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Using passive acoustic methods for biodiversity conservation and effective

ecosystem monitoring is hindered by laborious, human-mediated processes of

accurately identifying biologic and anthropogenic sounds within large datasets.

Soundscape ecology provides a potential means of addressing this need through

the use of automated acoustic-based biodiversity indices, which show promise in

representing biodiversity in terrestrial environments. However, the direct

relationship between specific underwater sounds and acoustic index

measurements are largely unexplored. Using passive acoustic data collected

from three broadband hydrophones within the Ocean Observatories Initiative’s

cabled arrays in the Pacific northwest, we identified periods of vocalizing marine

mammals and sources of anthropogenic noise. Automated calculations of seven

acoustic indices were compared across biologic and anthropogenic sound type

and call parameters. Although several index measurements did not vary

significantly, the Acoustic Complexity Index (ACI) measurements increased in

response to echolocation clicks from sperm whales (Physeter macrocephalus)

and burst pulses originating from unidentified delphinid species. Measurements of

the Bioacoustic Index (BI) decreased dramatically in response to sperm whale

echolocation clicks, a more obvious trend when loud clicks were parsed from

moderate and quiet clicks. Correlations coefficient and confidence interval values

between ACI and BI measurements and call characteristics from sperm whales

indicate a moderate to strong relationship, which was not found in correlations

with delphinid calls. A generalized linear mixed-effect model indicated multiple

species and sound types contribute significantly to the variation of several index

measurements. Noise generated by passing ships consistently resulted in

decreased values for the Normalized Difference Soundscape Index (NDSI) and

Total Entropy (H) as compared to quiet periods and periods with vocalizing marine

mammals. These findings provide information on the relationship between several

acoustic indices and specific underwater sounds produced by marine mammals

and anthropogenic sources. This ground-truthing endeavor expands the

understanding of acoustic indices and their potential use as a tool for

conservation and ecosystem health management purposes.

KEYWORDS

acoustic indices, bioacoustics, marine mammals, soundscape, anthropogenic noise
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1 Introduction

Biodiversity conservation is increasingly considered an essential

element to maintaining ecosystem health and function (Tittensor

et al., 2019; Sala et al., 2021). Studies have utilized various ecological

indicators to describe the overall condition or health of marine

ecosystems, and inform management and conservation practices

(Halpern et al., 2014; Loomis et al., 2014; Miloslavich et al., 2018).

Ecological indicators are biological, chemical and physical measures

of key components in a specific environment, wherein the collective

use of these indicators provides a means of evaluating and managing

an ecosystem (Rombouts et al., 2013; Queirós et al., 2016). However,

to effectively employ this holistic method, accurate representative

indicators must be selected. One of the more challenging indicators to

identify are biological indicators, which are either direct or indirect

measures of the biodiversity of marine species (Holt & Miller, 2011;

Parmar et al., 2016).

Marine mammals are important ecological contributors in ocean

ecosystems and studies regarding their keystone predator status have

shown they significantly impact prey abundance and thus ecosystem

health (Moore, 2008; Benoit-Bird et al., 2013; Moore et al., 2014;

Moore & Kuletz, 2019). Establishing a baseline understanding of the

typical seasonal and inter-annual occurrence of these large megafauna

within a region is important for monitoring ecosystem response to

climate change or renewable technology infrastructure (Laidre et al.,

2008; Van Parijs et al., 2021). Yet continuously collecting visual

observations of marine mammals within a region is impractical due

to the high cost of aerial or vessel surveys along with inclement,

seasonal weather (Moore et al., 2018). This prevents resource

managers from continuously collecting direct measures (visual

observat ions) of mar ine mammal b iodivers i ty wi th in

marine ecosystem.

Passive acoustic monitoring using long-term recorders is a well-

vetted tool that provides an indirect measure of marine mammal

temporal and spatial occurrence (Wiggins & Hildebrand, 2007;

Lammers et al., 2008; Aniceto et al., 2022). Continuous acoustic

monitoring is becoming more prevalent and dependable as a

conservation approach, leading to recommendations for longer

term acoustic studies during offshore wind development operations

and incorporation of hydrophones at long-term monitoring sites

(Trowbridge et al., 2019; Van Parijs et al., 2021). Although data

collection has become more feasible and cost effective, large acoustic

datasets are often met with substantial processing delays due to the

need for human-mediated annotation of underwater sounds by an

experienced analyst (Gibb et al., 2019). Underwater sounds are

differentiated into one of three broad categories: biophony

(biological sources of sound such as marine mammals), geophony

(geophysical sources of sounds such as earthquakes), and

anthrophony (human-produced sources of sound such as passing

ships and sonar) as coined by Krause (2008). Due to the variability in

the types of sounds that can occur in underwater environments,

processing of acoustic data for biodiversity purposes requires that a

wide range of sounds can be accurately detected and differentiated.

Although machine learning has expedited the review process, most

methods remain either semi-automated and reliant on an experienced

acoustic analyst or are limited to detecting specific, stereotyped calls

(Browning et al., 2017). To achieve more timely processing of passive
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acoustic data and inform ecosystemmonitoring efforts, techniques for

the efficient assessment of continuously collected data are required.

Soundscape ecology, or the study of acoustic relationships between

organisms and their environment, is increasingly used as a tool for

evaluating biodiversity and biological monitoring (Pijanowski et al.,

2011; Sueur et al., 2014; Duarte et al., 2015; Merchant et al., 2015; Risch

& Parks, 2017). Pijanowski et al. (2011) highlighted the importance of

soundscape ecology and the ability to compute acoustic indices for the

purposes of biodiversity measurement and assessment of the

pervasiveness of anthropogenic noise. Sueur et al. (2014) went on to

further elaborate on a indices that evaluate the quality and context of

sounds within terrestrial acoustic environments using either amplitude,

sound complexity level, or the overall contribution to a soundscape.

Important aspects of this suite of metrics include the low costs

associated with generating measurements, and the rapid ability to

determine the occurrence of biological activity independent of

manual annotation. Recently, these terrestrial-based mathematical

tools were assessed for their applicability to marine environments

(Erbe et al., 2015; Bertucci et al., 2016; Haver et al., 2018). Fish and

coral reef ecology studies lead the charge in utilizing soundscape

metrics (Rice et al., 2017; Elise et al., 2019a; Elise et al., 2019b;

Benocci et al., 2022). Most of these studies occur in shallow waters

(<30 m) along the coast, or within coral reefs or estuaries and focus on

sounds within a 0-8,000 Hz frequency band (Pieretti and Danovaro,

2020). While there is some indication that a acoustic indices may be

associated with periods of increased biological sound activity, their

suitability in underwater environments requires a greater

understanding of how specific biophony, geophony and anthrophony

influence these measurements in marine environments.

Although limited in number, a handful of studies have

explored the relationship between acoustic indices and specific

biological sounds. Parks et al (2014) study explored the connection

between several acoustic indices and baleen whale calls, finding a

potential response in the noise compensated entropy index to

periods of vocal activityRoca and Van Opzeeland (2020) machine

learning assessment of marine mammal biodiversity between

pelagic and on-shelf acoustic environments successfully

identified periods of increased diversity using a combination of

23 measurements. Their efforts elucidate the potential for certain

indices or a combination of indices to be associated with marine

mammal biodiversity. Benocci et al. (2022) further explored the

influence of sounds from an artificial tank environment on

acoustic indices and despite the occurrence of mechanical and

anthropic origin sounds, found consistent responses to fish sounds

which could be useful in natural environments. However, other

studies found limitations and inconsistencies in the relationship

between call type or rate and index measurements (Parsons et al.,

2016; Bohnenstiehl et al., 2018). Staaterman et al. (2017) paired the

calculation of several acoustic indices with visual fish surveys in

four habitat types and found these metrics were not clear

indicators of fish biodiversity, recommending the needs for

f u r t h e r d ev e l opmen t and g round - t r u t h i n g o f t h e s e

measurements. Mooney et al. (2020) suggest that understanding

the sources responsible for the variability in acoustic indices is an

important element to their utilization. Therefore, additional

studies are needed to establish a better understanding of these

potentially useful indirect biological indicators.
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In this study, we explore the relationship between several acoustic

indices and underwater sounds detected at three sites along one of the

Ocean Observatories Initiative’s monitoring regions situated in the

dynamic California Current Ecosystem. Pieretti and Danovaro (2020)

point out that most marine studies involving these metrics evaluate

sounds produced by the community as a whole, as opposed to

specifically focusing on an individual species. Our objective in this

effort is to address the need for understanding what influences these

measurements by determining the trends of seven acoustic indices in

association with species-specific sounds. Furthermore, we evaluate

recordings from multiple sites within the same ecosystem to account

for differences attributable to instrument noise, and ambient noise

across and along the slope. The intent of this ground-truthing effort is

to provide novel understanding of how acoustic indices consistently

respond to select underwater sounds.
2 Materials and methods

The coastal waters off Newport, Oregon are part of the California

Current Ecosystem and are highly productive largely due to a

combination of wind-driven upwelling and river plume supplied

nitrate to the adjacent waters (Huyer et al., 2005; Hickey et al., 2010).
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These distinctive oceanographic processes in conjunction with a

burgeoning fishing industry led to the selection of this site for

monitoring by the Ocean Observatories Initiative (OOI) (Trowbridge

et al., 2019). The OOI consists of a series of ocean observation networks

that provide ecosystem monitoring data from hundreds of instruments

which will continue collecting data for the next 20 years. The Coastal

Endurance and Continental Margin Cabled Arrays are strategically

situated within this region and consists of cross- and along-shelf

broadband icListen hydrophones deployed and maintained by the

OOI (Figure 1). The recorders on the shelf at 80 m (HYDBBA 106)

and the slope at ~580 m (HYDBBA 105) are part of the Coastal

Endurance Array. The recorder on the base of the slope on a 200 m

shallow profiler mooring (HYDBBA 103) is part of the Cabled

Continental Marin Array. Passive acoustic data from all three

recorders include a monitoring bandwidth of 32 kHz (64 kHz

sampling rate) and have been continuously recording since 2016. The

Ocean Sonics icListen HF have amonitoring bandwidth of 10 Hz to 200

kHz but are limited to a 64 kHz sampling rate by the data transfer

hardware and process. We evaluated one month of data from each

recorder: January 2017 for HYDBBA 103 and 106, and April 2018 for

HYDBBA 105. We had previously annotated these months of data and

there were limitations to the overlap in datasets across all three

recorders that resulted in their use in this study. Annotation of this
FIGURE 1

Map of the study area showing the location of the three recorders on the Ocean Observatories Initiative cabled arrays. The recorders on the shelf at 80
m (HYDBBA 106) and the slope at ~580 m (HYDBBA 105) are part of the Coastal Endurance array. The recorder on the base of the slope on a 200 m
shallow profiler mooring (HYDBBA 103) is part of the Cabled Continental Marin array. Recorders are located 30 km to 60 km from each other and
offshore from Newport, Oregon. Bathymetric lines indicate increasing depth across the slope with darker colors.
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data was unfunded and we utilized what data had been processed to

date. Although the data from HYDBBA 103 and 106 were collected in

the same month of 2017, they are separated by almost 90 kilometers,

which for most species is too great a distance to simultaneously detect

sounds from the same group of animals.
2.1 Annotation of acoustic events

We reviewed the three months of data to determine periods of

vocalizing marine mammal species and anthropogenic sounds. The

raw audio (.wav files) acoustic dataset was processed in PAMGuard

(version 2.01.05; Gillespie et al., 2009) using a two-stage process.

PAMGuard is a widely used, open access software program that

includes automated and semi-automated modules for the detection

and localization of marine mammals. PAMGuard is a modular

program that allows the user to define what display, detection,

localizations and noise monitoring modules they wish to use in an

analysis. The first stage of processing occurred in PAMGuard’s

standard mode and involved automated detection of calls from

several marine mammal species using a combination of the in-built

click and whistle and moan detector modules. Settings for the click

detector included standard settings and a series of click classifiers to

differentiate delphinid and sperm whale echolocation clicks. Two

click classifiers were used for the detection of echolocation clicks from

sperm whales to differentiate between “regular” and “slow” clicks

(Weilgart & Whitehead, 1988; Barlow & Taylor, 2005). We wanted to

make sure both click types were detectable in the processing. The

“slow” click classifier consisted of a detection/test band of 500 Hz – 8

kHz, and peak frequency range of 500 Hz – 4 kHz. The “regular” click

classifier consisted of a detection/test band of 1 – 12 kHz and peak

frequency range of 5-12 kHz. All tonal and burst pulse type of calls

were detected using the whistle and moan detector. Frequency range

was adjusted to detect all potential sounds within the available

bandwidth, requiring true positives to be determined in the

secondary stage (Gillespie et al., 2009; Gillespie et al., 2013). Default

settings for noise and thresholding were retained.

The second stage of processing involved using PAMGuard’s

ViewerMode for the post-automation annotation of the automated

detections. Annotation was performed by an experienced bioacoustic

analyst and involved discrimination of detections into appropriate

“acoustic events.” An acoustic event was defined as a bout of calls

from a biological source that had no more than 30 minutes gap

between calls from the same species for whistles or burst pulse calls,

and no more than 60 minutes gap between bouts for calls from sperm

whales and baleen whale species. This selection of time interval is

mostly just used as a means of organizing data that are “likely” from

the same individual or group, given their potential to remain detected

in the area for a certain amount of time. We were not however using

this information for any density or abundance determination, so the

organization is mostly just useful for data management purposes.

Calls attributable to marine mammals were assigned to “acoustic

events” according to species or species group (e.g., delphinid species,

fin whale). Annotations were made by using the Detection Grouper

module in PAMGuard, which allows a user to selected detected calls

and assign those calls to a group which can then have custom

information associated with the group. The assignment of calls to a
Frontiers in Marine Science 04
group relies on an analyst identifying a period of calls within the data,

and then boxing calls to assign to the group. Any calls that were

ambiguous or unidentifiable simply received an “unidentified sound”

or “unidentified cetacean” assignment. Any detections that were

attributable to ambient or instrument noise (false positives) were

disregarded, so that only annotations of true events were included in

further processing. Annotations were intermittently reviewed by a

second, expert bioacoustic analyst to ensure species identification

were accurate.

Processing data for all potential calls within the same processing

run can be computationally intensive. To increase efficiency of the

annotation process, three analysis iterations were completed so the

analyst could focus on classifying calls from a subset of possible

species/species groups. The very low frequency run (10-200 Hz)

focused on calls from baleen whales such as fin and blue whales.

The low frequency run (200 Hz – 2 kHz) focused on slightly higher

frequency calls, such as those from humpback whales. The mid-high

frequency run (2 kHz – 32 kHz) was used to annotate calls from

odontocetes, such as sperm whales and delphinids. During

annotation, several modules are used to expedite the review of

automated detections and parse out true detections from noise This

specifically included the Long-term Spectral Average module which

allows average spectrum measurements over periods of several

seconds (10 seconds in this study) and a clip generator that

organizes clips of detections for rapid review. Acoustic event

annotations were not used to identify individuals or specific groups

within the data, as an animal may have moved past the recorder and

returned; acoustic events were solely used to assist in the data

management of acoustic encounters.

Periods of passing ship often triggered false positives on the click

detector. These false positives were reliable for documenting these

underwater sounds and were annotated as “Passing ship” acoustic

events. Ships were only annotated in this way if they exhibited the

same ship event structure observed in the long-term spectral average

display by other studies (Ragland et al., 2022). Mid-frequency active

sonar was annotated by selecting contours from the whistle and moan

detector. No other sources of anthropogenic noise (e.g.,

echosounders) were annotated in this analysis.
2.2 Extraction of call characteristics

Acoustic event-based information including the species

identification, the count of calls (number of calls per audio file, per

species), and select additional parameters were extracted using the R-

based package ‘PAMpal’ (v0.13.0; Sakai et al., 2020). PAMpal extracts

information from the binary files and database generated by

PAMGuard, and allows users to calculate parameters from detected

calls and summarize this information in user selected time intervals.

A call or detection count was summed for each five-minute wav file,

and multiple acoustic events occurring within the same file were

summarized independently. Additionally, select parameters

calculated from the “contours” (which are the detections made by

the whistle and moan detector) included the mean call amplitude

(dB), mean call bandwidth (Hz), and mean frequency (Hz)

determined for each 5-minute wav file. For echolocation clicks, we

extracted the total number of clicks as well as average measures of
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mean click amplitude (dBPP - a relative measure of intensity/

amplitude calculated as 20 * log10 of the difference between the

maximum and minimum value of the waveform), mean 10 dB

bandwidth (kHz), and mean peak frequency (kHz) for each five-

minute wav file associated with sperm whale acoustic events. We did

not differentiate between "slow" and "regular" clicks for parameter

measurement extraction, so data from both click categories were

combined for analyses. Additionally, we extracted occurrence

information (e.g., labeled a five-minute wav file as containing a type

of sound) for anthropogenic sounds such as passing ships and mid-

frequency active sonar.

Output from R calculations of acoustic indices were merged with

summaries of information in five-minute files from marine mammal

and anthropogenic acoustic events. We assigned details of call types to

indicate if each five-minute wav files contained contours from a single

event, from overlapping (different species) events, contours and clicks

from single or overlapping events, or periods where biophony and

anthrophony were not detected. When correlating call characteristics

to indices, we excluded all five-minute wav files with multiple species.

For all analysis and graphs comparing index measurements with a

specific sound type, only data containing calls from that specific

species/species group or anthropogenic noise source were included.

We did not include periods where calls or sounds overlapped. We are

confident that all possible sounds from marine mammals and

anthropogenic noise were annotated in each dataset, meaning the

“Vocalizations absent” category can only have included ambient and

instrument noise or potentially noise from geophony. We did not

exclude periods with rain or storms from this “Vocalizations absent”

category as we wanted the natural variability of ocean ambient noise

to be reflected in those periods without marine mammal or

anthropogenic sounds. Finally, prior to performing statistical tests

and descriptive graphics, we determined the average call count from

the data specific to each recorder for all marine mammal species and

excluded all five-minute wav files that contained fewer calls than the

mean call count value across all acoustic events. This was done to

ensure that data used in the statistical tests and comparative figures

included a sufficient number of calls to relate to quiet periods

without vocalizations.
2.3 Statistical analysis

The statistical analyses included in our study were identified due

to the presumed potential for pseudoreplication, or observations that

could include temporal or spatial dependence. As posed by Alcocer

et al. (2022), the data had the large potential for temporal

autocorrelation given successive five-minute periods were identified

as individual data points. To account for this issue we incorporated

statistical measures that are robust to the non-independence, as

demonstrated by Moreno-Gómez et al. (2019) in a study of acoustic

indices and bird and anuran richness.

Evaluating the Relevance of Species to Index Measurement

Variation: Determining the effect of species or anthropogenic sound

source on acoustic indices was an important element to this study.

Boxplots grouped by recorder and reported by species/species group

or sound type were initially created. We then assessed the

contribution of species to the acoustic index measurements by
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‘lme4’ R package (Bates et al., 2015). Given the size of this dataset and

the variability in detected sounds on each recorder, as well as the

difference in month for one of the recorders, each index was fitted

with a single model that examined species as a fixed effect and used

recorder as a random effect. As we did not produce separate models to

compare in this analysis, we do not report AIC values or assess the

best fit model.

Correlating Index Measurements to Call Characteristics: We

examined the relationship between each of several acoustic indices

and characteristics from species where a notable difference from

periods without vocalizations were observed in the descriptive

figures. This was performed using a Spearman correlation test to

determine a correlation coefficient (“r”) to measure the strength and

direction of the variables' relationship using the spearmanRho

function of the ‘rcompanion’ package in R (Mangiafico, 2016). The

nonparametric Spearman correlation was used due to all index

measurements exhibiting a non-normal distribution. To mitigate

issues that could potentially arise due to data dependence for

each recorder, we performed a bootstrap routine with 1,000

iterations. Bootstrapped correlation coefficient measurements and

associated confidence intervals were calculated for all extracted

call measurements.

A summary of sample sizes were reported for all call types and all

recorders. All statistical analysis was performed using the native stats

package in R (v4.2.2; R Core Team, 2022) and figures were generated

using the ‘ggplot2’ package in R.
2.4 Acoustic indices

2.4.1 Description of indices
The OOI collects data in five-minute files, so for data

management purposes, we used this time interval for calculation of

acoustic indices and acoustic event summarization. Given a recent

publication on the guidelines for use of acoustic indices in

environmental research by Bradfer‐Lawrence (2019) used 10 min

continuous recordings as part of the dataset, we determined five-

minutes represented an acceptable recording duration. For each of the

five-minute raw audio (.wav files), the following acoustic indices were

calculated: Acoustic Complexity Index, Acoustic Diversity Index,

Acoustic Evenness Index, Bioacoustic Index, Normalized Difference

Soundscape Index, Number of Peaks, and Total Entropy (termed

“Acoustic Entropy Index” in other studies).

The Acoustic Complexity Index (ACI) is an algorithm developed

by Farina (2019) to provide a fast and direct quantification of

biological sounds based on intensity. It is the most commonly

assessed acoustic index in marine environments (Pieretti and

Danovaro, 2020; Minello et al., 2021). ACI calculates the differences

in amplitude in adjacent time samples for each frequency bin, then

adds together the difference, thus representing a measure of

complexity of the acoustic environment. The concept behind this

metric is that biological sounds are more variable with respect to

intensity than anthropogenic sounds, and several studies have

demonstrated ACI use for evaluating species diversity (Pieretti et al,

2017; Davies et al., 2020). Greater diversity in calls from terrestrial

species is linked to larger ACI values, although irregular noise from
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wind and rain can increase this metric as well. ACI was first applied to

an underwater environment by McWilliam and Hawkins (2013) who

identified a strong association with biological sounds. Subsequent

marine-based studies report that ACI is a promising biodiversity

metric as summarized most recently by Minello et al. (2021).

However, other studies have reported that this metric varies greatly

in association with underwater sounds (Kaplan et al., 2015;

Bohnenstiehl et al., 2018; Bolgan et al., 2018).

The Acoustic Diversity Index (AD) and the Acoustic Evenness

Index (AE) are complementary measures that are have an inverse

relationship with the data (Villanueva-Rivera et al., 2011). The AD

applies the Shannon Diversity Index (a mathematical method to

measure the diversity of species in a community) to the relative

proportion of signal occurring in each 1 kHz frequency band

(Shannon, 1948). Higher values are associated with greater amplitude

evenness among frequency bands over time, and greater numbers of

vocalizing species in terrestrial studies. Lower values reflect prevalence

of a contribution to a narrow band region exclusively. Conversely, AE

measures the evenness of the acoustic activity by estimating the Gini

coefficient on the signal in each 1 kHz band. Saturated soundscapes or

acoustically rich habitats can decrease this metric. These two metrics

are encountered less frequently in marine studies.

The Bioacoustic Index (BI) is a long-standing metric used in

terrestrial acoustic monitoring but less prevalent in studies of marine

environments. The BI was originally developed by Boelman et al.

(2007) to determine avian abundance and increases in the BI

measurement corresponds to increased measures of avian diversity.

The Number of Peaks (NP) index tally’s the number of major spectral

peaks in the data. In terrestrial environments, this value increases

when habitats have a higher number of species or with certain types of

single species sounds (Gasc et al., 2013). To our knowledge this metric

has not been evaluated for marine-based studies.

The Normalized Difference Soundscape Index (NDSI) compares

energy in two bands to provide an estimate of anthropogenic

disturbance by finding the ratio of an anthrophony frequency band

to a biophony frequency band (Boelman et al., 2007; Kasten et al.,

2012). NDSI has been utilized in terrestrial acoustic studies, but to our

knowledge has not been assessed for underwater environments

(Bradfer-Lawrence et al., 2020; Ross et al., 2021). The NDSI index

relies on the consistent nature of anthropogenic noise in separate

frequency bands from biophony. In a terrestrial scenario where

anthrophony occurs within a band of 1-2 kHz and biophony is

expected to occur within 2-8 kHz, increased NDSI measurements

would indicate higher biophony activity and low anthropogenic noise.

We selected an anthrophony band of 10 Hz-1 kHz (despite the

knowledge that some calls from large baleen whales existing in this

band) and a biophony band of 1-32 kHz. We proceeded with these

settings for anthrophony as most of the energy from vessel traffic

occurs within this first 1,000 Hz bandwidth (Hatch et al., 2008;

McKenna et al., 2012; Merchant et al., 2012). Calls from species

such as blue, fin and humpback whales also occur within this

bandwidth, so we anticipated that calculations associated with these

sounds would be in discriminable from noise and would decrease

NDSI measurements. Our anticipation was this metric would only be

useful for those calls existing above 1 kHz.

Finally, the Total Entropy (H) metric combines a temporal

diversity index and a frequency diversity index, which are generated
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by applying the Shannon diversity index to the amplitude envelope

(Shannon, 1948; Sueur et al., 2008). Increased values are associated

with greater evenness of the amplitude among frequency bands over

time, or with soundscapes containing near-silent recordings. This

metric is more prevalent in marine studies and in the literature is

referred to as either the spectral entropy or the temporal entropy

(Parks et al., 2014; Elise et al., 2019b).

2.4.2 Calculation of indices
Acoustic index measurements and statistical analysis were

performed using R 4.0.5 (R Core Team, 2021). Measurements of

ACI, AD, AE, BI, and NDSI were calculated from five-minute

duration raw audio.wav files using the ‘soundecology’ package

(v1.3.3; Villanueva-Rivera et al., 2018). Measurements of NP and H

were calculated using the ‘seewave’ package (v2.2.0; Sueur et al, 2008).

All indices were calculated using a Fast Fourier Transform (FFT) of

512, a minimum frequency of 10 Hz and a maximum frequency of 32

kHz (with the exception of the bands indicated for NDSI). The AD

and AE calculations had a frequency step of 100 Hz, which was

decidedafter sensitivity testing with several step sizes. We also used

sensitivity testing to determine an appropriate dbFS threshold for

each recorder to use with AD and AE calculations. These values are

dependent on characteristics of the hydrophone and acoustic

environment, necessitating this testing. We ultimately used a value

of -50 dbFS for HYDBBA 103 and 106, and a value of -100 dbFS for

HYDBBA 105. Given we are interested in persistent patters across

recorders and not discrete values, we did not anticipate this difference

would result in any problems in the interpretation.
3 Results

3.1 Acoustic detections

Marine mammals, passing ships, and sonar activity were

identified in the dataset and the number of five-minute audio files

containing each sound category varied for each sound category and

recorder (Table 1). Differences in recording coverage during each

month varied, resulting in differences in the total sample size of five-

minute files for each site (shelf = 6,410 files, slope = 4,725 files, base of

the slope = 7,101 files). Periods of vocalizing marine mammals

occurred less frequently at the base of the slope (HYDBBA 103) as

compared to the slope (HYDBBA 105) and the shelf (HYDBBA 106).

Calls from delphinid species (not identifiable to species level),

humpback whales (Megaptera novaeangliae) and fin whales

(Balaenoptera physalus) were detected at all three sites. Delphinid

calls predominantly consisted of burst pulses and could not be

classified to species as they could have been produced from one of

several species and visual validation was unavailable. Echolocation

clicks from sperm whales (Physeter macrocephalus) were detected on

the slope and at the base of the slope. Blue whale (Balaenoptera

musculus) A and B calls and mid-frequency active sonar were

detected on the recorder located on the shelf. Possible fish sounds

were only detected at the base of the slope. Passing ships were

detected at the slope and shelf sites. Within each set of recordings,

all five-minute files where vocalizations were absent were included in

the comparison (4188 – 6943 files). The combined dataset including
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information on marine mammal occurrence, call measurement and

acoustic indices can be found in Supplementary Table 1.
3.2 Biophony effects

The acoustic index measurements varied in association with calls

produced by several marine mammal species and anthropogenic noise

sources at each of the OOI recorder sites (Figures 2-5; Supplementary

Figures 1, 2). ACI measurements from five-minute wav files notably

increased during periods of vocalizing delphinid species and sperm

whales (Figure 2). AD and AE resulted in complementary, opposite

measurements and are thus summarized collectively. These indices

responded inconsistently to different marine mammal calls, and were

more obscure in terms of the measurement response (Table 2;

Supplementary Figures 1, 2). BI measurements decreased in

associationwith to sperm whale echolocation clicks for both the

recorders (Figure 3). Humpback whales had a smaller significant

effect on BI at all three sites exhibiting a slightly higher distribution

of values than delphinids, fin whales and blue whales. The NDSI varied

for all marine mammal groups across the three recorders (Figure 4).

Humpback whale calls resulted in a reduction ofNDSI measurement on

the slope and at the base of the slope, but were insignificant on the shelf.

There was a notable reduction in the measurements associated with the

possible fish category at the base of the slope. The NP and H

measurements also exhibited variable responses to calls from marine

mammals (Supplementary Figure 3 and Figure 5, respectively).

Although differences in NP measurements were noted for several

species, the increase or decrease in measurements as compared to

periods without vocalizations was inconsistent at each recorder and

displayed no clear trend in the data. The H measurements increased in

association with blue whale or delphinid calls and decreased in

connection to the possible fish sounds (Figure 5).

The results of the generalized linear mixed-effects models provide

additional evidence of the contribution of each species or species

groups to the variability of the dependent variable (each index;

Table 2). For ACI, all categories but “Possible Fish” and “Sonar”

indicate they significantly contribute as a predictor variable in the

model. Delphinid species and sperm whales demonstrate a higher
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likelihood of increasing this metric. For AD and AE, although blue

whales, delphinid species, fin whales, and sperm whales indicate a

statistically significant effect on the model, the coefficient estimate is

relatively low for these indices. Only humpback whales and sperm

whales significantly contribute to the variation for BI, with the sperm

whales resulting in a large negative coefficient. The model for Hmodel

does indicate significant differences between many species, but they

have a lower likelihood of increasing or decreasing this measurement.

All but humpback whales have the potential to predict the NDSI

variable, although blue whales are more likely to increase this value

while possible fish are more likely to decrease it. Finally, the NP

measurements are significantly predicted by all species but fin whales,

although the likelihood of this impact is nominal.
3.3 Call characteristic correlations

In assessing the difference in ACI, BI and NDSI measurements for

periods with sperm whale clicks and periods without vocalizations, we

observed an incremental differentiation when qualitatively parsing

data into categories of loud, moderate, and quiet echolocation clicks

(Figure 6). The BI measurements were dramatically reduced as

compared to periods without vocalizations for loud and moderate

clicks. To a lesser extent, the same trend was observed for the ACI and

NDSI values particularly for those echolocation clicks that were

qualitatively classified as “loud” by the analyst.

We explored the correlation of call characteristics of sperm whale for

both ACI and BI (Figure 7). For delphinid calls we only evaluated data

that contained “contour” detections of burst pulses, and did not include

measurements of echolocation clicks in the correlation comparison.

Annotated echolocation clicks from delphinids resulted in too low of a

sample size to evaluate independently, and burst pulses make up the

majority of the annotations for the delphinids in this region. Although

additional significant relationships were found for other species and

indices, these two indices provided consistent trends in the data

distribution from multiple recorders. Figure 7 indicates the Spearman

correlation (r) and bootstrapped confidence intervals for each sperm

whale call characteristic and ACI and BI. The 10 dB bandwidth (r103 =
0.41, r105 = 0.37), click amplitude (r103 = 0.69, r105 = 0.51), peak
TABLE 1 Summary of five-minute file sample sizes used in the analysis for each recorder by sound category.

Sound Category

Number of Five-Minute Files Analyzed

Shelf (HYDBBA 106) Slope (HYDBBA 105) Base of the Slope (HYDBBA 103)

Blue Whale 55 NA NA

Delphinid species 217 128 30

Fin Whale 56 145 32

Humpback Whale 113 55 30

Possible Fish NA NA 34

Ship 570 20 NA

Sonar 22 NA NA

Sperm Whale NA 189 32

Vocalizations Absent 5377 4188 6943
If a marine mammal or anthropogenic sound was not detected on a recorder, “NA” is indicated.
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frequency (r103 = 0.63, r105 = 0.30), and Total Clicks (number of clicks

per 5-min file) (r103 = 0.47, r105 = 0.61), for ACI values of sperm whale

clicks had a moderate to strong, positive correlation with ACI at both

sites. Confidence intervals were greater for the recorder at the base of the

slope due to smaller sample size, but were consistent with the trends of

the slope recorder (105) (Figure 7). For the BI measurements, the 10 dB

bandwidth (r103 = -0.33, r105 = -0.43), click amplitude (r103 = -0. 39, r105
= -0.65), peak frequency (r103 = -0.37, r105 = -0.43), and Total Clicks

(number of clicks per 5-min file) (r103 = -0.34, r105 = -0.55) all indicate a

moderate to strong negative correlation with spermwhale clicks. Of these

metrics, the click amplitude and total number of clicks per 5-min file

suggest the strongest influence.

For delphinids, inconsistency across in the correlation results,

closer to zero correlation values for some call parameters, and wide

confidence intervals do not suggest any specific influence on ACI

(Figure 8). These results were unexpected given the increase in ACI

observed from the descriptive figures. Supplementary Tables 2 and 3

include the correlation coefficient values and confidence intervals

calculated in this analysis.
3.4 Anthrophony effects

Annotated anthrophony consisted of ships on the shelf and the

slope and mid-frequency active sonar pings at the shelf. Five-minute
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files containing noise from passing ships resulted in an increase of

ACI as compared to periods without vocalizations (Figure 2). ACI did

not change significantly during periods with sonar, although sample

size was low (Table 1). Sonar was noticeably lower for AD and higher

for AE Supplementary Figures 1, 2). Similar to sperm whale

observations, sonar was associated with reduced measurement of BI

in comparison to periods where vocalizations were absent Figure 3).

Ships had a negligible significant difference from quiet periods for BI,

but again were noticeably different from quiet periods on the slope.

The NDSI measurements were greatly reduced for passing ships as

compared to periods lacking vocalizations at the shelf and slope

recorders (Figure 4). For sonar, large increased difference in NDSI

was observed as compared to periods where vocalizations were absent

A similar trend was observed for the NP measurements for both

passing ships and sonar (Supplementary Figure 3). Sonar periods are

associated with increased measurements of H as compared to periods

without vocalizations, however passing ships were dramatically reduced

from quiet periods on the shelf as well as along the slope (Figure 5).

The results of the generalized linear mixed-effects models for

passing ships and sonar indicate interesting influences on several

index variables (Table 2). Passing ships have a small likelihood of

increasing ACI, but a larger likelihood of decreasing BI and

decreasing BI and NDSI. The sonar sound category had a large

positive effect on AE and NDSI, and had a large negative coefficient

relating to BI. The likelihood of sonar and passive ships increasing or
FIGURE 2

Box plots representing measurements of Acoustic Complexity Index (ACI) associated with underwater sounds. Data are organized by recorders located on
the shelf (106), the slope (105) and at the base of the slope (103). Marine mammal species and human-made sounds vary for each recorder resulting in some
sound types with only one or two box plots. All recorders include a plot for data that contained no annotated sound (labeled ”Vocalizations Absent“).
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decreasing NDSI respectively is far greater than the intercept

(Vocalizations Absent).
4 Discussion

In this study we were able to explore how several soundscape

metrics vary in response to underwater sounds from marine

mammals and anthropogenic noise. The aim of this effort was to

address the consistent recommendations from the terrestrial and

marine acoustic ecologists by exploring how acoustic indices

respond to marine mammals sounds (Mooney et al., 2020; Pieretti

and Danovaro, 2020). Unexpectedly, we also uncovered information

relating to anthrophony and acoustic indices. Collectively, these

results provide novel information to the field of acoustic ecology.

Biodiversity is not explicitly reflected by any single acoustic index

measurements, unlike some results from terrestrial studies. For

instance, Dröge et al. (2021) found a positive correlation between

the Acoustic Diversity Index and the Acoustic Entropy and avian

species richness. However, their study also indicated a significantly

negative response in the Acoustic Complexity Index, which is

contrary to results from other studies of avian species diversity

(Towsey et al., 2014). Our results suggest a dynamic relationship

between underwater sounds and acoustic indices, and one that is not

driven by any one sound characteristic. Minello et al. (2021) suggested
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that soniferous species may not all have equal footing as acoustic

bioindicator species for ecosystem health monitoring. Our results

certainly reflect this sentiment, as was seen in the relationship

between sperm whales and delphinids with ACI and BI. Further

observations, limitations and applications of this knowledge are

outlined below.
4.1 Strong responses to underwater sounds

Index measurements are recorder dependent making them

incomparable in terms of exact values, but this study results in

several trends in the response of some of these measurements to

calls from marine mammals and anthropogenic noise sources. We

therefore focus our interpretation of these results on sound categories

that exhibited a consistent, strong effect on the measurements of a

select set of indices. Given the difference in instrument and ambient

noise on the shelf, slope, and base of the slope recorders, these robust

trends are anticipated to persist on different instruments located in

similar acoustic environments:
1. Sperm whale echolocation clicks influence two indices with the

increase in ACI and decrease in BI displayed a gradual shift in

values when click quality was parsed out strong, loud clicks

diverging most significantly from the periods lacking
FIGURE 3

Box plots representing measurements of Bioacoustic Index (BI) associated with underwater sounds. Data are organized by recorders located on the shelf
(106), the slope (105) and at the base of the slope (103). Marine mammal species and human-made sounds vary for each recorder resulting in some
sound types with only one or two box plots. All recorders include a plot for data that contained no annotated sound (labeled ”Vocalizations Absent“).
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vocalizations which could be due to a combined contribution

of click amplitude, 10 dB bandwidth, peak frequency and the

quantity of calls produced. To a lesser extent, sperm whale

clicks also resulted in increased NDSI measurements. These

trends were observed consistently for both the slope and the

base of the slope site. We believe information regarding the

combination of ACI, BI and NDSI associated with clicks from

sperm whales could serve as a means of predicting their

occurrence within long-term acoustic data. However, one

note of caution relates to the combination of bandwidth and

index parameter settings as research suggests that fluctuation

of ACI values can occur with use of finer scale frequency

resolution (Bohnenstiehl et al., 2018).

2. The burst pulse type calls produced by delphinid acoustic

groups in this region increased measurements of ACI

regardless of ambient conditions of the recorder, although

none of the call characteristics evaluated in this study

appeared to be exclusively responsible for this shift in the

measurements. We found it particularly interesting that,

similar to results observed in relation to peak chorusing of

fish by Staaterman et al. (2017), an increase in the number of

calls, particularly at the acoustically intense recorder site at

the shelf had almost no correlation to ACI measurements.

While low sample size of five-minute files prevented us from
tiers in Marine Science 10
evaluating the correlation of ACI measurements with

echolocation click characteristics, clicks in combination

with burst pulses could be responsible for increases in ACI

and should be further explored. Should an index exclusive

approach to evaluating a dataset were to be employed, burst

pulses could be differentiated from sperm whales through

measurements of the BI, as the measurements for delphinids

were similar to periods without vocalizations. Although other

metrics do show some possible trends as well (e.g., increased

measurements of H at all recorders), the magnitude of this

significant difference varied too much to make it a reliable

indicator of delphinids.

3. Passing ships exhibited a strong, consistent influence on both the

NDSI and H measurements (Figure 4, 5). For both indices,

measurements were greatly reduced in comparison to periods

with and without detections from other sound categories. The

measurements of H are consistent with Parks et al. (2014)

regarding their association with low frequency baleen whale

calls, but to our knowledge the drastic decrease in this metric

during periods of passing ships is a new finding. The only

potential overlap in downward trending NDSI measurement

would be with the possible fish sounds, however ships were not

detected on the recorder at the base of the slope, so could not be

compared. The frequency band used to define anthrophony in
FIGURE 4

Box plots representing measurements of Normalized Difference Soundscape Index (NDSI) associated with underwater sounds. Data are organized by
recorders located on the shelf (106), the slope (105) and at the base of the slope (103). Marine mammal species and human-made sounds vary for each
recorder resulting in some sound types with only one or two box plots. All recorders include a plot for data that contained no annotated sound (labeled
”Vocalizations Absent“).
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this index was 10-1000 Hz, which we expected to be negatively

impacted by biophony vocalizing within this bandwidth.

Differentiation of ships from humpback whale calls could be

accomplished in a scenario where indices are combined because

humpback whale calls had no influence on H measurements.

Assessing the combination of NDSI and H in long term

recordings could be a valuable method for detecting passing

ships. However, an evaluation of the degree of NDSI and H

response with varying distance from recorder or type of ship

should be performed, as it was not done so within this study.
We did observe additional trends in the data that could be used as

a further means of rapidly determining periods of biophony and

anthrophony in a dataset, however the data were either limited to one

site (e.g., blue whales) or require a complex machine learning

approach to discriminate which combination of indices can provide

meaningful information. Based on the efforts of this study, we suggest

that sperm whales and delphinid species could serve as representative

acoustic indicators in coastal ecosystem monitoring efforts that

incorporate acoustic indices.

Anthropogenic sources of noise in this dataset provided

information beyond the well-established relationship between
tiers in Marine Science 11
intensity indices such as sound pressure level and ship traffic.

Additionally, we found sonar to have a significant influence on

several indices, however sample size of five-minute files containing

sonar were low (n=22) and only occurred at the shelf recorder. A larger

dataset may elucidate trends in this anthropogenic noise source.

Although noise filtering was suggested by several studies as a means

of focusing on biodiversity of calling species, we suggest this might

mask the effects of louder signals on index measurement response.

Additionally, we recommend evaluating the effects of call type

and rate of a variety of fish species to better understand their

relationship with acoustic indices. Armed with a more robust

understanding of key influential sources of biophony, marine

ecologists can more effectively determine those combinations of

acoustic indices that contribute to understanding biodiversity in

ocean environments.
4.2 Study limitations

To our knowledge, this study is the first to compare acoustic

indices across large bandwidth (10 Hz to 32 kHz) data for assessing

multiple types of underwater sounds. However, the integration across
FIGURE 5

Box plots representing measurements of Total Entropy (H) associated with underwater sounds. Data are organized by recorders located on the shelf
(106), the slope (105) and at the base of the slope (105). Marine mammal species and human-made sounds vary for each recorder resulting in some
sound types with only one or two box plots. All recorders include a plot for data that contained no annotated sound (labeled ”Vocalizations Absent“).
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such a large bandwidth may be marginalizing the low frequency calls

from baleen whales within these acoustic indices results. It is likely

that incorporating a series of calculations exclusively on a lower

bandwidth could result a larger response from acoustic indices, as was

evident in Parks et al. (2014). We suggest that bandwidth possibly

impacts acoustic index associations as it pertains to both low

frequency calling animals and cases where bandwidths are much

greater than the 32 kHz of this study. We could not evaluate calls from

species that produce vocalizations above the 32 kHz bandwidth, such

as beaked whales and harbour porpoise. Given the influence on

measurements for several indices in response to sperm whale

echolocation clicks, evaluating other echolocating species would be

beneficial. Another caveat is that some species did not produce

vocalizations at each recorder site, limiting our ability to compare

between different acoustic recorder environments.

The results are further limited as they were collected in the

same region of the northwest Pacific Ocean and used data from the

same type of instrumentation. However, the variability in the

recorders in terms of instrument noise from the hydrophone or

co-located sensors and acoustic environment provided more

confidence in those persistent trends mentioned above.

Additional analysis of data from a different region and using

different instrumentation would assist in further validation of

these results.
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4.3 Large-scale monitoring applications

The concept of utilizing acoustic indices to characterize the

biophony diversity found in acoustic environments is not novel,

nor is the acknowledgement that further research is required to

improve the reliability of these measurements as indicators (Sueur

et al., 2014). Roca and Van Opzeeland (2020) have already tested

incorporating a suite of acoustic index measurements in machine

learning methods for monitoring acoustic environments using large

acoustic datasets. We anticipate this work will contribute to current

efforts seeking to incorporate acoustic indices in autonomous,

machine learning methods for continuous environmental

monitoring (Sethi et al., 2019; Williams et al., 2022).

Implementing meaningful large-scale ecosystem health

monitoring has additional challenges. Recommendations from the

acoustic community suggest that fluctuations in oceanographic

measurements associated with indicator species may elucidate

periods of ecological disturbances (Pieretti and Danovaro, 2020;

Minello et al., 2021). To truly assess this would require the co-

location of additional physical and chemical oceanographic data as

is the case with the OOI cabled array sensors. Mooney et al. (2020),

indicated the need to record over sufficient timescales to observe

deviations from typical seasonal and interannual variability in a

marine habitat. Therefore, combining acoustic indices as indirect,
TABLE 2 Generalized linear mixed effects model evaluating the effects of species on each index incorporating recorder as a random effect.

Coefficient Estimates (Standard Error) by Index

ACI AD AE BI H NDSI NP

Blue Whale -130.62*** 0.18*** -0.05*** -0.09 0.020*** 0.197*** -0.32***

(-34.13) (-0.06) (-0.02) (-1.93) (-0.004) (-0.028) (0.09)

Delphinid species 375.55*** 0.16*** -0.02*** -1.57 0.022*** 0.074*** 0.11***

(-16.28) (-0.03) (-0.001) (-1.17) (-0.002) (-0.012) (0.022)

Fin Whale 53.80*** 0.08** 0.005*** 0.76 -0.001 0.052*** 0.035

(-17.44) (-0.03) (-0.002) (-1.24) (-0.002) (-0.014) (0.023)

Humpback Whale -70.65*** 0.14*** -0.002 4.27*** 0.009*** -0.003 0.089***

(-17.57) (-0.03) (-0.003) (-1.40) (-0.002) (-0.014) (0.022)

Possible Fish -27.88 -0.04 0.006 -2.46 -0.005 -0.190*** -0.08**

(-30.31) (-0.04) (-0.02) (-1.87) (-0.003) (-0.022) (0.025)

Ship 198.98*** 0.01 0.019*** -5.91*** -0.050*** -0.424*** -0.35***

(-11.26) (-0.02) (-0.004) (-0.91) (-0.001) (-0.009) (0.028)

Sonar 36.56 -0.33*** 0.164*** -32.32*** 0.022*** 0.415*** 0.96***

(-54.78) (-0.09) (-0.04) (-1.85) (-0.006) (-0.044) (0.78)

Sperm Whale 553.86*** 0.055* -0.003** -38.35*** 0.015*** 0.102*** 0.042*

(-18.69) (-0.03) (-0.002) (-0.79) (-0.002) (-0.014) (0.021)

Intercept (Vocalizations Absent) 9,665.42*** 5.06*** 0.498*** 84.36*** 0.876*** 0.188* 2.05***

(-25.89) (-0.39) (-0.176) (-1.98) (-0.01) (-0.102) (0.43)

Observations 18,222 18,222 18,222 18,222 18,222 18,222 18,222
front
Significance: ***Significant at the 1 percent level, **Significant at the 5 percent level, *Significant at the 10 percent level.
The coefficient estimates of fixed effects (each species/sound type) are reported with standard errors in parentheses. The intercept is indicated at the end and significance levels are indicated by
asterisks.
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FIGURE 6

Box plots of measurements from three acoustic indices for sperm whale clicks parsed out by amplitude quality. Qualitative groups of clicks include ”Loud
clicks,“ ”Moderate clicks,“ and ”Quiet clicks.“ Periods lacking any echolocation clicks (labeled ”Vocalizations Absent“) are also included for reference in all
three figures. Sample sizes for each click quality level and period lacking vocalizations are indicated. The acoustic indices in this figure include the
Acoustic Complexity Index, the Bioacoustic Index, and the Normalized Difference Soundscape Index.
FIGURE 7

Results of the Spearman correlation coefficient (r) and bootstrapped confidence intervals comparing call characteristics of sperm whales to Acoustic
Complexity Index and Bioacoustic Index. Mean measurements calculated per 5-minute interval of sperm whale echolocation clicks characteristics
including 10 dB bandwidth, click amplitude, peak frequency, and total number of clicks (per 5-min file) are reported for the recorder on the base of the
slope (103) and the slope (105).
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biological indicators in concert with physical and chemical

monitoring over long time periods, such as is possible with the

OOI Coastal Endurance and Continental Margin arrays would be

an ideal scenario for accurately monitoring ecosystem health. In this

context, acoustic indices could provide a solution to the issue of

underutilized passive acoustic data and contribute to biodiversity

conservation within marine ecosystems.
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SUPPLEMENTARY TABLE 1

Summary of all combined annotations and acoustic indices results used to
perform analysis from three recorders. This version includes all periods where

more than one species overlapped in a five-minute period (which were
discounted in the analytical portion). This dataset also includes only those

observations where the call count was at or greater than the mean call counter

across all detections (by species).

SUPPLEMENTARY TABLE 2

Spearman correlation coefficient and confidence interval results for delphinid

call characteristics at three recorders.

SUPPLEMENTARY TABLE 3

Spearman correlation coefficient and confidence interval results for sperm
whale call characteristics for two indices and at two recorders.

SUPPLEMENTARY FIGURE 1

Box plots representing measurements of The Number of Frequency Peaks (NP)
associated with underwater sounds. Data are organized by recorders located on

the shelf (106), the slope (105) and at the base of the slope (103). Marine

mammal species and human-made sounds vary for each recorder resulting in
some sound types with only one or two box plots. All recorders include a plot

for data that contained no annotated sound (labeled “Vocalizations Absent”).

SUPPLEMENTARY FIGURE 2

Box plots representing measurements of The Number of Frequency Peaks (NP)

associated with underwater sounds. Data are organized by recorders located on

the shelf (106), the slope (105) and at the base of the slope (103). Marine
mammal species and human-made sounds vary for each recorder resulting in

some sound types with only one or two box plots. All recorders include a plot
for data that contained no annotated sound (labeled “Vocalizations Absent”).

SUPPLEMENTARY FIGURE 3

Box plots representing measurements of Acoustic Evenness (AE) associated
with underwater sounds. Data are organized by recorders located on the shelf

(106), the slope (105) and at the base of the slope (103). Marine mammal species

and human-made sounds vary for each recorder resulting in some sound types
with only one or two box plots. All recorders include a plot for data that

contained no annotated sound (labeled “Vocalizations Absent”).
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