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The role of acoustics within
the sensory landscape of
coral larval settlement
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Recruitment of coral larvae on reefs is crucial for individual survival and ecosystem

integrity alike. Coral larvae can detect and respond to a wide range of biotic and

abiotic cues, including acoustic cues, to locate suitable sites for settlement and

metamorphosis. However, the acoustic ecology of coral larvae, including how

they perceive auditory cues, remains poorly understood. In this mini-review we

consider both ex situ physiology and behavior, and in situ ecological and

behavioral studies, to first provide an updated overview of the abiotic and biotic

cues used by coral larvae to guide settlement. We then explore in detail the use of

acoustic cues and the current literature on behavioral responses to acoustic

stimuli. Finally, we discuss gaps in our understanding of themechanisms by which

coral larvae detect acoustic cues, highlighting a novel application of technology

to explore these sensory capabilities. We also address how larval phonotaxis, i.e.,

the ability to orient to a sound cue, can be applied to coral reef conservation.

Current research suggests that acoustic cues are likely used at small spatial scales,

and that coral larvae may have directional acoustic sensitivity enabling

phonotactic behavior. Recruitment of coral larvae on reefs is significantly

influenced by habitat-specific soundscape variation and likely affected by

anthropogenic disturbance. We propose a novel application of the remote

sensing technology, micro-scanning laser Doppler vibrometry (LDV), to quantify

the micromechanical responses of putative acoustically sensitive epidermal

microstructures. We then highlight the potential for incorporation of acoustic

enrichment techniques in coral reef conservation and restoration interventions.
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coral reefs, bioacoustics, phonotaxis, laser doppler vibrometry, restoration, acoustic
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1 Introduction

Marine invertebrate larvae were once considered passive

particles lacking the ability to detect or respond to their

environment (G. Thorson, 1950; Chia et al., 1984) but it is now

widely accepted that interactions between both environmental

conditions and biologically-generated cues affect larval behavior

and physiology across many marine invertebrate taxa, including

corals (Rodriguez et al., 1993; Shanks, 2009; Gleason and Hofmann,

2011) (Table 1). The ocean was once described as ‘The Silent World’

by Cousteau and Dumas in 1953, but we now know that coral reefs

are bioacoustically rich. Many reef inhabitants produce sound

during a wide array of behaviors which together contribute to the

ambient soundscape of the “choral” reef (Schmitz, 2002; Lobel et al.,

2010; Lobel, 2013; Radford et al., 2014a). This ambient soundscape

has been shown to act as an orientation cue for the pelagic larvae of

many fish, decapod crustaceans and reef-building corals, assisting

their orientation towards suitable settlement sites (Tolimieri et al.,

2000; Tolimieri et al., 2002; Jeffs et al., 2003; Simpson et al., 2004;

Leis and Lockett, 2005; Simpson et al., 2005; Montgomery et al.,

2006; Vermeij et al., 2010; Radford et al., 2011).

Reef-building corals represent keystone species in coral reef

ecosystems, providing valuable ecosystem goods and services to

100s of millions of people (Woodhead et al., 2019). However, the

behavioral responses of coral larvae (planulae) to acoustic stimuli

and the sensory mechanisms by which they detect acoustic cues

remain poorly understood. Yet, these are of increasing importance,

especially in the context of growing anthropogenic pressures on

coral reefs, including climate change, overfishing, sewage and

fertilizer runoff and noise pollution (Lecchini et al., 2018;

Richmond et al., 2018; Jones, 2019; Duarte et al., 2021). Coral

larvae can respond to an array of environmental cues that guide

their settlement. We review these, with a particular emphasis on

acoustics and soundscapes, the importance of which is just recently

coming to light.
1.1 Environmental cues influencing coral
larval settlement

1.1.1 Water flow and local currents
Local water currents play an extremely important role in the

connectivity between coral reefs, influencing species diversity,

dispersal and recruitment of coral larvae across local to regional

spatial scales (Roberts, 1997; Veron, 2000; Veron, 2011; Veron et al.,

2015; Hata et al., 2017). Currents connecting reefs seldom fall below

100 mms-1 (Baird and Morse, 2014). As coral larvae swim at speeds

of <5 mms-1 (Szmant andMeadows, 2006; Gleason et al., 2009; Hata

et al., 2017), directed swimming from the open ocean to reefs is

limited. Nevertheless, modelling using data obtained from fish

has shown that vertical migration of larvae during ontogeny

reduces interactions with ocean currents, thus altering

recruitment and connectivity among reefs (Paris et al., 2007).

Wave action has also been shown to accelerate development in

purple sea urchin (Strongylocentrotus purpuratus) and Pacific sand
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dollar (Dendraster excentricus), where increased turbulence,

associated with shallower coastal waters, induced larval

competence and enhanced larval settlement (Gaylord et al., 2013;

Hodin et al., 2018).

1.1.2 Light intensity
Corals need sufficient levels of solar radiation to support the

photosynthetic requirements of their symbionts (Chalker et al.,

1988). Ambient light levels, spectral quality and substratum color

significantly influence larval settlement across many species of coral

larvae (Babcock and Mundy, 1996; Mundy and Babcock, 1998;

Mason et al., 2011; Strader et al., 2015; Foster and Gilmour, 2016;

Sakai et al., 2020). However, the strength and directionality of larval

phototaxis varies with species, age, water temperature, light

intensity and wavelength of light (Lewis, 1974; Bassim and

Sammarco, 2003; Brooke and Young, 2005; Gleason et al., 2006;

Sakai et al., 2020; Mulla et al., 2021).

During settlement experiments, coral larvae of many species

preferentially settle onto the undersides of substrates in shallower

water, altering their settlement preferences to vertical and upward

facing surfaces at greater depths (Birkeland, 1977; Bak and Engel,

1979; Birkeland et al., 1981; Wallace and Bull, 1981; Rogers et al.,

1984; Harriott, 1985; Wallace, 1985; Babcock and Mundy, 1996;

Strader et al., 2015). Several species, however, aggregate in darker

regions, representing a trade-off between required photosynthetically

active radiation (PAR) and intensified levels of ultraviolet radiation

(UVR). At irradiance levels found in near-surface waters, light has

been shown to increase avoidance behaviour (Gleason et al., 2006),

prolong settlement (Baker, 1995; Kuffner, 2001) and cause higher

levels of mortality of larvae (Gleason and Wellington, 1995;

Wellington and Fitt, 2003).

1.1.3 Hydrostatic pressure
Hydrostatic pressure causes directional changes in swimming

orientation (barotaxis) in a range of aquatic invertebrate taxa

(Forward, 1990; Kingsford et al., 2002; Goldsteins and Butler, 2009).

However, to our knowledge, only one study on the brooding coral

Porites astreoides (Stake and Sammarco, 2003) has examined barotaxis

in cnidarians. In this study, booded larvae were exposed to pressures

ranging from surface conditions (103.4 kPa) to those at ~40 m below

the surface.When exposed to surface pressure, larvae displayed positive

barotaxis and swam downwards, but at greater pressures, larvae swam

upwards (Stake and Sammarco, 2003). Although evidence of barotaxis

in coral larvae is limited, these findings reflect those demonstrated by

other zooplankton (Morgan, 1984; Forward, 1989; Forward, 1990;

Kingsford et al., 2002). Furthermore, barotaxis enables corals to sense

and settle in their species-specific optimal irradiance environments,

even when irradiance information is lacking, e.g., during diurnal/

nocturnal shifts or periods of shading (Stake and Sammarco, 2003;

Gleason and Hofmann, 2011).

1.1.4 Temperature variation
Stressful sublethal temperatures interfere with normal

settlement behavior in coral larvae. In studies on two broadcast-

spawning corals, warmer water temperatures negatively affected
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larval physiology, dispersal and settlement via increased larval

mortality (Bassim and Sammarco, 2003; Randall and Szmant,

2009a), increased swimming/searching behaviors (Bassim and

Sammarco, 2003), reduced pre-competency period (Nozawa and

Harrison, 2005; Heyward and Negri, 2010) and reduced settlement

success (Jokiel and Guinther, 1978; Bassim et al., 2002; Bassim and
Frontiers in Marine Science 03
Sammarco, 2003). Similarly, in studies on brooding corals, as water

temperatures dropped below or exceeded the ambient temperatures

from where they were collected, planulae exhibited increased

mortality (Edmunds et al., 2001; Randall and Szmant, 2009b;

Ritson-Williams et al., 2016), reduced longevity (Edmunds et al.,

2001; Putnam et al., 2008), reduced net settlement (Hartmann et al.,
TABLE 1 Collated research outlining the abiotic and biotic environmental factors and cues that induce behavioral, physiological and ecological
changes associated with enhanced or disrupted settlement in coral larvae.

Environmental
Factor/Cue

Behavioural,
Physiological &

Ecological changes

References

Abiotic Light Intensity 1. Step-down photophobic
response (marked decrease in
swimming speed in response
to an attenuation of light
intensity).
2. Determination of
settlement orientation
3. Avoidance of biological
harmful levels of UVR
4. Delay in settlement
5. Increase in mortality

1. Sakai et al., 2020
2. Birkeland, 1977; Bak and Engel, 1979; Birkeland et al., 1981; Wallace and Bull, 1981; Rogers et al.,
1984; Harriott, 1985; Wallace, 1985; Babcock and Mundy, 1996
3. Gleason et al., 2006
4. Baker, 1995; Kuffner, 2001
5. Gleason and Wellington, 1995; Wellington and Fitt, 2003

Hydrostatic
Pressure

1. Barotaxis 1. Stake and Sammarco, 2003

Sedimentation 1. Reduction in net settlement
2. Induction of settlement on
suboptimal surfaces

1. Lewis, 1974; Hodgson, 1990; Gilmour, 1999; Goh and Lee, 2008; Perez et al., 2014; Humanes et al.,
2017
2. Babcock and Davies, 1991; Gilmour, 1999; Babcock and Smith, 2000; Birrell et al., 2005; Ricardo
et al., 2017

Temperature 1. Increased mortality
2. Reduction of pre-
competency period
3. Reduction in settlement
success
4. Increased respiration
5. Reduced photosynthesis
6. Reduced number of algal
symbionts
7. Reduced longevity
8. Interference with the
detection of other cues

1. Edmunds et al., 2001; Bassim and Sammarco, 2003; Randall and Szmant, 2009a; Randall and
Szmant, 2009b
2. Nozawa and Harrison, 2005; Randall and Szmant, 2009a; Heyward and Negri, 2010
3. Jokiel and Guinther, 1978; Bassim et al., 2002; Bassim and Sammarco, 2003; Randall and Szmant,
2009a; Ritson-Williams et al., 2016
4. Edmunds et al., 2001; Edmunds et al., 2005
5. Edmunds et al., 2001; Edmunds et al., 2005
6. Edmunds et al., 2001; Edmunds et al., 2005
7. Edmunds et al., 2001; Putnam et al., 2008
8. Bassim and Sammarco, 2003; Putnam et al., 2008; Winkler et al., 2015

Water Current/
Flow

1. Increased dispersal and reef
connectivity

1. Roberts, 1997; Veron, 2000; Gleason and Hofmann, 2011; Veron, 2011; Veron et al., 2015; Hata
et al., 2017

Biotic Biochemical cues 1. CCA-induced settlement/
metamorphosis
2. Species specific and
generalist attraction to CCA
3. Biofilm induced settlement/
metamorphosis
4. Response to CCA-
associated microbial
communities
5. Avoidance of repellent
chemical cues produced by
coralline algae and epithelial
sloughing

1. Morse et al., 1988; Morse and Morse, 1991; Morse et al., 1994; Heyward and Negri, 1999; Hadfield
and Paul, 2001; Negri et al., 2001; Baird and Morse, 2004; Golbuu and Richmond, 2007; Erwin et al.,
2008; Vermeij and Sandin, 2008; Hay, 2009; Ritson-Williams et al., 2009; Diaz-Pulido et al., 2010;
Ritson-Williams et al., 2010; Ritson-Williams et al., 2014; Ritson-Williams et al., 2016; Gómez-Lemos
et al., 2018
2. Harrington et al., 2004; Ritson-Williams et al., 2009; Ritson-Williams et al., 2010; Tebben et al.,
2015; Gómez-Lemos et al., 2018; Jorissen et al., 2021
3. Negri et al., 2001; Erwin et al., 2008; Tebben et al., 2011; Tran and Hadfield, 2011; Siboni et al.,
2012; Sneed et al., 2014; Gómez-Lemos et al., 2018; Dobretsov and Rittschof, 2020; Siboni et al., 2020;
Jorissen et al., 2021
4. Harrington et al., 2004; Ritson-Williams et al., 2010; Gómez-Lemos et al., 2018; Jorissen et al., 2021
5. Masaki et al., 1984; Keats et al., 1997; Suzuki et al., 1998; Degnan and Johnson, 1999; Harrington
et al., 2004

Acoustic cues and
Soundscape

1. Positive phonotaxis
2. Increased settlement due to
louder acoustic levels and
higher levels of low-frequency
sound
3. Interference of
anthropogenic noise on
settlement choice

1. Vermeij et al., 2010
2. Lillis et al., 2016; Lillis et al., 2018
3. Lecchini et al., 2018
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2013; Ritson-Williams et al., 2016), increased metamorphosis,

reduced photosynthesis and diminished algal symbiont density

(Edmunds et al., 2001; Edmunds et al., 2005).

1.1.5 Suspended and deposited sediment
Sedimentation has negative effects on both adult and larval-

stage coral (Reviewed in Jones et al., 2015; Tuttle and Donahue,

2022). In observational studies of the brooding species Favia fragum

(Lewis, 1974) and Pocillopora damicornis (Hodgson, 1990; Goh and

Lee, 2008; Perez et al., 2014), net larval settlement was significantly

reduced when suspended sedimentation was higher. Likewise,

in field and laboratory studies, both high (~100 mg l-1) and low

(~50 mg l-1) levels of suspended sediment adversely affected larval

settlement and survival in the broadcast-spawning species Acropora

digitifera and A. tenuis (Gilmour, 1999; Humanes et al., 2017). In

both in situ and aquaria studies using larvae of the broadcast-

spawning A. millepora, increased deposited sedimentation both

reduced larval settlement and prevented larval settlement on

upward facing substrates, with larvae settling only on vertical

surfaces and the undersides of substrates (Babcock and Davies,

1991; Gilmour, 1999; Babcock and Smith, 2000; Birrell et al., 2005;

Ricardo et al., 2017). Sedimentation most likely interferes with

larval settlement by disrupting other sensory mechanisms, e.g., by

masking chemical cues and impairing phototaxis (Ricardo et al.,

2017). However, because it is difficult to track sediment dynamics

on reef surfaces through time, it remains difficult to predict how the

effects of sedimentation on short-term settlement will affect longer-

term recruitment and survival.

1.1.6 Biochemical cues
In numerous studies of both brooding and broadcast-spawning

coral species, crustose coralline algae (CCA) and its cell wall-

associated compounds have been widely found to attract coral

larvae and induce coral larval attachment (Morse et al., 1988;

Morse and Morse, 1991; Morse et al., 1994; Morse et al., 1996;

Heyward and Negri, 1999; Hadfield and Paul, 2001; Negri et al.,

2001; Baird and Morse, 2004; Harrington et al., 2004; Golbuu and

Richmond, 2007; Erwin et al., 2008; Vermeij and Sandin, 2008; Hay,

2009; Ritson-Williams et al., 2009; Diaz-Pulido et al., 2010; Ritson-

Williams et al., 2010; Ritson-Williams et al., 2014; Tebben et al.,

2015; Ritson-Williams et al., 2016; Gómez-Lemos et al., 2018;

Jorissen et al., 2021). While CCA has also been found to induce

settlement and metamorphosis across many different invertebrate

taxa (Pawlik, 1992; Hadfield and Paul, 2001; Whalan et al., 2012;

Sneed et al., 2015), the inducing capacity of CCA is highly variable,

with complex interspecific interactions between corals and CCA. In

two critically endangered species of broadcast-spawning Caribbean

Acroporids (A. palmata & A. cervicornis), different species of CCA

each induce varied amounts of larval settlement, with two relatively

rare species of CCA being the most effective (Ritson-Williams et al.,

2010). Interestingly, the cosmopolitan encrusting coralline algae

Titanoderma prototypumm, found across both Caribbean and

Pacific reefs, appears to be more attractive to larvae of reef-

building Acroporids, inducing greater rates of settlement

compared with other, more common, co-inhabiting CCA species
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(Harrington et al., 2004; Ritson-Williams et al., 2010; Gómez-

Lemos et al., 2018). Furthermore, T. prototypumm significantly

promoted settlement on the CCA surface compared with

neighboring dead coral or plastic surfaces (Jorissen et al., 2021).

In addition, some studies have found that specific microbial

biofilms can also induce larval settlement in the absence of the

CCA (Negri et al., 2001; Erwin et al., 2008; Tebben et al., 2011;

Sneed et al., 2014; Gómez-Lemos et al., 2018; Dobretsov and

Rittschof, 2020; Jorissen et al., 2021). Marine microbial biofilms

are composed of many species of bacteria, unicellular algae

(including diatoms) and protozoa. These produce an array of

extracellular polymeric substances and signaling proteins shown

to impact larval settlement and metamorphosis (reviewed in

Dobretsov & Rittschof, 2020). Several studies have identified

Pseudoalteromonas spp., a marine bacterium found in both

Caribbean and Pacific CCA species, as a strong inducer of

metamorphosis in larvae from both brooding and broadcast-

spawning corals, including the important reef-building families

Acroporidae and Pocilloporidae (Negri et al., 2001; Tebben et al.,

2011; Siboni et al., 2012; Tebben et al., 2015) as well as an inducer of

complete settlement (i.e., attachment to the substrate and

metamorphosis) (Tran and Hadfield, 2011; Sneed et al., 2014;

Tebben et al., 2015). It is worth noting that many CCA species

have also evolved strategies to deter or prevent larval settlement,

such as allelopathy (Suzuki et al., 1998; Degnan and Johnson, 1999)

and sloughing (shedding of upper epithelial layers) (Masaki et al.,

1984; Keats et al., 1997).

Thus, it is likely that CCA-induced coral settlement results from

cues produced both by the CCA itself and by the associated

microbial biofilm (Webster et al., 2004; Gómez-Lemos et al.,

2018; Jorissen et al., 2021).
2 Acoustic cues and soundscapes

The grinding and popping of foraging echinoids, grazing

scarids, vocalizing fish and snapping shrimp all contribute to the

biophony of coral reefs (Simpson et al., 2004; Simpson et al., 2008;

Lobel et al., 2010; Lobel, 2013; McWilliam et al., 2017). Thus, higher

quality, healthy coral reefs are significantly louder, richer in acoustic

events and more acoustically complex than degraded reefs (Piercy

et al., 2014; Bertucci et al., 2016; Freeman and Freeman, 2016;

Gordon et al., 2018). Acoustic cues are particularly useful for

aquatic animals as sound travels faster and further underwater

relative to other sensory cues, irrespective of directional currents

(Urick, 1983; Ainslie, 2010; Duarte et al., 2021). Many marine

invertebrates, therefore, have evolved the ability to detect and

respond to acoustic cues, most likely by using specialized

receptors (Salmon and Horch, 1973; Popper et al., 2001; Schmitz,

2002; Kaifu et al., 2008; Mooney et al., 2010; Vermeij et al., 2010;

Wilkens et al., 2012; Lillis et al., 2013; Edmonds et al., 2016; Lillis

et al., 2016; Solé et al., 2016; Vazzana et al., 2016; Charifi et al., 2017;

Wale, 2017; Jézéquel et al., 2018; Lillis et al., 2018), and many taxa

demonstrate increased rates of larval settlement in the presence of

acoustic cues and during louder levels of acoustic cues (Jeffs et al.,
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2003; Simpson et al., 2004; Simpson et al., 2005; Stanley et al., 2010;

Simpson et al., 2011; Stocks, 2012; Stanley et al., 2012a; Stanley et al.,

2012b; Lillis et al., 2013; Lillis et al., 2015; Hinojosa et al., 2016).

Acoustic cues can also influence the swimming orientation and

settlement behavior of coral larvae. In an in situ settlement chamber

experiment, larvae of the Caribbean scleractinian coral Orbicella

faveolata (previously Montastraea faveolata) exhibited directed

phonotaxis, with larvae moving towards the source of a

broadcasted coral reef soundscape irrespective of chamber

orientation (Vermeij et al., 2010). In a separate study, O. faveolata

larvae exhibited higher settlement rates when exposed to

soundscapes from louder, more diverse coral reefs when

compared to soundscapes from two quieter reefs characterized by

either sponges and coral rubble or industrial debris and algal

growth. (Lillis et al., 2016). These findings imply that the elevated

acoustic power associated with more diverse habitats, or the absence

or presence of specific frequencies within healthier habitats, may

lead to increased larval settlement. The same authors found that

settlement rates in larvae of the reef-building coral Porites astreoides

doubled in an acoustic environment with higher levels of low-

frequency sound, which are typical of a healthier reef with higher

coral cover and higher densities of fish (Lillis et al., 2018). This

suggests that low-frequency sounds are the predominant drivers of

response in this species, and that the absence of these low

frequencies may reduce settlement.

High-frequency sounds attenuate more rapidly underwater, but

lower-frequency sounds emanating from reefs are theoretically

detectable to invertebrates within 500 m from the source (Rogers

and Cox, 1988; Anderson et al., 2021). However, currents and fluid

flows may limit the ability of larvae to successfully navigate to cues

500 m away; therefore in practice, the range of detection and

successful response may be closer still to 10 – 100 m (Gleason

and Hofmann, 2011). Although O. faveolata larvae exhibit

directional phonotaxis in situ (Vermeij et al., 2010), the

experimental confinement to an acrylic chamber likely restricted

fluid flow, allowing larvae to move unimpeded by currents.

Therefore, our understanding of the spatial scale at which coral

larvae are able to detect acoustic stimuli in their natural

environment is still limited. The difficulties associated with in

situ settlement experiments in complex topographical and

hydrodynamic environments both highlights the challenge of

interpreting the ecological significance and restoration utility of

experimental results (Hata et al., 2017; Mayorga-Adame et al., 2017;

Randall et al., 2020; Levenstein et al., 2022) as well as the many

considerations that must be made when deisgning future acoustic

larval settlement experiments.

To date, most studies of phonotaxis in coral planulae have been

conducted with larvae from broadcast spawners (but see Lillis et al.,

2018), therefore larvae from brooding corals are relatively understudied.

However, it is proposed that mechanosensory epidermal cilia are

responsible for auditory perception in coral (Vermeij et al., 2010).

Therefore, given the abundance of dense cilia found on their surface,

brooded larvae are also expected to possess the sensory mechanisms to

detect and respond to acoustic stimuli (Gleason and Hofmann, 2011).

This hypothesis requires further testing.
Frontiers in Marine Science 05
3 Mechanisms for acoustic detection
in coral larvae
Sonic vibrations in water have both pressure and particle

motion components (Reviewed in Nedelec et al., 2016). In their

adult stages, most aquatic invertebrates can detect the particle

motion component of sound, using specialized organs such as

mechanosensory setae, chordotonal stretch receptors between the

joints of appendages and statocyst and statolith receptor systems

(Popper and Fay, 1999; Popper and Lu, 2000; Popper et al., 2001;

Bleckmann, 2004; Nedelec et al., 2016). Many invertebrate larvae,

including those of cnidarians, have a diversity of cilia-based

mechanosensory systems that function during feeding,

locomotion, tactic response, predator–prey interactions and

settlement (Chia and Crawford, 1977; Chia and Koss, 1979;

Freeman and Ridgway, 1990; Marlow et al., 2009; Bezares-

Calderón et al., 2020), with many of these systems sensitive to

acoustic particle motion (Tranter et al., 1982; Rogers and Cox, 1988;

Budelmann, 1992; Kennedy et al., 1996; Zhadan, 2005; Tran and

Hadfield, 2013; Lillis et al., 2015).

The sensory mechanisms employed by coral larvae to detect

acoustic stimuli, however, remain unknown. Early studies of the

temperate reef-building coral-species Balanophyllia regia and

the tropical coral species Pocillopora damicornis demonstrated that

the larval ectoderm is primarily composed offlagellated collar cells - a

single flagellum surrounded by a ring of microvilli (Lyons, 1973;

Vandermeulen, 1975). While the main function of these cells are

primarily thought to be calcification, phagocytosis of food particles

and motility, it has been suggested that these cells may also have a

sensory function. This assumption was based on their similarities

with statocyst systems used in the detection of acoustic cues in other

invertebrate taxa (Lyons, 1973).

The laser Doppler vibrometry (LDV) method relies on the

detection of the Doppler frequency shift that occurs when light is

dispersed by a moving surface (Rothberg et al., 2017). In a study

exploring particle motion detection in marine invertebrates, LDV

was used to measure whole body vibrations (displacement, velocity

and acceleration) as a putative stimulus of statocyst organs in

cuttlefish (Family Sepiidae) and scallops (Family Pectinidae)

(André et al., 2016). This experiment piloted the use of LDV

techniques in an underwater bioacoustics study and highlights its

potential value for use across other marine invertebrate taxa. LDV

has also been successfully used to measure the mechanical response

of microstructures such as antennae and sensory hairs to electrical

and sound stimuli in several terrestrial invertebrates (Göpfert et al.,

1999; Göpfert and Robert, 2002; Sutton et al., 2016). Although it is

evident that coral larvae both respond to acoustic cues and possess

the mechanosensory structures capable of detecting particle motion

(Vermeij et al., 2010; Lillis et al., 2016; 2018) (Figures 1C, D), to date

there have not been any attempts to measure the mechanical

responses of their exterior cilia-based sensory systems to acoustic

cues in a bioacoustics study, nor has this been done for the larvae of

any marine invertebrate. We propose that laser Doppler vibrometry

could be broadly applied to investigate the mechanosensory ability
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of coral larvae epidermal cilia, including quantifying both cilia beat

dynamics and frequency-specific sensitivity to incident particle

velocity. Using analytical signals capturing the spectral diversity

of samples from coral reef sound recordings, and playbacks of the

recordings themselves, it will be possible to determine the auditory

sensitivity and bandwidth of coral larvae, offering a mechanistic

basis for their phonotactic behavior (Figures 1A, B).
4 Ecological significance and applying
acoustic enrichment to reef
conservation and restoration

Coral reef soundscapes play an important role in coral larval

orientation, habitat location, settlement and recruitment, ultimately

affecting reef growth and resilience (Vermeij et al., 2010; Lillis et al.,

2016; Lillis et al., 2018). However, with many coral reefs subject to

degradation through climate change, overfishing and pollution, reef

soundscapes are changing (Spalding and Brown, 2015; Hughes

et al., 2017; Hughes et al., 2018; Duarte et al., 2021). For example,

between 2012 and 2016, cyclones and intense bleaching meant the

Great Barrier Reef experienced the most severe degradation period
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in recorded history (Hughes et al., 2017). As a result, soundscapes

were negatively impacted across four complementary ecoacoustic

indices; they were on average 15 dB SPL re 1 µPa quieter and had

significantly reduced acoustic complexity, richness and rates of

snapping shrimp (Family Alpheidae) snaps (Gordon et al., 2018).

In light of the ecological crisis on coral reefs, novel restoration

techniques are becoming increasingly important in the conservation

and restoration of these ecosystems. One promising new tool is

acoustic enrichment, whereby recordings from relatively healthy

coral reefs are played back through underwater speakers (Gordon

et al., 2019). This approach has been demonstrated to improve

metrics of fish community health in degraded coral reef habitat on

an experimental scale (Gordon et al., 2019). Over the natural fish

breeding season on the Great Barrier Reef (November-December),

this study showed that reefs with acoustic enrichment had increases

in fish recruitment across multiple trophic guilds, a doubling in

overall fish abundance, and a 50% increase in species richness

(Gordon et al., 2019). A subsequent study found that successful

management and restoration of coral reefs leads to the recovery of

the natural soundscape; maturing restoration projects in Sulawesi

exhibited similar levels of acoustic richness to healthy reefs (Lamont

et al., 2021).
FIGURE 1

(A) Proposed set-up for coral larvae laser Doppler vibrometry experiment. (B) Close-up of set-up for tethering Acropora millepora larvae in laser
Doppler vibrometry experiment (C) Scanning Electron Microscopy (SEM) image of an Acropora millepora planula larva. (D) Magnified larval epiderm
highlighting cilia. SEM images: Emelie Brodrick. Laser Doppler Vibrometry schematic (A) created with BioRender.com.
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Recent coral reef restoration efforts have focused on increasing

population sizes, genetic diversity and the natural adaptive capacity

of corals, for example, through fragment rescue, asexual

propagation, in situ and ex situ coral nurseries and sexual

propagation in order to mitigate reef degradation caused by

climate change and local stressors (Heyward et al., 2002; Cruz

and Harrison, 2017, dela Cruz and Harrison, 2020; Suzuki et al.,

2020; Randall et al., 2020; Vardi et al., 2021; Harrison et al., 2021;

Baums et al., 2019, 2022). In addition, coral breeding efforts in land-

based facilities continue to scale up (Craggs et al., 2017; Craggs et al.,

2020; O’Neil et al., 2021) while virtually all coral propagation

programs seek more efficient ways to induce coral settlement in

large numbers without introducing potentially detrimental

competing organisms (Randall et al., 2020). Acoustic enrichment

can be used in conjunction with all of these newer, breeding-based

restoration techniques to help increase settlement rates, population

growth and species diversity. By boosting coral settlement at

restoration sites, short term acoustic enrichment will also help to

restore natural acoustic complexity and phonic richness, thus

further accelerating and reinforcing reef recovery.

Current examples of acoustic enhancement in reef restoration

include 'The Reef Song Project', an Australian Coral Reef Resilience

Initiative (ACRRI) undertaken in association with the Australian

Institute of Marine Science (AIMS). This project is the first to

investigate the efficacy of acoustic enrichment in situ. Using healthy

reef recordings to attract fish communities to sixty patch reefs made

of coral rubble and live fragments at Ningaloo Reef and the Great

Barrier Reef in Australia, this five-year initiative is primarily

exploring the roles of fish husbandry and herbivory on coral

growth and reef recovery. Using photogrammetry, coral growth

will be monitored over time (Australian Institute of Marine Science,

2023). Additionally, the Woods Hole Oceanographic Institute

(WHOI) have developed the ‘Reef Solutions Initiative’. Following

the discovery by WHOI scientists that coral larvae are attracted to

the soundscapes of healthy reefs (Lillis et al., 2016; Lillis et al., 2018),

this initiative seeks to incorporate acoustic enrichment into

intervention strategies to help corals repopulate degraded reefs

(Woods Hole Oceanographic Institute, 2023). To improve our

understanding of the reef recovery process and the impact of reef

restoration, the application of low-cost, low specification passive

acoustic monitoring in combination with machine-learning analysis

may be applied to improve the analysis of ecoacoustic indices and

successfully track coral reef restoration (Lamont et al., 2022;

Williams et al., 2022).

In sum, acoustic enrichment is a promising tool for coral reef

restoration due to its demonstrated efficacy across multiple taxa, yet

its potential is still largely untested. Restoring keystone species and

re-establishing complex interspecific interactions can promote

successful management and restoration of coral reef ecosystems.

Reef-building scleractinian corals are keystone species and it is their

three-dimensional structure on which all coral reef life forms
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depend for food, sanctuary and survival. In order to fully assess

the potential of acoustic enrichment and effectively apply this

method as a reef restoration tool, we must continue to explore

how different coral taxa respond to acoustic cues while gaining a

better understanding of the mechanisms by which coral larvae sense

their acoustic environment. This will also allow us to effectively

place acoustics within the hierarchy of sensory cues that coral larvae

integrate to locate an optimal site for settlement and recruitment to

the reef.
Author contributions

JP, EW and SDS conceived the idea for this mini-review. JP

wrote the manuscript. All authors listed made substantial

contribution to the discussion of ideas outlined in the work and

the development of the manuscript. All authors contributed to the

article and approved the submitted version.
Funding

This material is based in part on work supported by NSF grants

IOS-1848671 and CBET2133675 (to KLM). EWA is supported by a

BBSRC David Phillips Fellowship BB/T00990X/1. SDS is supported

by NERC Grant NE/P001572/1.
Acknowledgments

We/The authors would like to thank Prof. Andrew Radford and

the extended University of Exeter and University of Bristol

Bioacoustics Research Group for their ongoing stimulating

discussions, support and insight.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1111599
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pysanczyn et al. 10.3389/fmars.2023.1111599
References
Ainslie, M. (2010). Principles of sonar performance modelling. Berlin: Springer.
doi: 10.1007/978-3-540-87662-5

Anderson, E. R., Butler, J., and Butler, M. J. (2021). Response of fish and invertebrate
larvae to backreef sounds at varying distances: Implications for habitat restoration.
Front. Mar. Sci. 8, 697. doi: 10.3389/FMARS.2021.663887/BIBTEX
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