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Global warming andMarine Heat Waves (MHWs) are having large-scale impacts

on the seagrasses and their effects on the Mediterranean endemic Posidonia

oceanica need to be properly defined. This research aimed to sharpen the

knowledge on P. oceanica response to the warming by correlating the shoot

morphology and the productivity of the seagrass to temperature conditions

and MHW occurrence. Two correlative studies, along a Mediterranean

temperature range (sites at the same latitude), were conducted: one

explored the associations of summer 2021 Sea Surface Temperature (SST)

and MHWs on P. oceanica morphology and the other used a reconstruction

technique (lepidochronological analysis) to relate past temperature conditions

and MHWoccurrence to proxies of seagrass productivity for the corresponding

periods. The results showed that themean summer temperature affected the P.

oceanica leaf necrosis and that MHWs occurrence changed the morphology of

the plant by lowering the leaf area and increasing leaf necrosis. Interesting

results were also found relating the past thermal environment, since rhizome

biomass has been negatively affected by the number of MHWs and rhizome

length by the temperature range. This research provides fundamental insights

about P. oceanica changes linked to warming and MHWs, identifying the

potential plant indicators assisting future experimental and modelling studies.

To the best of our knowledge, this is the first time a reconstruction technique is
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used to evaluate the effects of past MHWs on the morphology and productivity

of a plant species.
KEYWORDS

climate change, lepidochronological analysis, marine heat waves, reconstruction,
shoot morphology, warming
Introduction
Global warming and climate change are expected to have

profound consequences on biodiversity and functioning of

ecosystems on earth (Hoegh-Guldberg and Bruno, 2010;

Wernberg et al., 2013). The temperature increase has been

clearly measured over the past two decades (Jordà et al., 2012;

Darmaraki et al., 2019a; Soto-Navarro et al., 2020), but

understanding how this physical forcing translates into effects

on the living world is far from trivial, especially in the sea.

Nevertheless, this information is critical to forecast the range of

consequences of global warming and to address management

uncertainties and restoration efforts (Pazzaglia et al., 2021).

Extreme climatic events (ECEs, e.g., hurricanes, floods, heat

waves), direct consequence of the global warming, are no longer

to be considered as natural events (Ruddiman, 2003; Bianchi

et al., 2012; Cook et al., 2016) since they are intensifying

according to the increase of the greenhouse gas forcing

(Coumou and Rahmstorf, 2012). Marine Heat Waves

(MHWs), i.e., prolonged discrete anomalously warm water

events (Hobday et al., 2016), have increased in intensity,

frequency and duration over the past century (Oliver et al.,

2018; Darmaraki et al., 2019a) with different implications for

marine ecosystems (Frölicher and Laufkötter, 2018; Smale et al.,

2019). In fact, the increasing number of MHWs and their

intensity were already correlated with increased coral

bleaching, decreased kelp biomass and seagrass (Smale et al.,

2019). Therefore, these warming events are associated to the

reduction in the abundance of critical foundation species and the

subsequent shift in community structure towards a depauperate

state (Wernberg et al., 2013). Furthermore, damages in

ecosystems due to warming events can also bring political and

socio-economic issues when affecting, for example, aquaculture

or important fishery species (Frölicher and Laufkötter, 2018).

Global warming and MHWs can have large-scale impacts on

the seagrass communities (Orth et al., 2006; Strydom et al., 2020)

and on the services they provide (Aoki et al., 2021). At a global

scale, significant meadow mortalities and subsequent loss of

biodiversity related to seagrass die-offs have been correlated to

MHWs occurrence (Marbà and Duarte, 2010; Fraser et al., 2014;

Lefcheck et al., 2017; Nowicki et al., 2019; Shields et al., 2019;
02
Smale et al., 2019; Strydom et al., 2020). The rates of seagrass

decline, due to a wide variety of human activities (Duffy, 2006;

Orth et al., 2006; Dunic et al., 2021; Turschwell et al., 2021), have

accelerated from a median of 0.9% per year before the 1940’s to

7% per year since 1990 (Waycott et al., 2009) and, even though

encouraging results have been found for most of the fast-

growing species (de Los Santos et al., 2019), the alarming rate

of deterioration might trigger significant ecological

consequences. Warming in the Mediterranean Sea is two to

three-fold faster than in the global ocean (Diffenbaugh et al.,

2007) and a fast increase in the mean sea surface temperature

(SST) and in the frequency and duration of MHWs is projected

for the near future (Giorgi and Lionello, 2008). This is because

the Mediterranean (1) lies between two climatic regimes, the arid

North Africa and the temperate, rainy central European, which

renders climate vulnerable even to small changes in circulation

(Giorgi and Lionello, 2008), and (2) is a semi-enclosed basin

(Diffenbaugh et al., 2007) with limited hydrological exchange

with the Atlantic ocean, which results in about 100 years

hydrological residence time and a capacity to store heat

(Bethoux and Gentili, 1999). The SST has increased in the last

decades at an average ( ± SD) rate of 0.03 ± 0.008°C yr–1 in the

western basin and 0.05 ± 0.009°C yr–1 in the eastern basin

(Nykjaer, 2009; Bianchi et al., 2012) and the change projected by

the end of this century ranges between 0.81 and 3.71°C in the

upper layer (0 – 150 m) (Soto-Navarro et al., 2020).

The Mediterranean warming could produce an irreversible

regression of P. oceanica (L.) Delile (Jordà at al., 2012; Chefaoui

et al., 2018). This iconic seagrass is an endemic species to the

Mediterranean Sea, where forms extended meadows widely

distributed and occupying ca. 26% of the whole Basin coastal

areas, notwithstanding slow growth and recovery rates

(Telesca et al., 2015). As other seagrass species, P. oceanica is

experiencing a widespread decline due to several anthropogenic

local stressors, such as coastal development, dredging, pollution,

fish farming, mooring and invasive species (Holon et al., 2015;

Telesca et al., 2015; Burgos et al., 2017). In addition to those

stressors, climate warming and ECEs seem to play a major role

in the decline of this seagrass (see Nguyen et al., 2021 for

a review).

An important shoot mortality of P. oceanica was estimated

in meadows during 2002-2006 where two intense MHWs
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occurred in Spain (Marbà and Duarte, 2010). Depending on the

temperature intensity and heat duration, MHWs can also have

sublethal morphological effects on both P. oceanica cuttings

(Stipcich et al., 2022) and seedlings (Guerrero-Meseguer et al.,

2017), by inducing leaf loss, reducing leaf growth, and triggering

leaf necrosis. Seagrasses may be highly susceptible to sudden

warming events (Chefaoui et al., 2018) and a functional

extinction of P. oceanica by the middle of this century has

been hypothesized (Jordà et al., 2012). The abrupt decline

experienced by P. oceanica populations, especially after recent

summer MHWs (Garrabou et al., 2009; Marbà and Duarte,

2010), has raised serious questions about its sensitivity,

vulnerability, and persistence for the coming decades, as its

fundamental niche could shrink for the general warming and/or

heat events (Pergent et al., 2015). The performance of the P.

oceanica, in terms of shoot morphology and productivity, related

to the heat can be trait-mediated (Peirano et al., 2011; Pansini

et al., 2021). However, contrasting results about the resilience of

P. oceanica depending on the regional differences in ocean

climate were found (Marıń-Guirao et al., 2016; Marıń-Guirao

et al., 2019; Bennett et al., 2021; Bennett et al., 2022) and

understanding whether the thermal performance of the plant

reflects the thermal geography is still controversial. Therefore,

defining the importance of local adaptation and phenotypic

plasticity among P. oceanica populations remains an urgent

issue to predict when and where climate change impacts will

occur. In this context, the identification of early indicators of

both nearly lethal thermal conditions and adjustments of the

habitat structure is also necessary to improve predictions about

the future ecology of the seagrass.

Photoperiod controls many developmental responses of

plants by affecting the detection of the light signal in the

leaves, the entrainment of circadian rhythms, and the

production of a mobile signal which is transmitted throughout

the plant (Jackson, 2009). Therefore, using sites located all at the

same latitude but in a wide temperature gradient could function

as a natural laboratory to investigate the potential impacts of

climate warming precluding undesired effects of the photoperiod

(De Frenne et al., 2013).

To sharpen the forecasting capability on P. oceanica

response to the warming and MHW occurrence two

correlative studies (summer 2021 study and reconstruction

study) were performed using five sites along a Mediterranean-

wide water temperature range at the same latitude.

Particularly, the summer 2021 study has tested the

hypothesis that summer water temperature and MHWs

negatively affect P. oceanica shoot morphology and has

estimated their effects on shoot descriptors (number of

leaves, leaf width, leaf area and leaf necrosis). Furthermore,

the reconstruction study has tested the hypothesis that

rhizome productivity (rhizome length, rhizome width,

rhizome biomass and # of sheaths per year) is negatively
Frontiers in Marine Science 03
related to water temperature (mean and range) and MHWs

occurrence (frequency and duration) during the reconstructed

period with the aim of understanding what will be the

response of the plant in the future Mediterranean climate

scenario based on the past performance to these stressors.
Materials and methods

Study sites

Five sites were selected nearly at the same latitude across the

wide longitudinal range (between 10-35°E, centred around 35°N)

in the Mediterranean Sea, (Figure 1): Konnos Bay (C1) and

Akrotiri Cape (C2) in Cyprus (South-eastern coast and South of

Cyprus, respectively), Pigadia (KA) and Gournes (CR) in Greece

(South-eastern coast of Karpathos, and Northern Crete,

respectively), and Cala Pulcino (LA) in Italy (South of

Lampedusa Island). All the selected sites were far from direct

anthropogenic stressors due to urbanization and ports. In each

site, three areas with P. oceanica meadows on sandy bottom at

about 10 m of depth, distant 50 – 100 m apart, were randomly

selected. At each area, meadows were always dense (400 – 700

shoots/m2 according to Giraud, 1977).
Data collection

Due to the Mediterranean Sea circulation, which is affected

in turn by wind stress, heat flux, surface salinity, topography,

and lateral boundary runoff (Zavatarielli and Mellor,

1995), the five sites represent distinct sea water thermal

environments (Table 1). To characterize the sites and to

identify temperature gradients, daily SST of the last 30 years

(1990-2020) was acquired through the website https://

coastwatch.pfeg.noaa.gov/erddap/index.html. The annual

and summer seasonal means, max and min temperature

were calculated as well as the sea water climatology using

the rerddap (Scott, 2021) package in (Core team, R.C.T.R,

2013). Furthermore, all the MHWs that occurred in each site

during summer 2021 and the reconstructed period were

identified using the heatwaveR (Schlegel and Smit, 2018)

package in R. MHWs were calculated based on the definition

of Hobday et al. (2016), i.e. prolonged discrete anomalously

warm water events, where an event becomes ‘anomalously

warm’ if the SST is above the 90th percentile of the climatology

(based on minimum 30 years of SST data), ‘discrete’ is referred

to the well-defined start and end times, and ‘prolonged’ when

the SST over the threshold is recorded for minimum 5 days. If

between two events there is a gap (SST below the threshold) of

two or less days, the two events are considered as one whole

event. A MHW is commonly defined by its intensity (°C over
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the threshold), duration (in days) and frequency (# of events

over time). In this study only MHW duration and frequency

were considered.

At each site, for each area, P. oceanica shoot density was

estimated in June 2021 using 40×40 cm quadrats randomly
Frontiers in Marine Science 04
placed within the meadows (n=12 per site, Figure S1). During

summer 2021, three or four sampling times (T1=end of June,

T2=end of July, T3=end of August and T4=end of September)

about 30 days apart (depending on the site) were considered.

In each site, ten P. oceanica orthotropic shoots per area were
FIGURE 1

Location of the study sites: LA, Cala Pulcino; CR, Gournes; KA, Pigadia; C1, Konnos Bay; C2, Akrotiri cape.
TABLE 1 Temperature and MHW conditions at the five sites (Konnos Bay=C1, Akrotiri Cape=C2, Pigadia=KA, Gournes=CR, Cala Pulcino=LA).

Konnos Bay
(C1)

Akrotiri Cape
(C2)

Pigadia
(KA)

Gournes
(CR)

Cala Pulcino
(LA)

mean annual SST 21.57 21.28 19.95 19.81 20.11

mean summer SST 26.70 26.01 23.96 24.41 25.30

max annual SST 27.54 26.87 24.81 25.02 26.43

min annual SST 16.44 16.53 16.06 15.31 14.96

T1 mean SST 24.09 23.06 – 23.77 22.141

T1 # MHWs 0 0 – 1 0

T2 mean SST 26.77 26.22 24.45 25.33 25.32

T2 # MHWs 0 0 1 0 0

T3 mean SST 28.91 28.65 26.15 – –

T3 # MHWs 1 1 1 – –

T4 mean SST 27.83 26.99 24.56 25.59 27.34

T4 # MHWs 0 0 1 1 2
In the upper part: mean annual, mean summer, max annual and min annual sea surface temperature (SST; °C) during the 1990-2020 period. In the lower part: mean and range of sea surface
temperature (SST; °C), and number of Marine Heat Waves (# MHWs) at the four sampling times (T1, T2, T3, T4) used in the Summer 2021 study.
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manually collected on each time (n=30 per site) by scuba-

divers. Once collected, P. oceanica shoots were transported to

the laboratory and stored frozen. In the laboratory, for each

shoot leaves and rhizomes were separated: leaves

morphometric data were used for the summer 2021 study,

while rhizomes of shoots collected in T1 were used for the

reconstruction study (Figure 2).
Summer 2021 study: shoot morphology

For the summer 2021 study, morphological variables of each

shoot (number of leaves, leaf width (cm), total leaf area (cm2)

and the portion (%) of leaf necrosis) were estimated for every

sampling time (T1, T2, T3 and T4) by measuring the leaves

previously separated (Figure S2).

Then, each sampling time was attributed to a summer

period (T1 and T2 to early summer=ES; T3 and T4 to late

summer=LS) according to the seasonal morphological changes

of P. oceanica (Alcoverro et al., 1995). Then, at each site, for

each sampling time, we used mean temperature, temperature

range, and number of MHWs and MHW duration occurring

within the period since the previous sampling time (for the

first sampling time the period since June 1st to T1 was

considered) and, to predict seagrass morphological

variables (Table 1).
Frontiers in Marine Science 05
Reconstruction study: rhizome
production per year

In the reconstruction study, a lepidochronological analysis

was used to reconstruct the rhizome productivity of the 30

shoots collected in each site in T1. This analysis is based on the

cyclic annual variation of the sheath thickness (Pergent-Martini

et al., 1994); the sheath is the leaf portion that remains attached

to the rhizome after each leaf falls. For each shoot, sheaths were

detached and the thickness of each of them was measured with a

caliper. The number of sheaths produced between two pairs of

minimum thickness corresponds to the number of leaves

produced during that lepidochronological (Lep) year. Each Lep

year is the period delimited by two consecutive sheaths-

thickness minima in the rhizome (Pergent-Martini and

Pergent, 1996). Based on the notion the minimum thickness

appears in spring and the maximum thickness in autumn

(Pergent-Martini et al., 1994), April 1st was assumed to be the

first day of every Lep year. Thanks to this analysis it was possible

to estimate for each shoot several proxies of the rhizome

production per Lep year (i.e. number of leaves by counting the

sheaths), rhizome width and length (by using a caliper) and

rhizome biomass (by using an electronic analytic scale, after

drying rhizomes for 48 h at 60°C).

Moreover, for each site, the water climatology and the daily

SST from the oldest reconstructed Lep year to the beginning of
FIGURE 2

Summary of the usage of P. oceanica shoots collected. In the centre, information about the analyses done using the leaves and rhizome. On
the right, the response variables obtained from the two analyses.
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2020 (but excluding from computations the last one year and

half) were used to estimate the explanatory variables, annual

mean and temperature range, and the number (frequency) and

duration of MHWs for each Lep year (Tables 2, 3), which were

averaged for each Lep year and linked to the lepidochronological

variables of the same periods.
Data analyses

Before statistical analyses, data were explored following Zuur

et al. (2009). Outliers were inspected with Cleveland dot-plots

and normality with histograms and Q–Q plots. Collinearity

between continuous explanatory variables was inspected with

pair-plots, and variance inflation factors (VIFs) were calculated.

In the summer 2021 dataset, mean temperature, range of

temperature and MHW duration were correlated, and

therefore only mean temperature and number of MHWs (as a

factor with three levels: 0, 1 and 2) were considered. Further,

meadow shoot density was also considered as an explanatory

variable in the related analyses, since it may influence P. oceanica
Frontiers in Marine Science 06
morphological traits (Pansini et al., 2021). In the reconstruction

study dataset, no correlation was found between explanatory

variables, thus they were all included in the analysis.

Since data exploration indicated non-linear relationships

between each response variable and the explanatory variables,

generalized additive models (GAMs) were used. For the summer

2021 study, four distinct GAMs were run to correlate separately

the morphological response variables (leaf area, leaf width,

number of leaves and necrotic leaf portion) with the

continuous explanatory variables (mean temperature and

shoot density as smoothed non-linear terms) and the factors

(site, period and number of MHWs as categorical variables):

Yi = a + f1(mean temperature) + f2(shoot density) + site +

period + number of MHWs + ϵi
where Y is the response variable, fi are the smooth functions

estimated by the models and ϵi ∼ N(0, s2).

For the reconstruction study, four distinct GAMs were run

to correlate separately the productivity response variables

(number of sheaths, rhizome length, width and biomass) with

the continuous explanatory variables (mean temperature,

temperature range, MHW duration and number of MHWs as
TABLE 3 Reconstruction study.

Lep year Frequency (# of MHWs/yr) MHW duration (# of days/yr)

C1 C2 KA CR LA C1 C2 KA CR LA

1 4 2 7 5 5 39.0 103 27.8 29.2 10.6

2 4 5 5 3 8 14.5 19.2 14.2 26.3 10.7

3 4 5 6 7 2 32.2 26.4 26.5 16.8 17.0

4 6 7 6 5 3 21.5 10.7 6.2 12 10.7

5 5 6 9 3 2 16.2 15.6 15.2 26.7 17.5

6 4 4 4 8 7 13.7 13 14.7 11.1 9.0

7 3 3 6 3 3 7.7 6 9.7 17.7 9.3

8 2 5 0 3 3 8.0 8.6 0 13.7 15.0
frontiers
MHWs frequency (# of MHWs per year) and mean duration (# of days/yr) in the last eight Lep years (2021-2013) at the five sites (Konnos Bay=C1, Akrotiri Cape=C2, Pigadia=KA,
Gournes=CR, Cala Pulcino=LA). Lep year number 1 corresponds to the most recent.
TABLE 2 Reconstruction study.

Lep year Mean SST Range SST

C1 C2 KA CR LA C1 C2 KA CR LA

1 23.02 22.50 21.53 21.17 20.87 11.72 11.15 10.88 10.88 13.07

2 22.36 22.07 21.06 20.61 20.92 13.21 12.81 11.53 11.54 14.29

3 22.79 22.56 21.55 20.83 20.76 12.96 12.78 12.46 12.46 13.99

4 22.79 22.22 20.94 20.64 20.65 12.05 11.45 11.60 11.60 13.59

5 22.33 22.40 21.31 20.73 20.44 12.51 11.40 10.88 10.88 12.38

6 22.36 21.92 21.09 20.69 20.92 11.53 11.22 11.64 11.64 14.05

7 22.15 21.94 21.12 20.54 20.47 11.70 11.27 10.80 10.80 12.86

8 22.08 21.87 20.51 20.44 20.48 12.03 11.06 10.31 10.31 13.93
i

Annual mean and range of sea surface temperature (SST; °C) of the last eight Lep years (2021-2003) at the five sites (Konnos Bay=C1, Akrotiri Cape=C2, Pigadia=KA, Gournes=CR, Cala
Pulcino=LA). Lep year number 1 corresponds to the most recent.
n.org
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smoothed non-linear terms) and the factor (site as

categorical variable):

Yi = a + f1(mean temperature) + f2(temperature range) + f3
(MHW duration) + f4(number of MHW) + site + ϵi

where Y is the response variable, fi are the smooth functions

estimated by the models and ϵi ∼ N(0, s2).
The function gam in the mgcv package in R was used to

perform the analysis. To avoid model overfitting, the degrees of

freedom of the smooth were limited using the k parameter and

the REML (restricted maximum likelihood) method was used to

increase the robustness, as suggested to cope with small sample

sizes (Zuur, 2012).

Following a forward selection approach (Zuur et al., 2009),

the choice of the best fitting explanatory variables used in the

final model was undertaken based on the lowest AIC (Akaike

information criterion) (Figures S3-10). Model validations were

run calculating and plotting the Pearson residuals against the (i)

fitted values, (ii) each explanatory variable in the model, and (iii)

each explanatory variable not in the model (Figures S3-10)

(Wood, 2006). A significant p-value was set at <0.01.
Results

Thermal conditions

The water climatology varied widely thought sites (Table 1

and Figure 3) and the annual temperature range changed

between 8.75°C and 11.46°C in KA and LA, respectively. In

terms of mean annual SST there was a maximum of 1.76°C of

difference from 19.81°C in CR to 21.57°C in C1, while mean

summer SST showed a maximum of 2.74°C of difference from

23.96°C up to 26.70°C in KA and C1, respectively. The latter was
Frontiers in Marine Science 07
similar to the difference (2.73°C) in maximum SST which ranged

between 24.81°C in KA and 27.54°C in C1.

During the summer 2021 study, MHWs occurred in both

periods (ES and LS) in two sites (CR and KA), while for all the

other sites MHWs occurred only during the LS (Figure 4). The

longest MHW occurred in LA, while the more intense was found

in C2, both in the LS. The study of the past MHWs at the sites

(reconstruction study) revealed that the maximum wave

intensity of 1.6°C over the threshold (90th percentile of the

climatology, Hobday et al., 2016) was reached at CR, while the

maximum duration (more than 100 days) was recorded in KA

between November 2020 and March 2021, an exceptionally long

wave. MHWs in LA were overall the less intense and shorter,

lasting on average 12.65 days (Figure 4).
Summer 2021 study

The influence of the mean summer temperature and MHWs

on the morphological variables was detectable, although an effect

of meadow density, site and period was also found. Leaf area was

negatively affected by MHWs, being reduced by their increasing

frequency, while leaf width was positively associated with the

number of MHWs only if higher than one (Figures 5A, B,

Table 4 and Tables S1, S2). The leaf necrosis increased with

higher mean summer temperature and number of MHWs

(Figure 5C, Table 4 and Table S3). During summer (from the

ES to the LS), leaf area decreased (Figure 5A). Leaf area and the

leaf necrosis were negatively related to shoot density, if higher

than 700/m2 and 600/m2, respectively (Figures 5A, C, Table 4

and Tables S1, S3). All the morphological variables were

associated with the site, although the deviance explained by

the models for leaf width and number of leaves was low

(Figures 5A-D, Table 4 and Tables S1-S4).
FIGURE 3

Climatology monthly variation (SST from 1990-2020) in the five study sites (C1, Konnos Bay; C2, Akrotiri cape; KA, Pigadia; CR, Gournes; LA,
Cala Pulcino).
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Reconstruction study

The lepidochronological analysis allowed to reconstruct up

to 16 years in C1, nine in C2, 11 in KA, 14 in CR and eight in LA.

The thermal descriptors influenced all the P. oceanica

lepidochronological variables, with the only exception of the

number of sheaths. Particularly, we found: i) a positive
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relationship between rhizome length and the mean

temperature, and a slightly negative relationship with the

temperature range (Figure 6A; Table 5 and Table S5; ii) a

negative association between rhizome biomass and the number

of MHWs (Figure 6C; Table 5 and Table S7), and iii) a negative

association between rhizome width and MHW duration (up to

60 days) (Figure 6B; Table 5 and Table S6). All the response
A B

FIGURE 4

(A) Summer 2021 study. Marine Heat Waves that occurred in the five sites during Early (ES, triangle) and Late (LS, circle) summer 2021 periods.
(B) Reconstruction study. Intensity and duration of the Marine Heat Waves that occurred during the reconstructed period (2011-2021) in the five
study sites. C1, Konnos Bay; C2, Akrotiri cape; KA, Pigadia; CR, Gournes; LA, Cala Pulcino.
A B

DC

FIGURE 5

Summer 2021 study. Summary of GAM results on morphological variables (A)= leaf area; (B)=leaf width; (C)=leaf necrosis; (D)=# of leaves)
showing the significant explanatory continuous variables of the models: mean temperature and shoot density. The y-axis represents the additive
predictor by GAM, which is a smoothed function for mean temperature and shoot density. The solid line is the smoother and the dotted lines
are 95% point-wise confidence bands. The boxplots show the GAM results for the significant parametric terms: i) # of MHWs (0, 1 and 2); ii) site
(C1, C2, CR, KA, and LA); iii) period (ES and LS). The thick black lines represent the medians, the boxes encompass the 25% and 75% quartiles,
the whiskers extend to the most extreme data points within 1.5× the interquartile range outside the box, and the circles show data points
beyond the whiskers. Leaf area is expressed in cm2; leaf width in cm and leaf necrosis in %.
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variables were associated with site (Figures 6A-D; Table 5 and

Tables S5-S8).
Discussion

The results obtained from the summer 2021 study using the

temperature gradient sites at the same latitude indicated that

the water thermal environment can deeply affect the P. oceanica

shoot morphology. During summer 2021, leaf necrosis was

related to the mean temperature while all the morphological

traits of P. oceanica were related to the number of MHWs

(except the number of leaves). Detection of these changes was

overall possible despite the high variation among sites in these

plant traits. The strong relationship between traits and

temperature changes may point to local adaptation to

temperature and suggests that response to future climate

warming might also vary at the same latitude depending on

the thermal environment (Tryjanowski et al., 2006). The total

leaf area decreased when the number of MHWs increased,

suggesting that temperature intensity would be crucial in

discerning facilitative from inhibition effects. The summer

period (ES vs LS) was also associated to the total leaf area

which decreased in the late season, possibly due to the natural

rhythm of the species (Pergent and Pergent-Martini, 1991).

Nevertheless, the summer period did not affect the leaf necrosis

which instead was associated to the temperature: for this

variable, the analysis allowed us to disentangle the effect of

the heat from that one due to the natural cycle of the plant,

suggesting that leaf necrosis may be an important

morphological warning signal to the mean summer

temperature and number of MHWs. This indication

converges with evidence gained from other seagrass species

(Pagès et al., 2010; Llagostera et al., 2016), whereby leaf necrosis

is considered as an indicator of irreversible heat-induced

damage of the leaf tissue (Beca-Carretero et al., 2020).

However, further research is necessary to question to what

extent the necrosis should be seen as a sign of leaf senescence or

a manifestation of the activation of a process that could improve

the survival of the plant, as a higher percentage of necrosis was

found after the MHWs in P. oceanica shoots from warmer sites

compared to those from colder sites (Stipcich et al., 2022).

Overall, shoot density of P. oceanica meadows at the study sites
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was found to influence morphological traits. In fact, shoot

density not only can provide important information about the

health status of the meadow and the human influences on this

habitat (Pergent et al., 1995; Montefalcone, 2009), but it can also

indicate changes in morphological traits (Pansini et al., 2021).

In the present research, in fact, the leaf area and leaf necrosis

decreased over a shoot density threshold. It is well known that

the plant uses changes in shoot density as an adaptation to

minimize the self-shading, due to increasing depth or

sedimentation (e.g. Olesen et al., 2002: Ralph et al., 2007;

Kletou et al., 2020). According to the results, some

morphological traits (leaf area and necrosis) change at high

shoot densities to cope with a similar issue, in order to

maximize the efficiency of the photosynthesis.

Furthermore, the reconstruction study has provided

evidence that rhizome productivity has been highly affected by

MHWs through the past years. The yearly production of

rhizome biomass, in fact, decreased with MHW frequency.

This result provides relevant information to understanding

P. oceanica performance in the near future, since MHWs are

predicted to increase in duration, intensity, and frequency

(Darmaraki et al., 2019b). Many studies have already pointed

out the importance that MHWs can have on seagrasses in terms

of die-offs and habitat losses (Wernberg et al., 2013; Smale et al.,

2019), rates of photosynthesis and respiration (Marıń-Guirao

et al., 2016), and sediment carbon stocks (Aoki et al., 2021), but

referring these processes mostly to summer heat waves. In our

research, rhizome production of P. oceanica was associated to

the MHWs identified during the annual past cycles, providing

supporting evidence that the deleterious effect of this climate

change-related stressor is detectable even in reconstruction

analyses. Particularly, we identified patterns for both the

components of rhizome biomass and the width: a threshold of

MHWs duration (about 30 days) was detected over which

rhizome width decreased, while changes in rhizome biomass

were found associated to the number of MHWs up to six per

year. Furthermore, rhizome length was also positively associated

to the mean annual temperature, as it did not change within the

21-22.5°C interval, suggesting the stimulating effect of the

average temperature. Consistent changes in rhizome

productivity were already demonstrated in P. oceanica

(Peirano et al., 2011; Pansini et al., 2021) and other seagrasses

(Masini et al., 2001; Collier et al., 2017) in relation to mean
TABLE 4 Summer 2021 study.

Response variables Explanatory variables Dev %

Leaf area Shoot density # of MHWs Site Period 46.0

Leaf width # of MHWs Site 17.4

# of leaves Site 15.8

% necrosis Mean Summer Temperature Shoot density # of MHWs Site 21.1
frontie
Summary of the generalized additive models (GAMs) results on the morphological variables, showing only the significant explanatory selected variables and the deviance explained (Dev %).
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seasonal or annual temperature, but the identification of past

MHWs and temperature range effects represents a novelty. The

rhizome length, in fact, decreased when the temperature range

increased assuming that, for a wide temperature interval (over

13°C), the plant may not be able to develop the same survival

strategy. Plant productivity was also tightly associated to the site
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effect in all the variables considered showing as well a local

adaptability. Indeed, the number of sheaths per year was not

related to the climate change related stressors (MHWs and SST

increase), but likely reflected other local environmental

conditions (Pergent-Martini et al., 1994; Guidetti, 2001;

Balestri et al., 2004).
A

B

C

D

FIGURE 6

Reconstruction study. Summary of GAM results on lepidochronological variables (A)=rhizome length; (B)=rhizome width; (C)=rhizome biomass;
(D)=# of sheaths) showing the significant explanatory continuous variables of the models: mean temperature, range temperature, # of MHWs
and MHW duration. The y-axis represents the additive predictor by GAM, which is a smoothed function for all the variables. The solid line is the
smoother and the dotted lines are 95% point-wise confidence bands. The boxplots show the GAM results for the significant parametric term site
(C1, C2, CR, KA, and LA). The thick black lines represent the medians, the boxes encompass the 25% and 75% quartiles, the whiskers extend to
the most extreme data points within 1.5× the interquartile range outside the box, and the circles show data points beyond the whiskers.
Rhizome length and width are expressed in cm; rhizome biomass in g.
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In conclusion, P. oceanica shoot morphology is likely to be

deeply affected by the global warming. The expected

morphological changes of the leaves, based on the evidence

collected (higher leaf width and higher leaf necrosis), might

represent the plasticity response to the future temperature

conditions. However, in the long run, the morphological

changes may have consequences on the functions of this

habitat compromising the maintenance of goods and services

that seagrass meadows provide. For example, because leaf

morphological changes are commonly tied to biochemical

properties (Marıń-Guirao et al., 2018; Ruocco et al., 2018;

Stipcich et al., 2022), they may also be linked to changes in

trophic interactions between the producer and consumers: in

fact, if metabolites are remodeled due to physical conditions

changes in epiphyte community (Piazzi et al., 2018), nutritional

values and palatability of the seagrass are also expected (Carmen

et al., 2012). Future meadow services could be also affected by the

rhizome morphology (higher rhizome length but lower width

and biomass) linked to a higher temperature environment with

higher MHWs frequency. Loss of rhizome biomass and length

could negatively affect the rhizome carbon storage (Libes and

Boudouresque, 1987; Peirano et al., 2011) and the resistance of

the meadow to future stress as storms, a disturbance whose

frequency and intensity is predicted to increase with climate

change (Easterling et al., 2000; Beniston et al., 2007).

The results have also highlighted that P. oceanica resilience

to future warming conditions is likely threatened by the

increase in frequency and duration of MHWs. However, with

this study it was not possible to investigate the interactive effect

between MHW intensity and duration, thus further

investigations are necessary to disentangle their potential

synergistic effects. According to forecasted conditions, which

are depending on the future greenhouse gas emission scenarios,

Mediterranean summer MHWs by 2100 will be up to three

months longer, about four times more intense and 42 times

more severe than present-day events (Darmaraki et al., 2019b).

The increasing frequency of MHWs over the coming decades is

correlated to decreased ecological status of foundation species

(Smale et al., 2019; Strydom et al., 2020). From our

reconstruction, we could not deduce the importance of the

summer waves in relation to those of the other seasons and

therefore it cannot be assumed that the greatest concern should
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be addressed to the summer heat waves: furthermore, specific

seasonal adaptations of the seagrass to each season due to

morphological and biochemical variations (Alcoverro et al.,

1995; Beca-Carrettero et al., 2021; Pazzaglia et al., 2022) could

eventually modulate the response of the plant to conditions in

different periods. To the best of our knowledge, this is the first

time a similar technique is used to evaluate the effects of past

MHWs on the shoot morphology and productivity of a

seagrass, even though reconstruction techniques associated to

the temperature throughout each year have already been used

in several terrestrial plants (e.g., dendroclimatology, Fritts,

1971; Hughes et al., 2010). This is possible especially in P.

oceanica where the number of annual cycles that can be

observed along the rhizomes can be up to 50 (350 sheaths,

Pergent, 1987; Pergent et al., 2004), while in other species of

Posidonia the decomposition of the sheaths is faster and

reconstructions of only five years are feasible (Pergent et al.,

2004). Therefore, our study highlights the effectiveness of

lepidochronology in P. oceanica to access biological archives,

useful to also estimate the thermal environment effects in

which the plant developed, and the effects of local stressors

(Guidetti, 2001; Balestri et al., 2004). Overall, our results

support the call to give more importance to the effects of

temperature positive anomalies on several plant variables

in order to understand the mechanisms involved in the

dramatic shifts in meadow structure during MHW

occurrence. This will enable the forecasting of the

vulnerability of P. oceanica assisting thus, management

actions such as seagrass restoration.
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