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In the past few decades, cutting-edge information and communication technology

has been used in several ways to keep an eye on themarine environment. Underwater

wireless sensor networks (UWSNs) can measure the amount of water and soil

conditions, such as soil salinity, moisture, and movements, to predict landslides.

UWSNs are made up of many wireless underwater sensor nodes (WSNs) that are

spread out across the thalassic environment. These networks have several uses,

including data collection, navigation, resource analysis, surveillance, disaster

prediction, etc. Nowadays, energy efficiency becomes a complex issue to handle in

the design of the UWSN due to the limited battery capacity and the challenges

associated with changing or charging the integrated batteries. According to previous

research, clustering and routing have already been effective methods of improving

energy efficiency in the UWSN, as unreplaceable batteries and long-distance

communication delays are particularly vulnerable. As a result, one of the UWSN’s

critical issues is determining how to extend the network’s lifespan while balancing its

energy consumption and shortening transmission distances. In UWSN clustering, the

most important considerations are acquiring a suitable count of clusters, constituting

the clusters, and picking themost satisfactory cluster head (CH) for each cluster. Based

on several factors, such as residuary energy, total energy consumption, and other

considerations, our proposed approach picks CHs and arranges them into clusters.

Also, the proposed SS-GSOmethod constructs a fitness function by including various

sources of information, like total energy, residual energy, and luciferin value. Several

simulation runs were executed to test how much better the SS-GSO approach

worked. The comparison results showed that while evaluating clustering time, our

proposed SS-GSO technique performs 22.91%, 50.03%, 42.42%, 58.06% better, in case

of Total energy consumption 27.02%,14%,33.76%,41.97% more energy efficient, in

Cluster lifetime 9.2%,19.88%,35.91%,40.54% less and in Packet delivery rate

8.29%,14.05%,17.67%,23.97% better as compared with other heuristic techniques,

such as ACO, GWO, MFO and LEACH.
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1 Introduction

The oceans encompass more than three-quarters of the planet’s

surface and have focused on human concerns. The oceans are home

to many animals and other living things, and humans rely on them for

their primary sources of food, transportation, and other resources

(Khan et al., 2019). The Internet of Things (IoT) has recently gained

widespread acceptance as a viable paradigm that can revolutionize

our culture and economy. As a result, it is possible to network

together a wide variety of sensors, identifiers, processors,

communicators, actuators, and networks. It is a network of

dispersed sensors for physical and environmental monitoring that

communicate wirelessly with one another.

On the other hand, big data is a new technology that has spawned a

flurry of academic interest in data mining, machine learning, databases,

and distributed computing. Smart homes, smart buildings, smart

transportation, intelligent industrial automation, innovative

healthcare, smart grids, and smart cities are examples of how IoT-

assisted WSNs have been used in the past several decades. The

monitoring and defense of marine ecosystems is another natural

domain for IoT-based WSNs. As our civilization and economy have

progressed, so has the marine environment become a focal point of

study for academics and scientists. It will be more expensive when it

comes to traditional monitoring of the maritime environment,

including oceanographic and hydrographic research vessels. The data

they collect and analyze could be better quality, and the processes

involved take too much time. With UWSN, data processing is far more

potent than within WSNs, allowing for more intelligent object control.

Water temperature, pressure, wind direction, speed, salinity, turbidity,

pH, oxygen density, and chlorophyll levels are just a few of the physical

and chemical parameters that can be measured by sensors employed in
Frontiers in Marine Science 02
an Internet of Things-based marine environment monitoring system.

Depending on the level of sophistication, an IoT-based marine

environment monitoring and protection system may be able to

manipulate special equipment or devices in the marine ecosystem.

The health of the oceans and the marine environment has gained more

and more attention as it is a rich source of food and

essential transportation.

Since the turn of the twentieth century, WSNs have become more

prevalent in this research field (Bharany et al., 2021; Khan et al.,

2021). Initially, wireless sensor networks (WSNs) were exclusively

employed in terrestrial situations. Nevertheless, as shown in Figure 1,

improvements in marine communication technology have made it

possible for wireless sensor networks to work underwater. Compared

to land-based situations, the implementation and maintenance of

underwater wireless sensor networks are more complicated due to the

environment (Khan et al., 2019; Bharany et al., 2021). Monitoring and

communicating with an underwater environment are critical for

various reasons like vast areas, salty water, and high-water pressure.

The extent of these applications is broad and includes everything

from temperature monitoring, undersea environments, marine

ecology, natural disasters, and navigation to the investigation,

surveillance, etc. In recent years, WSNs have been seen as an

alternative way to study marine environments because they are easy

to find, can be tracked quickly, and do not cost too much (Bharany

et al., 2021).
1.1 Background

UWSNs were divided into sensor nodes (SNs) and data collection

stations (collectively referred to as sinks) (Awan et al., 2019; Bharany
FIGURE 1

UWSN Structure.
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et al., 2021; Khan et al., 2021). Sensor nodes are small devices that

track and demonstrate physical characteristics and transmit the

information to a base station using wireless communication

protocols. Radiofrequency waves are not suggested in underwater

sensor networks because their signal attenuation is excessive and

limited in distance range (Awan et al., 2019; Khan et al., 2021; Nguyen

et al., 2021). Due to the limited capacity and frequency of the UW

channel, its bandwidth is significantly smaller than that of a

conventional radio channel. Due to the high absorption,

attenuation, and propagation, UWSNs have a restricted bandwidth,

which piqued researchers’ curiosity. Another important consideration

is the failure of SNs, which might be due to environmental conditions

or some other. Energy conservation is another major limitation of

UWSNs that significantly impacts network longevity. There is no way

to replace or recharge network nodes in the harsh environment of the

UWSN, which means the network will run out of nodes (Bharany

et al., 2021) with time. Tsunami predictions, offshore exploration,

tactical surveillance, oil and gas spill monitoring, aided navigation,

pollution monitoring, and several commercial uses are all possible

with UWSNs, which are further visualized to enable a wide range of

applications (Nguyen et al., 2021). Underwater devices need to

communicate with each other optimally for these applications to

work efficiently (Bharany et al., 2021). Differentiating from the

terrestrial environment, the marine environment is far more

complicated and variable, making ocean monitoring more

challenging. A UWSN is an ad-hoc network designed for

underwater communication and data transmission in which several

surface stations are required for better communication (Awan et al.,

2019; Bharany et al., 2021; Khan et al., 2021; Nguyen et al., 2021) so

that Sensor nodes can easily transmit and receive data between a

source and a destination.

Sensor nodes are responsible for three primary functions: data

monitoring, processing, and reception of data. Each node is designed

to sense and monitor a particular physical or chemical characteristic

underwater and transmit the information gathered to a central point

(Heinzelman et al., 2002). The following are some of the most

significant issues related to undersea applications:
Fron
• First, there is a substantially longer propagation delay than in

the terrestrial environment.

• Because of the multi-path fading issue, the channel has a

dynamic character.

• Since channel characteristics change constantly, dynamic

channel characteristics allow for high bit error rates and

short disconnections.

• Batteries have a certain amount of power, and most are not

rechargeable.

• Pollution and rust can cause underwater sensors to

malfunction.
Electronic Magnetic waves at high frequencies suffer from

considerable attenuation due to the water’s saltiness. They cannot

be used underwater because of their high frequency (Reddy and

Khare, 2017). Several obstacles still make underwater communication

more difficult, even after considering the mentioned challenges (Wan

et al., 2018). One such issue is a need for more available bandwidth

combined with significant energy usage. It has an immediate impact
tiers in Marine Science 03
on the transmission rate of a network. UWSNs use energy quickly due

to the current in the water and the many sources of noise present.

Because of these issues, clustering in UWSNs has become problematic

and expensive (Zhang et al., 2017). Developing an effective clustering

procedure to handle the issues outlined above is necessary. The

unique characteristics of UWSNs have attracted the attention of

researchers interested in exploring their designs and networking

protocols. Grounded on this interest, we developed an energy-

efficient technique for clustering UWSNs that outperformed

LEACH and other bio-inspired clustering algorithms (Heinzelman

et al., 2002; Singh and Lobiyal, 2012; Rao et al., 2017; Alhazmi et al.,

2018; Wan et al., 2018). Among the most well-known and energy-

efficient clustering algorithms, those employed in terrestrial wireless

sensor networks cannot deploy in the UWSN network. We also try to

figure out why the WSN clustering protocols do not work well in the

UWSN (Heinzelman et al., 2002).

According to the proposed technique, UWSN nodes will be

separated into clusters using a dynamic cluster head selection

process, as seen in Figure 2. In sensor network design, clustering

organizes sensor nodes into logical groups called a cluster. Several

nodes assemble information and transfer it to the central station as

the Base station. Only one node in the relay is designated as the cluster

head, while the leftover nodes are referred to as member nodes

(Nguyen et al., 2021). The cluster head’s responsibility is to ensure

that all inter- and intra-cluster communication is appropriately

coordinated. When choosing the cluster head for each node, the

amount of energy left and other parameters of the nodes will be

considered. Additionally, the distance between CH and BS may be

considered in this decision. The cluster size and the cluster heads’

election are already important parameters for decision-making

(Kazmi et al., 2019).

Additionally, the correct number of clusters in UWSNs impacts

the universal energy performance of the network. It will be necessary

to select a new CH when the energy of the cluster head is less than a

particular threshold value. Optimizing the glowworm swarm

optimization (GSO) algorithm (Javadpour et al., 2018; Reddy and

Khare, 2017; Rajakumar et al., 2017; Potthuri et al., 2018) is the basis

for developing the proposed protocol. An evolutionary-based

optimizer ensures enough clusters to keep the network running for

a long time, resulting in fewer hops and lower energy usage.
1.2 Our contribution

The following are the most significant contributions made by

this research:
• Improved communication in the underwater environment by

developing an energy-efficient clustering technique for sensor

nodes.

• UWSN’s clustering can be optimized by using an evolutionary

algorithm. These algorithms are built upon various insects’

and animals’ behavioral patterns to find the most efficient

solution. These algorithms also give optimum clustering

solutions. They have been utilized effectively in MANET,

VANET, and FANET but not in the underwater environment.

This study applies the optimized glowworm swarm
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optimization approach, which includes various addition to

the algorithm to survive in a new environment for clustering

optimization to improve UWSN communication efficiency.

• This article compares the results of our proposed algorithm

with other popular evolutionary algorithms based on various

parameters. which shows that the proposed research is better

than the other state-of-art.

• In the proposed method, we use a method to determine the

correct number of clusters, choose the best cluster head, and

use an aggregation method to get the best information to the

base station with least redundancy.

• We build a new fitness function that considers luciferin value

while considering residual energy and the entire network’s

energy usage. Afterward, the fitness function is used to choose

cluster Heads.

• Experimental and statistical graphs demonstrate the

suggested technique’s effectiveness in cluster count

consistency, energy consumption, packet transmission, and

network lifetime.

• In the proposed algorithm, we utilize the TDMA table for the

priority of allotting a slot to transfer data from CH to the base

station, which is determined by the UAV’s neighbor range,

residual energy, and location, that will lead to reducing

overhead for load balancing and congestion management

purposes.
1.3 Related work

Underwater sensor networks have emerged as a new area of

interest for academics looking for new and novel approaches. Several
tiers in Marine Science 04
researchers have discovered their distinguishing characteristics for

optimal network communication and have handled the setup

challenges that arise (Javadpour et al., 2018). Compared to wireless

sensor networks, the underwater medium presents an exceptionally

high degree of unpredictability and difficulty. The most significant

distinctions that make UWSN different from WSN are as follows: (1)

amount of energy consumption; (2) propagation delay; (3) a low

bandwidth; (4) dynamic topology operation; (5) propagation speed;

(6) efficiency; (7) data transmission rate; and (8) noise interference.

Several academics have developed a new energy-efficient clustering

methodology for UWSNs (Nguyen et al., 2021). Because of the

specific constraints of the environment of the underwater scene, the

clustering technique developed for terrestrial networks cannot be

easily used for UWSNs. Conserving energy is a critical goal for

UWSNs. The clustering method is a well-known technology that

has been successfully applied to cut down the energy usage of UWSNs

(Bharany et al., 2021). A considerable amount of research has been

done on clustering and the election of cluster heads to lower the

energy consumption of the UWSN. However, there needs to be more

research carried out on UWSN. This part addresses some of the

research findings in even more detail.

The research in (Heinzelman et al., 2000) proposed a Low-Energy

Adaptive Clustering Hierarchy as a low-energy replacement for

traditional clustering techniques. Selecting cluster leaders randomly

and cycling between them is a common tactic in hierarchical

networks to ensure fair energy distribution. LEACH considers the

nodes’ available data, including their residual energy, communication

energy usage, and the number of neighboring nodes, to select the

most energy-efficient CH nodes. The LEACH-C algorithm is a

significant improvement over its forerunner. Sending information

about the sensor nodes’ locations and remaining battery life to the

base station can increase the system’s overall efficiency. Centralized

deployment of LEACH-C lowers the network’s total energy
FIGURE 2

UWSN Clustering structure.
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consumption and each node’s energy consumption. However,

LEACH-C also has some problems. If we take the LEACH-C

network as an example, every node has an equal opportunity to

become a CH. If the network runs out of power, the least powerful

nodes will have to act as CHs, reducing the network’s overall

efficiency and placing an undue burden on the system. To create an

energy-conscious CH selection approach, Singh et al. (Singh and

Lobiyal, 2012) employed PSO for clustering the nodes. The fitness

function is derived by multiplying the fitness metric by the sum of the

residual energy, the distance, and the node density. This approach

requires consideration of inefficient cluster formation, which drains

the network’s resources. In order to solve the issue brought up in

(Heinzelman et al., 2002; Singh and Lobiyal, 2012), Rao et al. (2017)

presented a PSO-based energy-efficient cluster head selection

(PSOECHS) that includes journey time to the base station (BS) in

its fitness function.

PSOECHS also affects the CH selection mechanism by changing

the total number of nodes in each cluster, which extends the

network’s lifespan. Contrarily, computing and selecting CHs at each

node consumes much more power than that. Known as UMOD-

LEACH (Alhazmi et al., 2018), it is a highly-improved variant of the

Leach protocol. When applied to water, this technique outperforms

LEACH by 30%. It uses localization and time-division multiple-access

(TDMA). According to (Wan et al., 2018), the Adaptive Clustering

Underwater Network (ACUN) for underwater networks was a

successor to the aforementioned adaptive clustering routing system.

The amount of remaining energy at the CH node and the distance

between the CH node and the sending node are the two primary

factors in multipath routing.

Zhang et al. (2017) developed a clustering scheme for a medium-

sized UWSN using discrete PSO and a genetic algorithm (GA) to

increase the network’s durability. However, the methodology is not

advised because of its low stability, and the clustering model needs to

be more precise to use UWSN. Pengwei Li et al. (2017) created an

improved particle swarm optimization technique for clustering

UWSNs that considers individual nodes’ transmission power needs.

However, fixing the issues from the previous study and having the

network last even longer is challenging because particle coding is

much more complex for sensor nodes. The Energy Center Searching

model employing PSO (EC-PSO) was proposed in the literature

(Wang et al., 2019) to prevent these energy gaps and to search for

energy centers for CHs selection. Extra measures were taken to ensure

that no two CHs would ever be close to one another. A safeguard with

a threshold value was implemented to prevent low-energy nodes from

delivering data. However, because the distance between nodes, CHs,

and the sink node is not considered while making the fitness function,

it affects how much energy the system uses.

The fuzzy enable clustering strategy was used to improve the

routing method. In the literature (Alia, 2014), it has been suggested

that decentralized fuzzy C-means are used as part of an energy-

efficient routing protocol to reduce the total amount of energy a

network uses while also making it last longer. CHs are chosen iterative

through each cluster one at a time. Bhatti et al. (2016) developed the

fuzzy c-means clustering and energy-efficient CH selection

mechanism. The FCM method makes clusters, and CHs are chosen

based on the SNs’ location, signal-to-noise ratio, and residual energy.
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On the other hand, the sensor network can only be built in a two-

dimensional space in terms of its topology. Researchers who worked

with wireless sensor networks came up with a clustered routing

method called BECR that used energy in a balanced way (Zhao

et al., 2018). The first cluster head chosen was the node closest to the

group’s center. When the energy level of a cluster head fell below 20%,

the FCM was used to choose a new cluster head for that cluster. A

fresh round of cluster head elections was performed if the energy level

of each cluster head declined by 10%; otherwise, no elections for

cluster heads were performed. The randomness feature makes it

difficult to avoid falling into the trap of local optimality while

employing this technique. So far, a variety of researchers have used

the hybrid strategy, which has the advantage of resolving the

weaknesses of one methodology while simultaneously incorporating

the benefits of another. To generate clusters, the literature (Sharma

et al., 2019) utilized FCM and selected the best node to act as a CH. It

used a fuzzy inference technique to determine how well each node

performed. This technique was used in conjunction with an

evolutionary method to choose the CH to make better decisions.

The literature (Shokouhifar and Jalali, 2017) reported using an

artificial bee colony approach to update the fuzzy rules of LEACH-

SF, which was subsequently corrected. It was made to double the

network’s lifetime by following the rules, and the algorithm’s fitness

function makes this happen.

We have widely deployed sophisticated algorithms to ensure

efficient data routing in WSNs (such as the PSO, GWO, and MFO).

However, now we are considering these techniques for UWSNs. In

(Javadpour et al., [[NoYear]]), fuzzy clustering was used to connect

sensors in a network, and the initial value of the cluster heads was

estimated using the PSO technique. It started by clustering using the

fuzzy technique and then selected the best cluster head by applying

the PSO algorithm to the fuzzy table created by the fuzzy approach.

The algorithm had a considerable influence on reducing the amount

of energy consumed. Afterward, various clustering methods were

proposed by taking this as a base, including differential evolution and

simulated annealing (Potthuri et al., 2018), fuzzy c-means, and the

Genetic algorithm (Reddy and Khare, 2017). An optimization

approach known as the Grey Wolf Optimization Method (GWO) is

also used in many UWSNs to optimize clustering as an optimization

methodology. GWO-LPWSN (Rajakumar et al., 2017) employs the

grey wolf optimization technique to find nodes and fix placement

faults. For wireless sensor networks (WSNs), the proposed method

(Kazmi et al., 2019) offers a GWO-based transmission rate

management mechanism. The grey wolf optimizer is used to fine-

tune the support vector machine’s (SVM) transmission rate, which

controls the rate data is sent between nodes. In particular, a cluster

head is chosen by the sink node, and the optimum path for data

transmission is determined by the nodes using GWO (Al-Aboody and

Al-Raweshidy, 2016).

Similarly, optimal grouping is achieved with the help of grey wolf

optimization and evolutionary algorithms (Lipare et al., 2020). The

moth flame optimizer is only one of several innovative algorithms that

can be used to solve optimization problems. Taking cues from moths in

the wild can help find optimal solutions to NP-complete problems.

Optimal clustering is the goal of a method proposed in (Mittal, 2018)

that uses the MFO algorithm. Moth-flame and genetic algorithms are
frontiersin.org

https://doi.org/10.3389/fmars.2023.1117787
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bharany et al. 10.3389/fmars.2023.1117787
used for efficient and effective clustering (Sharma et al., 2020). Due to its

high-quality results, it can also be implemented in UWSNs (Bharany

et al., 2022). Another routing protocol designed for innovative ocean

applications is SOSNET (Durrani et al., 2019). The moth flame

optimizer (MFO) is employed to efficiently perform optimal

clustering at a low cost (Patel et al., 2020; Bharany et al., 2022).

Similarly, the technique proposed in (Kumari et al., 2019) addresses

the problem of fault-tolerant routing by employing MFO, which

determines the optimal data transmission path (Namasudra and Roy,
Frontiers in Marine Science 06
2018; Fattah et al., 2020; Bharany et al., 2022). A comparison of

algorithms in Table 1 shows how they deal with different problems

and have different goals.
2 Methods
While using research into the collective optimization behavior

of glowworm swarms, this section suggests a self-organizational

approach to clustering. Using this strategy, UWSNs can manage
TABLE 1 Comparison of various algorithms.

Protocol Category Objective Issues

LEACH (Heinzelman et al.,
2000)

probabilistic reducing energy usage When selecting CHs, it does not take into account the information about
the node, resulting in network energy imbalance.

LEACH-C (Heinzelman et al.,
2002)

probabilistic increasing the lifespan of a network Inefficient in energy consumption and uneven energy load for equal
possibility to select the CHs

EACHS-PSO (Singh and
Lobiyal, 2012)

Heuristic Selecting an energy-efficient CH to increase
the network’s lifespan

No cluster formation process is involved

PSOECHS (Rao et al., 2017) Heuristic Energy efficient Cluster formation and elects
the CHs for energy efficiency

energy dissipation increases while CH selection process

UMOD-LEACH (Alhazmi
et al., 2018).

probabilistic Less energy usage Clustering is not so much optimal

ACUN (Wan et al., 2018) Heuristic To reduce the energy usage of the network Complex processor for clustering

RCA-UASN (Zhang et al.,
2017)

Heuristic Process of clustering in energy-efficient way
for medium-sized scale UWSNs

Lack of stability of algorithm and not fits into the environment of UWSN

IPSOC-UASN[13 Heuristic Optimizing the network lifespan using
improved version of PSO

Highly complex particle coding for SNs

EC-PSO (Wang et al., 2019) Heuristic for selecting and searching energy efficient
CHs and avoiding energy holes

fitness function ignores the distance between SNs, CHs and sink which
leads to lack of efficiency

DFCMER (Alia, 2014) Non-
deterministic

Increase of network lifetime using FCM
protocol

No optimization techniques involved and Ch selection process is executed
locally

FCM-EECHS (Bhatti et al.,
2016)

Non-
deterministic

Energy efficient clustering Suitable for only 2-D space

BECR (Zhao et al., 2018) Non-
deterministic

Make an even balance between energy
consumption and network longevity

Easily slips to local optimality issue

EEFCM-DE (Sharma et al.,
2019)

Hybrid Energy efficient clustering and better
throughput

Consumption of energy increase is we apply to all SNs

OFC (Shokouhifar and Jalali,
2017)

Hybrid Balance clustering technique and increase
network lifetime

Only for static environment not suitable for dynamic

CFC-PSO (Javadpour et al.,
2018)

Hybrid Optimal CHs selection in energy efficient way Initial CH is selected randomly and cluster count is fixed

DESA (Potthuri et al., 2018) Hybrid Efficient clustering process No distance between nodes is consider for fitness function

GWO-LPWSN (Rajakumar
et al., 2017)

Heuristic spot the correct position of unknown nodes Suitable for static and fixed number of SNs

GWO-SVM (Kazmi et al.,
2019)

Hybrid control the congestion Complex in execution

MLHP-GWO (Al-Aboody and
Al-Raweshidy, 2016)

Heuristic Improve efficiency, lifetime, and stability
period.

High energy consumption

TECP-MFO[ (Mittal, 2018) Heuristic load balancing Not efficient for UWSN

SOSNET (Durrani et al., 2019) Heuristic To find optimal number of clusters required
for routing

In some case results does not perform in an optimal way

FCM-PSO (Krishnaswamy and
Manvi, 2019)

Hybrid To avoid the early dying of CH node While selecting CH convergence speed is very low
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their networks better and have more reliable communications.

GSO analyses the area around the glowworm to calculate its

luciferin value. The fundamental justification for using GSO for

an underwater WSN (Bharany et al., 2022) is its ability to provide

an appropriate optimization solution in the face of a glowworm’s

variable luciferin value. This GSO feature could be helpful for a

UWSN built on a cluster architecture. After that, we pick the

shortest path between the Sensor nodes and the BS. Each node’s

residual energy and the average residual energy are determined as

the first steps in our suggested algorithm. A node is not

considered for CH selection if its residual energy is lower than

the mean residual energy. Afterward, the fitness function is

determined with the help of methodical equations, which will

be detailed in the following section and used in selecting CHs.

After then, information travels from CH to BS via a TDMA slot.

The XOR operation is used during an aggregation process to

eliminate duplicate information. Figure 3 depicts the sequence of
Frontiers in Marine Science 07
events before data is transmitted to BS. Therefore, our method is

divided into three parts.
2.1 Overview of mathematical
representation of GSO

The GSO algorithm assigns a luciferin value to each glowworm

and a neighborhood range for making decisions locally. The objective

function and its position establish the luciferin value of a glowworm.

Compared to other glowworms, a higher luciferin value indicates that

the glowworm is located in an exceedingly bright area. You can see the

entire SS-GSO process in Figure 3, which is the algorithm.

The following equation is used to keep track of the glowworm’s

Luciferin value:

Lucii t   +   1ð Þ   =   1  −   rð ÞLi tð Þ   +   g   F   pi tð Þð Þ (1)
FIGURE 3

Flowchart for proposed algorithm.
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With respect to each individual glowworm i, Lucii(t) symbolizes

the luciferin value of that glowworm. In addition, the luciferin decay

constant, announced by r which ranges from zero to one, the luciferin

enhancement fraction, which is acted by g, and F (pi(t)) which

represents the objective function, given for current position pi of

glowworm i.

Then, using the following rule, each glowworm i investigates its

immediate surroundings in search of the neighbour with the greatest

luciferin value:

z ∈ Ni tð Þ   if   f  Distiz   < rangi tð Þ   and (2)

Luciz (t)>Lucii(t)

Ni(t) is the group of glowworms surrounded by glowworm i,

while z is i’s nearest neighbor. Glowworm i’s local decision range is

denoted by rangi(t), and the luciferin concentrations of glowworm z

and i is represented by Luciz (t) and Luci i(t), respectively. Using the

probabilities of each neighboring glowworm, as shown in Equation 3,

a best-neighbor glowworm is selected.

Probiz =
Luci tð Þ − Lucii tð Þ

ox∈Ni tð Þ   Lx tð Þ − Li tð Þ
(3)

The location of the glowworm is updated in accordance with the

best position of an adjacent glowworm that has been identified and

computed as follows:

pi t = 1ð Þ = pi tð Þ + s
pz   tð Þ − pi tð Þ  

Distiz
(4)

where s > 0 denotes the distance travelled by a glowworm in order to

reach another glowworm. The decision range randeci(t) is computed

by the following equation:

randeci   t   +   1ð Þ  
=  min rads,  max 0,   randeci   tð Þ   +   b nt  −   Ni tð Þj jð Þ½ �f g (5)

Where rads is the constant representing the radial sensor range, b
represents the model constant, and nt controls the maximum allowed

number of neighbors.
2.2 CH selection and cluster establishment

In our proposed clustering strategy the selection of CH is

considered based on connectivity with the base station and fitness

function. Fitness function is contingent the luciferin value, total

energy consumption, and residual energy value of the UWSN to

ensure effective communication and data transfer (Khan et al., 2019).

The fitness functions are represented by the following equation:

Fitness function = w1 � f 1 + w2 � f 2 +  f 3 � w3 (6)

where w1, w2, w3 = 0.5

First of all, we calculate the residual energy of the every UWSN

node by:

ReSEi   =   initialEi   –  CurrentEið Þ (7)
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The residual energy is represented by ReSEi, the starting energy of

the ith UWSN is represented by initialEi, and the current energy level

of the ith UWSN is represented by CurrentEi. After calculating

residual energy of every node, we make an average of all nodes

residual energy and then compare the residual energy of a node with

average energy of all nodes. If current energy of a node is less than the

average energy then this node is being skipped for the current round

of CH selection.

Total amount of transmission and reception energy of a node is

calculated by:

f1 =  TotalEconi   =  TranBi   �   EngyTran   +  RecBi  �   EngyRec (8)

The number of transmitted bits and received bits in node i are

denoted by the TranBi and RecBi, respectively. EngyTran and EngyRec
are characterized as transmission energy and reception energy

correspondingly are calculated as:

EngyTran = Energy for radio signal transmitter + EA ∗Dist
2 (9)

ET_radio and ER_radio are the energy needed for radio

transmission by the transmitter and the receiver, respectively. EA is

the energy needed to boost(amplify) a signal, and Dist [Khan et al.,

2019; Bharany et al., 2021] is the distance between two nodes, m

and n.

The function for luciferin value is given by:

f2 = Lucii t + 1ð ÞbyEq : 1ð Þ (10)

f3 =  ReSEi (11)

In our proposed algorithm, Eq. 6 is used to calculate the fitness of

each UWSN in the cluster formulation mechanism, as seen in

Figure 4. The weighted sum of the luciferin value and the total

energy spent and residual energy from Equations. 8, 10, and 11 is used

to compute the fitness. In addition to its fitness, each UWSN sends a

“Hello Message” along with its fitness to all the other nodes. When the

SNs get a Hello message, the received fitness is compared by the nodes

with its own. When a “Hello” message is received, the UWSN creates

and updates a neighbour table using the UWSN’s entries. The UWSN

then sorts the neighbour table by decreasing fitness values. The closest

node to the base station is the “Cluster Head”. This would be the best

place for CH. However, when there is just one node in the range of the

base station or more than one, the UWSN with the most significant

fitness value is designated as the cluster head and sends a Cluster

Formation message to all nearby nodes. By sending a cluster-joining

message from all nodes with lower fitness values, they can recognize

their CH. The UWSN coalition of ad-hoc nodes is created on-demand

when a UWSN wants to transfer data but is out of range of the base

station. In order to get the information to its final destination, the

Nodes use an intermediate UWSN to make many hops (Khan et al.,

2019; Bharany et al., 2021; Khan et al., 2021). The remainder of the

UWSN nodes will become superficial nodes or cluster members after

the election of the CH, which will be purely based on a fitness

function. The Luciferin level values of each glowworm in each cluster

are updated according to their position and fitness function. Members

of the cluster must keep track of the CH’s movement and alter their

locations accordingly. The CH keeps track of the cluster’s topology by

receiving location data from all UWSNs and updating the topology
frontiersin.org
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database accordingly. Suppose a UWSN travels out of the cluster’s

range based on its updated position (as determined by the luciferin

value). In that case, it is no longer considered a part of the cluster. In

the next step, the CH transmits the updated topology table to the

cluster members and maintains the cluster (Bharany et al., 2021). This

method also includes a technique for managing the topology of

clusters, which is described in detail below. Using a topology

configuration message, each CM communicates its luciferin value to

the other CM UWSNs. Upon receipt of the topology configuration

message, the cluster head of UWSN modifies the location of the

cluster member nodes following the luciferin values stored in the

cluster topology table. Once the position information for each CM of

UWSN has been updated, the cluster head sends this cluster topology

table to all the cluster members. This way, all the CM behave like a

swarm and move to keep up with the CH.
2.3 Optimal path selection and
UWSN communication

The best path selection for information transmission in an

efficient routing mechanism result in lower energy consumption in

the network and enhances the cluster’s lifetime. Every UWSN node in

the proposed system follows the location of CH and adjusts its

position in response to that of CH. Once the sensor nodes are in

clusters, each group’s head node (CH) makes a TDMA schedule and

sends it to the other cluster members. In order to save energy, each

node sends its data to the cluster head during the time slot defined in

the TDMA table and then switches off its radio transmitter while

waiting for the next transmission slot as stated in the TDMA table. In

the TDMA table, the priority of allotting a slot is determined by the

UAV’s neighbor range, residual energy, and location, which are used
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for load balancing and congestion management purposes. When

allocating TDMA slots, the UWSN in the neighborhood range of

the source UWSN (close to the source UAV) and having the lowest

residual energy will be prioritized over the other UWSNs, as this

would be necessary to retrieve the data from this node. Therefore, a

node with low residual energy will be assigned to the first available

TDMA slot before any other node with high residual energy. On the

other hand, the cluster heads keep their radios turned on to receive

data from cluster members, and they perform an XOR operation on

that data to reduce the amount of duplicate data. As soon as a cluster

head gets data from its members, it performs data aggregation and

sends it to the surface station near the water’s edge. As the primary

base station on the ground is typically located a long distance away,

employing these strategies will prevent a high-energy transmission

since sending it straight to the primary base station on the ground

would result in high energy consumption and a high risk of data loss.

This method sends information through the surface station to the

primary base station to save energy and transmission costs.
3 Results

This section investigates the performance of the SS-GSO

method, utilizing other modern approaches in a range of scenarios.

Table 2 has some simulation parameters considered in our

experimentation setup.
3.1 Network lifetime

In Figure 5, we can see the number of alive nodes (NAN) analysis

of the SS-GSO method compared to older methods is done. The
FIGURE 4

Clustering Basic structure.
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experiment was carried out using the 2018a version of MATLAB

programming, and it was completed on a 7th generation core i5

machine with DDR4 8 GB of RAM. An experimental grid size ranging

from 500 meters to 2000 meters was used for this investigation. The

number of nodes used ranged from 0 to 300, and each node’s

transmission range was between 25 m and 200 m. Nodes are made

to stay in the same place or move very slowly so they do not get in the

water flow (Bharany et al., 2022). It was equated to different state-of-

the-art evolutionary clustering algorithms, such as the ant colony

optimizer (ACO), the grey wolf optimizer (GWO), the moth flame

optimizer (MFO), and LEACH. In Table 2, we can see all the

simulation metrics. The experimental results suggest that the low-

energy adaptive clustering hierarchy (LEACH) technique delivers

poor outputs with the least feasible NAN. The MFO technique

obtained a more significant NAN value than the LEACH

procedure. Accordingly, the ACO techniques do not produce a
Frontiers in Marine Science 10
favorable outcome either. While the GWO approach sought to

create a respectable NAN compared to the other, Figure 5 revealed

that the SS-GWO strategy outscored them all in terms of NAN. We

can also see in the figure that the LND (the last node died) is best for

our proposed algorithms. In Table 3, we can see the results of the

network node analysis of all the techniques.
3.2 Clustering time

It is common practice to refer to the computational complexity of

a clustering algorithm as the time it takes to complete the clustering

process using that approach. Typically, clustering algorithms input a

set of nodes and associated fitness ratings and output a subset of CH

nodes and other related nodes. The time it takes for an algorithm to

go from receiving inputs to generating outputs is known as its “cluster
FIGURE 5

Network lifeline analysis.
TABLE 2 Simulation parameters.

Parameters SS-GSO ACO GWO MFO LEACH

Number of UWSN 20–200 20–200 20–200 20–200 20–200

Max Iterations 100 100 100 100 100

Simulation Runs 20 20 20 20 20

Nodes Positions Fixed Fixed Fixed Fixed Fixed

Simulation Area 500 × 2000 m2 500 × 2000 m2 500 × 2000 m2 500 × 2000 m2 500 × 2000 m2

Mobility Static Static Static Static Static

Inertia Weight 0.694 0.694 0.694 0.694 0.694

Transmission Range Fixed Fixed Fixed Fixed Fixed

Distance
between Nodes(max)

5 m 5 m 5 m 5 m 5 m

Distance between Nodes(min) 2m 2m 2m 2m 2m

W1, W2, W3 0.5 0.5 0.5 0.5 0.5
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building time.” Since the UWSN has little memory and processing

power, a longer cluster formation time will harm WSN performance.

Increasing the time required to create a cluster uses more energy,

reducing the time SNs in a network can remain in operation. Figure 6

shows that our proposed SS-GSO performs better than LEACH,

ACO, MFO, and GWO because, in contrast to ACO and GWO,

which begin with several solutions and converge to the optimal

through iteration, our SS-GSO always quickly converges towards

the best solution. Using the SS-GSO method, the time it takes to

build a cluster and the time it takes to choose a path is kept to a

minimum. This makes it possible for SNs to do complex calculations

with much less energy.
3.3 Total energy consumption

It is shown in Figure 7 that our suggested method, SS-GSO,

compares favorably to other strategies in terms of total energy

consumption (TEC). The LEACH procedure could have been more

efficient than alternative techniques with a maximum TEC. It was also

seen in Figure 7 that the MFO approach had a lower TEC than the

LEACH method. Regarding TECs, MFO approaches were slightly

better throughout several iterations than the LEACH method. It is

worth noting that while the GSO performed better in all other

elevation parameters, in TEC, the ACO strategy had the second-

lowest TEC and surpassed the GWO strategy. Finally, our projected
Frontiers in Marine Science 11
SS-GSO executes better than all other techniques (He et al., 2016;

Bharany et al., 2022), as only ACO competes with SS-GSO.
3.4 Cluster head count

The number of cluster head nodes substantially influences the

efficiency of the protocol, as there will be an increase in node energy

consumption and overall energy consumption. As a result, if the

count of CHs is low, the number of SNs per CH will be high, and

the time of SN data transmission will be affected (Okoth et al.,

2022; Srivastava et al., 2022). The total energy consumed by each

round of networks increases and is directly proportional to the

number of CH. Figure 8 shows that our proposed SS-GSO

clustering protocols’, outperform LEACH, ACO, GWO, and

MFO protocols in headcount fluctuation frequency. In this case,

we are considering only 1000 rounds for evaluation. It is simple to

see that the cluster headcount in the LEACH protocol swings

between 4 ≤ T ≤ 17 and 5 ≤ T ≤ 14 in GWO, 6 ≤ T ≤ 14 in ACO,

and 3 ≤ T ≤ 17 in MFO, and that the cluster headcount in our

suggested protocol swings between 3 ≤ k≤ 13 which is the

most desirable.
3.5 Number of packets received

This section compares the number of packets received (NOPR)

analysis of the SS-GSO technique to other methods in various

iterations. The experimental findings indicated that the LEACH

strategy produced inferior results with a lower NOPR than the

conventional approach. The MFO approach obtained a NOPR

marginally more significant than the LEACH procedure. After

that, ACO approach rounds resulted in a NOPR that was only

marginally closer to the original last NOPR. While the GWO

method was trying to get a reasonable NOPR, the SS-GSO
FIGURE 6

Clustering time Vs number of USWN.
TABLE 3 Network lifespan analysis of various algorithms.

Methods FND HND LND

LEACH 355 532 643

MFO 515 724 804

ACO 578 784 898

GWO 599 802 904

PROPOSED SS-GSO 704 899 987
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method could get a higher NOPR than other methods (Mohamed

et al., 2019; Arshad et al., 2020; Asif et al., 2020; Mehmood et al.,

2020; Ahmad et al., 2022; Mazhar et al., 2022; Zeb et al., 2022).

As seen in Figure 9 and Table 4, the SS-GSO approach is a good

strategy for maximizing energy efficiency and longevity in the UWSN

context. Overall, the results of the experiments showed that the

LEACH method performed poorly across all comparison criteria

(Mohamed and Mohamed, 2017; Mohamed and Suganthan, 2017;

Ahmad et al., 2021; Mehmood et al., 2021; Saleem et al., 2021; Ahmad

et al., 2022). Finally, our proposed method has performed better than

all other techniques.
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4 Discussion

From the information shown in the Figure 10 tables and figures

above, it is clear that the SS-GSO approach is very effective at getting the

highest possible energy efficiency and durability in the UWSN context.

Based on the initial results, the number of packets received (NOPR)

analysis of the SS-PSO technique is compared to that of other methods

in multiple iterations. The experimental data showed that the LEACH

method performed poorly in all rounds, with a lower NOPR, the longest

time to build clusters, and the most energy used. After that, the NOPR

for the GWOmodel was higher than that for the LEACHmethod. In all
FIGURE 8

consistency of USWN cluster head cou.
FIGURE 7

Total energy consumption by USWN.
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TABLE 4 Number of packets received analysis.

No. of Rounds LEACH MFO ACO GWO Proposed
SS-GSO

0 0 0 0 0 0

50 945 2302 2312 2951 3989

100 2215 4175 4756 5512 6765

150 3548 6245 6901 7785 9912

200 4846 7845 8645 9501 11,402

250 5894 9345 10,456 10,745 12,801

300 6589 10,785 11,715 12,223 14,156

350 8012 11,845 12,256 13,189 15,645

400 8614 12,678 13,313 14,312 17,156

450 9234 13,745 14,345 14,856 18,178

500 10,545 14,512 15,001 15,956 18,934

550 11,012 14,845 15,945 17,238 19,536

600 11,522 15,678 16,856 17,759 20,400

650 11,945 15,785 17,345 18,223 21,102

700 11,995 16,345 17,786 18,978 21,512

750 11,995 16,915 18,245 19,450 21,989

800 11,995 16,989 18,465 19,885 22,307

850 11,995 16,887 18,856 20,156 22,645

900 11,995 16,989 18,923 20,148 23,185

950 11,995 16,989 18,779 20,148 23,348

1000 11,995 16,989 18,779 20,139 23,234
F
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FIGURE 9

Total packet received successful.
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of the evaluated parameters except for the total amount of energy

used, GWO is behind our proposed algorithm. The ACO works

better than GSO, so the level of acceptance for GWO changes. We

cannot put any algorithm at the second position from all the

above experiments.

An SS-GSO for UWSN has been proposed in the current study. It

has proven to be a very effective and scalable clustering protocol that

works in a search space and chooses the optimal number of clusters to

be deployed. It makes use of the GSO approach to accomplish this.

For UWSN, GSO works iteratively in a defined search space to

discover a better potential solution to improve its energy efficiency

and longevity. As the number of clusters required decreases, the

amount of energy consumed eventually reduces the cost of routing

and the conservation of power in the nodes. On average, ten simulation

runs were executed to see how well the suggested method worked. The

algorithm was tested using a variety of assessed parameters. The

findings demonstrate that SS-GSO is an excellent clustering

technique for underwater environments. Clustering techniques such

as GWO, MFO, and ACO are compared with our suggested algorithm

for clustering. The results reveal that the SS-GSO is superior to all these

algorithms in terms of performance, energy consumption, and other

evaluating parameters. Incorporating data aggregation tactics early on

in the design process has been shown to further increase the energy

efficiency of SS-GSO approaches. Also, metaheuristic methods could be

utilized to maximize resource utilization after being distributed to

other nodes.
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FIGURE 10

Overall performance analysis.
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