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Significant wave height (SWH) prediction plays an important role in marine engineering
fields such as fishery, exploration, power generation, and ocean transportation. Traditional
SWH prediction methods based on numerical models cannot achieve high accuracy. In
addition, the current SWH prediction methods are largely limited to single-point SWH
prediction, without considering regional SWH prediction. In order to explore a new
SWH prediction method, this paper proposes a deep neural network model for regional
SWH prediction based on the attention mechanism, namely CBA-Net. In this study, the
wind and wave height of the ERA5 data set in the South China Sea from 2011 to 2018
were used as input features to train the model to evaluate the SWH prediction performance
at 1 h, 12 h, and 24 h. The results show that the single use of a convolutional neural network
cannot accurately predict SWH. After adding the Bi-LSTM layer and attention mechanism,
the prediction of SWH is greatly improved. In the 1 h SWH prediction using CBA-Net,
SARMSE, SAMAPE, SACC are 0.299, 0.136, 0.971 respectively. Compared with the CNN
+ Bi-LSTM method that does not use the attention mechanism, SARMSE and SAMAPE
are reduced by 43.4% and 48.7%, respectively, while SACC is increased by 5%. In the
12 h SWH prediction, SARMSE, SAMAPE, and SACC of CBA-Net are 0.379, 0.177, 0.954
respectively. In the 24 h SWH prediction, SARMSE, SAMAPE, and SACC of CBA-Net are
0.500, 0.236, 0.912 respectively. Although with the increase of prediction time, the
performance is slightly lower than that of 12 h, the prediction error is still maintained at a
small level, which is still better than other methods.
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INTRODUCTION

Wave disasters are the most common marine disasters in the
world. When huge waves reach the coast, the waves will cause
huge losses to people’s lives and property (Hsiao et al., 2020; Gao
et al., 2021). Therefore, accurate significant wave height (SWH)
prediction can effectively improve the safety of marine activities
and the efficiency of marine operations, reduce the occurrence of
marine accidents, and is of great significance in marine
engineering such as fishery, exploration, power generation, and
marine transportation (Young and Ribal, 2019; Fan et al., 2020;
Zhang et al., 2021).

Due to the importance and application value of SWH
prediction, SWH prediction methods have been continuously
developed in recent decades. Numerical and statistical models
(Méndez et al., 2008; Vanem, 2016; Wu et al., 2019; Emmanouil
et al., 2020; Wu, 2021; Wu and Qiao, 2022) have been widely
used in global sea state prediction. Among them, the common
numerical models mainly include such as WAM (Group, 1988;
Umesh and Swain, 2018; Swain et al., 2019), WAVEWATCH
(Kazeminezhad and Siadatmousavi, 2017; Liu et al., 2019; Li
et al., 2020), and SWAN (Akpınar et al., 2017; Liang et al., 2019;
Lin et al., 2019). Both numerical model methods and statistical
methods try to predict SWH by approximating mathematical
relational models. However, due to the strong nonlinearity of
the physical processes and mechanisms of ocean waves,
especially in extreme cases (e.g., typhoons), such methods
may largely fail to achieve high prediction accuracy and need
to be improved (Huang and Dong, 2021). In addition, the
numerical model requires expensive meteorological and
oceanographic data and a large amount of calculation work,
and the long-running time is an important bottleneck
restricting the development of rapid and accurate SWH
prediction (Zhou et al., 2021).

With the rapid development of artificial intelligence (AI), due
to its advantages of fast calculation speed, low computational
cost, and strong nonlinear learning ability, in recent years, the
SWH prediction method based on deep learning has been highly
valued by researchers. The deep learning method only needs to
know which factors are related to the target physical quantity,
establish an input-output prediction model, and predict the
SWH for a while in the future. (Panchang and Londhe, 2006)
used Artificial Neural Networks (ANN) based on existing wave
data sets to predict the wave heights of six geographically
separated buoy positions and found that this method has a
better prediction effect in the future short-term time range.
(Berbić et al., 2017) used ANN and Support Vector Machines
(SVM) to predict significant wave heights between 0.5 and 5.5 h.
Experiments have verified that ANN and SVM are better than
numerical models in this interval. However, the above method
can only be applied to forecasts in a relatively short time under
normal conditions, while the forecasts under extreme conditions
are not ideal. In addition, with the increase in the number of
inputs and the increase in complexity, the accuracy of the ANN
may drop sharply because the model cannot extract enough
features (Ni and Ma, 2020).
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Recently, due to the limitations of ANN in SWH, the
recurrent neural network (RNN) (Zaremba et al., 2014) has
gradually become a more popular SWH prediction model.
(Mandal and Prabaharan, 2006) introduced an artificial neural
network RNN with a rprop update algorithm and applied it to
SWH prediction. (Sadeghifar et al., 2017) used RNN to predict
the correlation coefficients of SWH at 3 h, 6 h, 12 h, and 24 h
to be 0.96, 0.90, 0.87, and 0.73, respectively. (Miky et al., 2021)
integrated neural network-based nonlinear autoregressive
network and RNN network for SWH prediction. The
experimental results show that the use of RNN for SWH
prediction has better results than previous ANN methods.
However, the optimization algorithm faces a big problem
during RNN training, that is, the problem of long-term
dependence-due to the deepening of the network structure,
the model loses the ability to learn previous information.

In response to the above problems, the researchers designed
a variant of RNN, namely Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997). Compared with RNN, it
designed a ring structure with two gated units. It can effectively
solve the long-term dependence of information, avoid the
disappearance or explosion of gradients, thereby significantly
improving the accuracy of SWH prediction. (Gao et al., 2021)
used LSTM neural network to establish a wave height
prediction model at three stations in the Bohai Sea. The
model uses sea surface wind and wave height as training
samples to evaluate the prediction performance of the model
and perform error analysis. It is found that for SWH in the
range of 3 to 5 m, the prediction accuracy of the LSTM model is
significant. (Zhang et al., 2021) proposed the Numerical Long
Short-Term Memory method. This method takes the measured
wave height value at the current moment and the combined
wave height of the simulated nearshore wave prediction value
as input, and generates the corrected numerical prediction as
output. Experimental results show that this method effectively
improves the SWH prediction accuracy of the Bohai Sea and
Wheat Island. (Raj and Brown, 2021) developed and applied a
high-precision bidirectional long-term and short-term memory
(Bi-LSTM) algorithm to predict SWH, and conducted overall
analysis and evaluation of wave characteristics at two coastal
locations in Queensland.

However, the application of predicting SWH using AI
methods is currently still mainly limited to single points,
rather than regions. (Li et al., 2021) First, SWH prediction
models are usually a mixture of short-term and long-term
dependencies. A successful SWH prediction model should
capture these two dependencies to make accurate predictions.
Long-term dependence considers the differences between
different seasons, and short-term dependence considers wave
height fluctuations caused by wind direction and wind direction
changes in a short time. If these two dependencies are not
considered, it is impossible to make accurate SWH predictions.
Secondly, the situation of each site is different, only considering
the predictive performance of a single point, without measuring
the overall area, the generalization of the model is often
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relatively poor. Solving the limitations of existing methods in
SWH prediction is the focus of this work.

This paper proposes a deep learning model for SWH
prediction of regional multivariate time series, that is, a
convolutional bidirectional long-term time series network
based on the attention mechanism. As shown in Figure 1, it
uses a convolutional layer to find local dependencies between
multi-dimensional input variables; uses a Bi-LSTM layer to
capture complex long-term dependencies; finally, it combines
the attention mechanism with the nonlinear neural network part
to make the model is more robust. To better demonstrate the
effectiveness of the various components of the model, we have
carried out an Ablation Study on the model, specifically, we
remove each component one at a time in our CBA-Net
model framework.

The remainder of this paper is structured as follows. In
section 2, we describe our proposed CBA-Net. In section 3, the
experimental design details such as the experimental data set,
metrics, and parameter settings are introduced. In section 4, we
discussed and analyzed the results of SWH prediction. Finally, in
section 5, we summarized our findings.
PROPOSED METHOD

In this section, we introduce the details of the various
components of the proposed CBA-Net architecture.
Frontiers in Marine Science | www.frontiersin.org 3
Convolutional Neural Network Module
Traditional neural network layers are fully connected. If
the number of network layers deepens, this connection
method may have an astronomical number of parameters.
Convolutional neural network (CNN) has fewer learning
parameters than neural networks, which contributes to
trainability; in addition, CNN also shows excellent
performance in successfully extracting local and translation
invariant features (LeCun and Bengio, 1995; Goodfellow
et al., 2016).

The first layer of CBA-Net is a CNN without pooling, whose
purpose is to extract the local dependencies between variables in
the time dimension. This function is mainly accomplished by the
filter in the convolution layer. CNN regards the filter as a scanner
with specified window size, and extracts feature information by
repeatedly scanning the input time series data from left to right
and from top to bottom. The convolution calculation process is
shown in Figure 2.

In this paper, the convolutional layer we built is composed of
a filter with a depth of 48 and a width of 3. The k-th filter sweeps
the input time series matrix X and produces the corresponding
calculation results. The calculation formula is as follows,

zk=RELU Wk∗X+bkð Þ (1)

where * denotes the convolution operation and the output zk
would be a vector, the RELU function is RELU (x) =max (0,x),W
is the weight matrix, and bk is the bias.
FIGURE 1 | CBA-Net model framework.
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Bi-Directional Long Short-Term
Memory Module
The output of the convolutional layer is input to the Bi-LSTM
module in Figure 1. Bi-LSTM is a combination of forward LSTM
and backward LSTM. As shown in Figure 3, LSTM uses two
gates to control the content of the cell state c: one is the forget
gate, which determines how much the cell state ct-1 from the
previous moment is retained to the current moment ct, the other
is the input gate, which determines how much of the input zt of
the network at the current moment is saved in the unit state ct.
Frontiers in Marine Science | www.frontiersin.org 4
the LSTM uses an output gate to control how much of the unit
state ct is input to the current output value ht of the LSTM.

This module uses the tanh function as the activation function,
and the information state transfer formula of the unit at time t in
LSTM is as follows,

f t=s wf ht−1,zt½ �� �
(2)

it=s wi ht−1,zt½ �ð Þ (3)
FIGURE 2 | The basic process of convolution calculation. Among them, the blue part and the red part are multiplied bit by bit to obtain a set of green local feature
values. In this way, the fixed-size blue region moves from left to right, from top to bottom in turn, and then multiplies the red part bit by bit to get all calculation results.
FIGURE 3 | LSTM module architecture.
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gt= tanh wg ht−1,zt½ �� �
(4)

ct=f tct−1+it ·gt (5)

ot=s wo ht−1,zt½ �ð Þ (6)

ht=ot· tanh ctð Þ (7)

where ft represents the processing formula of the forget gate, it
represents the processing formula of the input gate, gt tepresents
the new state candidate vector, ot represents the processing
formula of the output gate, w represents the given weight
coefficient s,represents the sigmoid function, and · represents
the element-wise product.

Using the LSTM model can better capture long-term
dependencies because LSTM can learn what information to
remember and what information to forget through the training
process, but there is a problem when only building a model with
LSTM: it cannot code from back to front Information. Therefore,
as shown in Figure 4, Bi-LSTM is used in this work to better
capture the two-way dependency.

At this stage, for the given Bi-LSTM input Z = z1,…, zT ,
where T is the length of the input time series, the model needs to
continuously predict SWH from the input time series data, that is
H = h1,h2,…, hT.
Attention Module
Attention Mechanism originated from the study of human vision
(Yang, 2020; Guo et al., 2021). In cognitive science, due to the
bottleneck of information processing, humans will selectively
focus on part of all information while ignoring other visible
information. The attention mechanism has two main aspects:
Frontiers in Marine Science | www.frontiersin.org 5
decide which part of the input needs to be paid attention to;
allocate limited information processing resources to the
important part. Models without an attention mechanism tend
to lose a lot of detailed information when the input data is
relatively large-scale. This is the main reason for introducing an
attention mechanism in this work.

In this module, multiple dimensions are used to predict one-
dimensional data. To fully extract data features and improve the
accuracy of predicting SWH, we use the attention mechanism to
determine which dimensions play a key role in predicting
the dimension.

At time t,the predicted output yt is,

yt=sof tmax W0st+b0ð Þ (8)

Among them, W0 and b0 are trainable parameters, st is the
hidden state of LSTM at time t, the formula is as follows,

st=LSTM yt−1,pt ,st−1ð Þ (9)

pt is a context vector, which is calculated from the weighted sum
H = h1,h2,…, hI of in the previous stage. The formula is as follows,

pt=o
I

i=1
a tihi (10)

Among them, ati is called attention weight, and the
calculation formula is as follows,

ati =
exp ttið Þ

oI
k=1 exp ttkð Þ (11)

The calculation formula of tti is as follows,

t ti=vTtanh Wst−1+Vhi+dð Þ (12)
FIGURE 4 | Bi-LSTM module architecture.
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Among them, v,W, V and d are trainable parameters, and the
number of LSTM hidden states is set to 256.
EVALUATION

In this section, we will explain the specific details of the
experiment. In order to better understand the experimental
process, Figure 5 shows the flow chart of the overall experiment.

Dataset
ERA5 is the fifth generation ECMWF reanalysis for the global
climate and weather for the past 4 to 7 decades. We select
(0°~25°N, 105°~124.75°E) as the study area. This area is
dominated by wind and waves and is greatly affected by the
monsoon. The time resolution of the data is hours, and the
spatial resolution is 0.5°×0.5°.

For the prediction of SWH, we use the data from 2011 to 2018
to generate the corresponding training set and the last 720 hours
of data in 2020 as the test set. To ensure the relative
independence of training and test data sets, the test data is
excluded from model training.
Frontiers in Marine Science | www.frontiersin.org 6
Metrics
To evaluate the performance of the model, we use the following
three metrics, namely Spatial Average Root Mean Square Error
(SARMSE), Spatial Average Mean Absolute Percent Error
(SAMAPE), and Spatial Average Correlation Coefficient
(SACC). The calculation formulas for the above three metrics
are as follows,

SARMSE=
1
mo

m

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
ŷ i−yið Þ2

s
(13)

SAMAPE=
1
mno

m

j=1
o
n

i=1

ŷ i−yi
yi

����
���� �100% (14)

SACC=
1
mo

m

j=1

on
i=1 ŷ i − ŷ i
� �

yi − yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 ŷ i − ŷ i
� �2on

i=1 yi − yið Þ2
q (15)

In the formula, m as the sum of the number of stations in the
entire study area n is the total number of test samples, and y1 and
ŷ i are the true and predicted values, respectively. Note that the
lower the SARMSE and SAMAPE values, the better the
FIGURE 5 | Experiment process.
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consistency between the measurement and the prediction, but
the higher the SACC value, the more accurate the prediction.

Experimental Details
We use Intel Gold 6330 processor and Nvidia GeForce RTX 3090
graphics card for experiments in the Ubuntu20.04 system. The
methods mentioned in the experiment are all implemented by
Tensorflow 2.x in the Python environment.

To prevent overfitting, we add a dropout layer after the
convolutional layer and Bi-LSTM layer and set the parameter
to 0.3. In addition, the model uses the Adam algorithm (Kingma
and Ba, 2014) to optimize model parameters. Adam algorithm
improves the quality and speed of optimization by obtaining an
adaptive learning rate for each parameter.
RESULTS

We conducted multiple sets of experiments to verify the
performance of the model to predict SWH and analyzed the
experimental results. To prove the effectiveness of each
component of our model, we conducted a careful ablation study.

One-Hour SWH Prediction
Table 1 lists the one-hour prediction results of the different models
after training, verification, and testing. The optimal results are
marked in bold in the table. It is worth noting that we
sequentially add a module to perform an ablation study to verify
the effectiveness of each component of our proposed model.

It can be seen from the results that the error of using CNN
alone to predict SWH is too large, and it may not be able to
accurately predict SWH. However, after using Bi-LSTM based on
CNN, the effect has been significantly improved, and the
correlation of prediction reaches 0.925. The error is also
greatly reduced, SARMSE is reduced from 1.039 to 0.528, a
reduction of 49.2%. SAMAPE is also maintained at a low level,
indicating that CNN only considers local dependencies to predict
SWH is unreliable. After applying Bi-LSTM, long-term
dependencies can be captured, which greatly improves the
accuracy of SWH prediction. Based on the first two, after
introducing the attention mechanism, SARMSE is reduced to
0.299, SAMAPE is reduced to 0.136, which is a reduction of
48.7%, and the error has reached a very low level. At the same
time, the correlation of prediction can reach 0.971, The reliability
of the model prediction SWH is greatly improved.

From the experimental results in Table 1, it can be seen that
CBA-Net can maintain better prediction performance when
Frontiers in Marine Science | www.frontiersin.org 7
predicting SWH for 1 h. To display the SWH prediction results
more intuitively, Figure 6 show the prediction results of 1 h
SWH by different methods. Because CNN only pays attention
to the local dependencies, it is easy to fall into the local
minimum point, which leads to the under-fitting of the
prediction model. After adding the Bi-LSTM module based
on CNN, the predictive ability of the model has been improved.
Although the resulting error is still at a relatively large level, it
has a similar change trend with the real data. After introducing
the attention mechanism based on the first two, the predictive
ability of the model is further improved. Only some areas have
an error of about 0.4m, and the overall error is maintained at a
relatively low level.

Twelve-Hour SWH Prediction
Table 2 lists the twelve-hour prediction results of different
algorithms after training, verification, and testing. The optimal
results are marked in bold in the table.

It can be seen from the table that CNN’s SWH prediction
performance indicators are further reduced. It can be
concluded that a single CNN model is not suitable for time
series SWH prediction. As the SWH prediction period
increases, the correlation between data decreases. But Bi-
LSTM can fully extract the dependency between data and
data through the ingenious design of bi-directional LSTM.
After introducing Bi-LSTM, the degree of data error is
slightly higher than the 1 h prediction result under the same
conditions, indicating that Bi-LSTM The application of the
algorithm is meaningful. After introducing the attention
mechanism on the basis of the first two, compared with the
1 h SWH prediction results under the same conditions, the
correlation decreases from 0.971 to 0.954. Due to the reduced
correlation, both SARMSE and SAMAPE increased slightly,
from 0.299 to 0.379 and 0.136 to 0.177 respectively; however,
the error was within an acceptable range.

Compared with the prediction performance of the 1 h SWH
model under the same conditions, the 12 h SWH prediction
index is slightly lower. At present, the possible reason is that the
forecast period is relatively large.

Figure 7 show the prediction results of different methods for
12 h SWH. Although the forecast period increases, the results of
CBA-Net are in good agreement with the original data,
indicating that the method proposed in this paper has strong
generalization ability and long-term prediction ability. In a small
part of the area, the 12 h prediction results have a slightly larger
error, with an error of about 0.5m, but the overall prediction is
the same as the actual measured data, which shows that CBA-Net
is feasible in the 12 h SWH prediction.
Longer-Term SWH Prediction
Table 3 lists the One-day prediction results of different
algorithms after training, verification, and testing. The optimal
results are marked in bold in the table.

As the complexity of marine engineering increases, so does
the demand for long-term SWH forecasts. It can be seen that,
TABLE 1 | One-hour performance results.

Metrics CNN CNN+Bi-LSTM CNN+Bi-LSTM+ATTENTION

SARMSE 1.039 0.528 0.299
SAMAPE 0.371 0.265 0.136
SACC 0.745 0.925 0.971
June 2022 | Volume 9 | Article 895212
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compared with the 1 h and 12 h SWH prediction, the 24 h SWH
prediction SARMSE and SAMAPE are 0.500 and 0.236,
respectively, which slightly increase, while SACC is 0.912,
which slightly decreases. SAMAPE is an important indicator
that reflects the effect of prediction. CBA-Net’s SAMAPE has
Frontiers in Marine Science | www.frontiersin.org 8
always been better than other methods. Although the increase
in the prediction time interval will reduce the correlation
coefficient and the accuracy of the prediction, this drawback
can be well alleviated by adding a Bi-LSTM layer and an
attention mechanism.

Figure 8 show the prediction results of different methods for
24 h SWH. The result confirmed our judgment once again, that a
single CNN is not suitable for SWH prediction in time series.
CBA-Net’s 24 h SWH prediction has large errors in only a small
part of the area, but it is still an acceptable level, and the overall
prediction effect is better. It also shows that CBA-Net’s 24 h
SWH prediction is feasible.
FIGURE 6 | Continuous prediction for one-hour prediction. (A–C) are the prediction results of the CNN model, the ERA5 data results, and the prediction errors,
respectively. (D–F) are the prediction results of the CNN + Bi-LSTM model, the ERA5 data results, and the prediction errors, respectively. (G–I) are CBA-Net model
prediction results, ERA5 data results, and prediction errors, respectively.
TABLE 2 | Twelve-hour performance results.

Metrics CNN CNN+Bi-LSTM CNN+Bi-LSTM+ATTENTION

SARMSE 1.137 0.558 0.379
SAMAPE 0.374 0.272 0.177
SACC 0.715 0.917 0.954
June 2022 | Volume 9 | Article 895212
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CONCLUSIONS

In this paper, a deep learning-based SWH prediction model for
the South China Sea region is proposed and named CBA-Net.
Frontiers in Marine Science | www.frontiersin.org 9
The model is trained to predict SWH with U10, V10, and SWH
of the ERA5 dataset as input. The model first uses the
convolutional layer to find the local dependencies between the
multi-dimensional input variables; then uses the Bi-LSTM layer
to capture the complex long-term dependencies; finally, the
attention mechanism is combined with the nonlinear neural
network part to make the model have stronger robustness.

In order to prove the effectiveness of the method proposed in
this paper, we used three different methods to predict the SWH
in the South China Sea. We use the 2011-2018 ERA5 data set to
train the model, and use the three indicators of SARMSE,
FIGURE 7 | Continuous prediction for twelve-hour prediction. (A–C) are the prediction results of the CNN model, the ERA5 data results, and the prediction errors,
respectively. (D–F) are the prediction results of the CNN + Bi-LSTM model, the ERA5 data results, and the prediction errors, respectively. (G–I) are CBA-Net model
prediction results, ERA5 data results, and prediction errors, respectively.
TABLE 3 | One-day performance results.

Metrics CNN CNN+Bi-LSTM CNN+Bi-LSTM+ATTENTION

SARMSE 1.182 0.736 0.500
SAMAPE 0.390 0.336 0.236
SACC 0.707 0.820 0.912
June 2022 | Volume 9 | Article 895212
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SAMAPE, and SACC to evaluate the accuracy and stability of the
prediction results. The results show that the CBA-Net method
can obtain more accurate results in the predictions of 1 h, 12 h,
and 24 h. The ablation study also shows that each component of
the method proposed in this paper is effective.

It can be seen that the SWH prediction technology based on
CBA-Net can make full use of the important information of sea
wind and significant wave height, establish a prediction model,
and realize business applications. For future research, there are
several promising directions to extend this work. Due to the
complexity of the actual marine environment, it is a challenging
task to extend the CBA-Net method to all global domains. In
Frontiers in Marine Science | www.frontiersin.org 10
addition, the number of input features directly determines the
prediction results, such as wind speed, water depth, terrain, etc.,
which need to be considered and added to the training of the
model. This general deep learning SWH prediction model
deserves more attention in future work.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
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