of Calanoida (A) and relative contribution (%) (B) of the Southern Sea of Korea in summer.
A

B

FIGURE 6

The abundance of calanoid eggs (A) (y-axis is divided into two parts, each with its own linear scale) and relative composition of normal and
abnormal eggs (B) in sediments of the Southern Sea of Korea in summer.
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The egg abundance (0.004–2.389 × 106 eggs·m−2) recorded at

the south coast stations was similar to that reported in other studies

of marine and estuarine systems (Table 1). There were differences in

egg abundance between stations, probably due to differences in

sediment heterogeneity. Glippa et al. (2014) also noted high inter-

station and replicate variability, which may be a problem of

sediment heterogeneity that characterizes the study area.

Although the particle size of the sediments was not measured in

this study, the particle size of the sediments in Jinhae Bay

corresponded to the “very fine” grade, in which 92% of the

samples had an average grain size of 8 µm or less. Previous

studies confirmed that the average grain size of Jinju Bay was 7–8

µm (Kim et al., 1988; Cho and Lee, 2012). The average grain size of

the sediments in was in the range of 7–9 µm in Gwangyang Bay

(Ryu et al., 2003), 7.0–8.8 mm in Gamak Bay (Kim et al., 2012), and

8.46 µm in Yeoja Bay (Choi et al., 2007).

We did not identify calanoid eggs at the species level, but a

significant number of eggs are believed to originate from Calanoida

in the study area. A total of 12 species of marine calanoids have been

identified in the plankton along the southern coast of Korea; the

predominant species were Paracalanus sp., Acartia spp. (A. erythraea,

A. ohtsukai, A. sinjiensis, and Acartia sp. indet.), and Tortanus

forcipatus. However, not all species eggs are likely to be observed in

the sediment samples. For example, Paracalanus parvus may not

produce dormant eggs (Næss, 1996) and some may have eggs that

are too fragile to withstand sediment abrasion (Marcus, 1991).

Conversely, it was reported that the eggs of T. forcipatus were found

to have the strongest chorions compared to other calanoids (Uye et al.,

1984). Therefore, the abundance of eggs in the sediments may not

reflect the actual abundance of calanoid species in the water column, as

the eggs of some species may not be present in the sediment samples.

Low DO conditions have a negative effect on calanoid egg

production (Sedlacek and Marcus, 2005), and may cause growth

retardation (Richmond et al., 2006). Acartia tonsa exposed to

hypoxia showed ecologically adaptable behavior by reducing feeding

(Elliott et al., 2013). Metabolic activity and respiration in Calanoida

decrease significantly with body size (Hirst and Sheader, 1997;

Mauchline, 1998). Decreased DO concentrations can lead to

decreased metabolism in a variety of zooplankton, as reported in
Frontiers in Marine Science 07
various studies. Our data did not directly show this effect. In our results,

egg abundance was positively correlated with the chlorophyll

concentration at the hypoxic stations. This is most likely due to the

fact that phytoplankton generated in the water column sink to the

bottom and are decomposed by microorganisms, thus promoting

oxygen consumption (Hoegh-Guldberg and Bruno, 2010). However,

it is difficult to describe distribution characteristics by associating only

specific variables in situ. Marcus et al. (2004) proposed a method to

accurately predict the DO reduction effect, considering the interaction

effect of temperature and food concentration.

Environmental fluctuations, such as hypoxia and anoxia, occur

frequently in the southern coast of Korea. In the present study, in

Jinhae Bay and Gamak Bay, where hypoxia occurred, water quality

has severely deteriorated; massive algal blooms occurr every year,

and hypoxia has increased every year in the near bottom sediment

during summer (June-September) (Kim et al., 2006; Lim et al., 2006;

Lee et al., 2009). Thus, the population of Calanoida in these two

regions (Jinhae and Gamak Bay) may experience higher mortality

rates and may show more significant nauplii recruitment from

sediment than in other regions investigated in the study. The high

egg abundance of calanoids in hypoxic regions identified in this

study may be one key for population maintenance under adverse

conditions. Despite the high egg abundance observed in hypoxic

regions in Jinhae Bay and Gamak Bay, there was no correlation

found between the abundance of mature calanoids and egg

abundance. This may be due to the presence of diapausal eggs,

which are known to accumulate in an egg bank and can persist for

multiple seasons or years (Marcus et al., 1994; Marcus, 1996). As

such, the high egg numbers found in these hypoxic regions could be

a result of diapausal eggs produced in previous years rather than a

direct relationship with calanoid abundance.

In the present study, we found that the proportion of abnormal

eggs was higher at hypoxic stations, indicating the potential impact

of long-term exposure to hypoxia on egg abnormalities (Choi et al.,

2021). This is consistent with previous research that has shown that

exposure to hypoxic or anoxic conditions can affect the eggs of

Calanoida (Katajisto, 2004; Richmond et al., 2006). Marine

calanoids lay two types of eggs: subitaneous eggs, which can

hatch within hours to days after spawning, and diapause eggs,
A B

FIGURE 7

Linear regression between normal: Abnormal egg type ratio and near-bottom DO concentration (A) and abundance of calanoid eggs and
chlorophyll-a concentration (B), including 95% confidence intervals (dashed).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1132851
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Choi et al. 10.3389/fmars.2023.1132851
which must complete a dormancy (refractory) period before

hatching (Grice and Marcus, 1981; Glippa et al., 2014; Belmonte

and Rubino, 2019). Subitaneous eggs have higher metabolic

demands and are unable to tolerate prolonged exposure to

hypoxia, unlike diapause eggs, which can survive in deeper layers

of sediment (Dahms et al., 2006; Hansen and Drillet, 2013; Roman

et al., 2019). Short-term exposure to anoxia did not significantly

affect egg hatching success of subitaneous eggs in Acartia tonsa;

however, hatching generally decreased with increasing exposure

time (Nielsen et al., 2006). As the anoxic exposure time increased,

egg viability of subitaneous eggs in A. tonsa decreased after

incubation periods of 15 and 32 days (Invidia et al., 2004). The

origin of the eggs in present study was not investigated, and further

experiments are needed to determine how the type of eggs affects

survival when exposed to long-term anoxic conditions in a

laboratory. Nevertheless, the findings of this study demonstrate

the potential for hypoxia to cause egg abnormalities in Calanoida.
5 Conclusion

In conclusion, we confirmed that the abundance of calanoid

eggs on the southern coast of Korea is similar to what it has been

found in other estuaries and coastal waters. In addition, the high

rate of abnormal eggs suggested a negative effect of hypoxia and

changes in egg morphology due to long-term exposure to hypoxic

conditions. Eggs in the sediment may experience strong hypoxic

conditions over many years, eventually changing the structure and

function of ecosystems and plankton communities. The viability of

eggs decreases with increasing exposure to hypoxia, and eggs may

not hatch, or may hatch into deformed nauplii, as has also been
Frontiers in Marine Science 08
emphasized by Choi et al. (2021). These changes in eggs have

considerable potential to serve as indicators of quality in marine

ecosystems, such as hypoxic conditions due to summer climate

change. The high prevalence of abnormal eggs can be used as a tool

to detect DO stress in situ.
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TABLE 1 Comparison of calanoid egg abundance in benthic sediments from various locations around the world.

Region Egg abundance (egg m-2) References

Inland Sea of Japan 3–10 × 106 Kasahara et al. (1975)

Alligator Harbor region, Florida 0–0.073 × 106 Marcus (1989) *

Northern California coastal waters 0.12–0.19 × 106 Marcus (1995)

Tyrrhenian Sea 0.0016–0.012 × 106 Belmonte et al. (1995)

Ionian Sea 0.031–1.07 × 106 Belmonte et al. (1995)

Adriatic Sea 0.15–1.19 × 106 Belmonte et al. (1995)

Baltic Sea Up to 3.7 × 106 Katajisto (1996)

Màlaga Harbor, Spain 0.19–6.6 × 106 Guerrero and Rodriguez (1998)

Estuary of Mundaka, Bay of Biscay 0.019–0.16 × 106 Masero and Villate (2004)

Estuary of Bilbao, Bay of Biscay 0.008–0.009 × 106 Masero and Villate (2004)

Sällvik, Baltic Sea 1.03 × 106 Viitasalo and Katajisto (1994)

Seine estuary, France 1.42 × 106 Glippa et al. (2011)

Seine estuary, France 0.6–23.3× 106 Glippa et al. (2014)

Masan Bay, Korea 0.59–1.49 × 106 Choi et al. (2021)

Southern coastal waters, Korea 0.004–2.389 × 106 This study
*Only Centropages hamatus eggs were counted.
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