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Continuous monitoring of coastal water qualities is critical for water resource management
and marine ecosystem sustainability. While remote sensing data such as Sentinel-2
satellite imagery routinely provide high-resolution observations for time-series analysis, the
cloud-based Google Earth Engine (GEE) platform supports simple image retrieval and
large-scale processing. Using coastal waters of Hong Kong as the study area, this study
utilized GEE to (i) query and pre-process all Sentinel-2 observations that coincided with
in situmeasurements; (ii) extract the spectra to develop empirical models for water quality
parameters using artificial neural networks; and (iii) visualize the results using spatial
distribution maps, time-series charts and an online application. The modeling workflow
was applied to 22 water quality parameters and the results suggested the potential to
predict the levels of several nutrients and inorganic constituents. In-depth analyses were
conducted for chlorophyll-a, suspended solids and turbidity which produced high
correlations between the predicted and observed values when validated with an
independent dataset. The selected input variables followed spectral characteristics of
the optical constituents. The results were considered more robust compared to previous
works in the same region due to the automatic extraction of all available images and larger
number of observations from different years and months. Besides visualizing long-term
spatial and temporal variabilities through distribution maps and time-series charts,
potential anomalies in the monitoring period including algal bloom could also be
captured using the models developed from historical data. An online application was
created to allow novice users to explore and analyze water quality trends with a simple
web interface. The integrated use of remotely-sensed images, in situ measurements and
cloud computing can offer new opportunities for implementing effective monitoring
programs and understanding water quality dynamics. Although the obtained levels of
accuracies were below the desired standard, the end-to-end cloud computing workflow
demonstrated in this study should be further investigated considering the cost and
computational efficiency for timely information delivery.
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INTRODUCTION

Water quality has gradually experienced degradation in many
coastal regions because of pollution and heavy use resulting from
anthropogenic activities (Chen et al., 2004; Gholizadeh et al.,
2016). In Hong Kong, the Harbour Area Treatment Scheme has
been commenced since 2001 to improve the water quality of
Victoria Harbour at a cost of US$ 2.5 billion (Xu et al., 2011).
Nevertheless, the marine environment of Hong Kong is still
under considerable pressure from local, regional and global
stressors such as reclamation, overfishing, biological invasion,
transboundary pollution and climate change (Lai et al., 2016).
Continuous monitoring and assessment of the water quality
are critical for water resource management and marine
ecosystem sustainability.

Water quality can be considered as a general descriptor of
water properties in terms of physical, chemical and biological
characteristics (Ritchie et al., 2003). Many water quality
parameters, such as chlorophyll-a (Chl-a), suspended solids
(SS), and turbidity, have been commonly used as indicators
(Hafeez et al., 2019; Topp et al., 2020). For instance, Chl-a is a
photosynthetic pigment and can be used as indirect
measurements of phytoplankton biomass, algal production and
trophic state (Schalles, 2006; Flores-Anderson et al., 2020). Rapid
growth of algae or cyanobacteria can lead to harmful algal
blooms that adversely affect people and ecology (Poddar et al.,
2019; Wang et al., 2020). SS refers to both inorganic and organic
particles held in suspension throughout a water column (Topp
et al., 2020). Their movements are related to sediment transport,
nutrient cycle and water clarity and are often linked to economic
activities in ports and waterways (Shahzad et al., 2018; Wang
et al., 2018). Turbidity is closely related to SS and is a
measurement of light scattering within a water column caused
by particles (Matthews, 2011). Increasing turbidity can reduce
light penetration and cause cloudiness of the water (Khan
et al., 2021).

Traditionally, water samples are collected from the field and
then analyzed in the laboratory. Although such in situ
measurements offer high accuracy, they are costly, labor-
intensive and time-consuming (Gholizadeh et al., 2016; Pizani
et al., 2020). Spatial and temporal variations within the entire
waterbody are also hard to be identified from the sampling points
(Ouma et al., 2020). On the other hand, recent advances in
remote sensing technology have enabled the extraction of spatial
and temporal profiles of surface water by providing a synoptic
and synchronized view from aerial or satellite platforms over a
large area (Schaeffer et al., 2013; Ansper and Alikas, 2019; Flores-
Anderson et al., 2020). Since the upwelling radiance from the
water at various wavelengths often consists of signals from the
optically active components of the water (Ritchie et al., 2003;
Shahzad et al., 2018), the spectral shapes and magnitudes of the
water-leaving reflectance can be used directly or indirectly to
detect different water quality parameters through empirical or
analytical models (Matthews, 2011; Salem et al., 2017; Wang and
Yang, 2019).
Frontiers in Marine Science | www.frontiersin.org 2
Despite a large amount of satellite data being available for
remote sensing of water quality, only a few satellites can
provide sufficient spatial, spectral and temporal resolutions to
resolve the complex water variability in coastal areas. Ocean
color sensors specifically designed for marine purposes (e.g.,
SeaWiFS, MODIS, MERIS) (Hu et al., 2012) cannot fulfil the
requirements of coastal water monitoring due to their coarse
spatial resolutions (> 250 m) (Mouw et al., 2015). Land sensors
with moderate resolutions, especially the Landsat series satellites
(30 m), were found to be the most popular data resources, mainly
because of their temporal coverage and easy accessibility (Wang
and Yang, 2019). Still, the revisit time of Landsat-8 (16 days)
limits its use in routine monitoring of water quality (Toming
et al., 2016).

Currently, the Multispectral Instrument (MSI) onboard
Sentinel-2, launched by the European Space Agency
Copernicus program in 2015, has opened a new potential in
water remote sensing (Drusch et al., 2012). The MSI sensor
measures radiance in 13 spectral bands spanning from visible to
shortwave infrared with 10–60 m spatial resolution, including
three red-edge bands that can be advantageous over optically
complex coastal waters (Pahlevan et al., 2017; Ansper and Alikas,
2019), and provides a 5-day revisit frequency with both Sentinel-
2A and Sentinel-2B satellites (Toming et al., 2016). In particular
geographical areas like Hong Kong which are located at the edge
of the sensor swath, Sentinel-2 is also preferred over Landsat
satellites since its wider swath width can provide complete
coverage of the study area in a single scene.

Images obtained from Sentinel-2 MSI have been demonstrated
to successfully derive water quality parameters in a variety of
scenarios, such as inland water reservoirs (Ouma et al., 2020;
Pizani et al., 2020; Pompêo et al., 2021), lakes (Liu et al., 2017;
Ansper and Alikas, 2019; Free et al., 2020; Soomets et al., 2020),
rivers (Kuhn et al., 2019), estuaries (Sent et al., 2021) and bays with
aquaculture (Gernez et al., 2017; Soriano-González et al., 2019).
However, most of these analyses focused on the development of
algorithms and only utilized images acquired from a single date or a
limited temporal range (Topp et al., 2020). The strength of remote
sensing lies in providing both comprehensive historical records of
water quality, which facilitates understanding of long-term
environmental changes (Kim et al., 2020), and near real-time
measurement at critical points, where in situ measurements are
not readily available (Sobel et al., 2020). Considering that Sentinel-2
data will be available routinely for many years and free of charge,
several studies also emphasized the importance of using multi-
temporal images to provide time-series analysis of changes and
trends (Toming et al., 2016; Tamiminia et al., 2020; Elhag
et al., 2021).

When utilizing satellite images for routine monitoring of
water quality parameters, researchers have argued that
computational demands required for managing and
analyzing large volumes of data can be a major bottleneck
(Kumar and Mutanga, 2018; Page et al., 2019). Compared to
conventional image processing techniques, Google Earth
Engine (GEE), a cloud-based platform for large-scale
May 2022 | Volume 9 | Article 871470
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geospatial analysis (Gorelick et al. , 2017), has been
demonstrated to provide easy accessibility to readily available
data and powerful computing capabilities for a variety of
applications (Traganos et al., 2018; Tamiminia et al., 2020;
Jia et al., 2021; Li et al., 2021). However, only a few studies have
attempted to exploit the functionality of GEE to develop an
automated approach or even a web application that can further
enhance usability of the outputs (Markert et al., 2018;
Rudiyanto et al., 2019; Canty et al., 2020). Hence, this study
aimed to fill the gap by developing a low-cost, end-to-end and
efficient workflow that can provide rapid information for
improving water quality monitoring.

Among the previous remote sensing-based studies of water
quality in Hong Kong, Wong et al. (2007; 2008) used MODIS
images to retrieve Chl-a, SS and turbidity for coastal waters of
Hong Kong, but the coarse spatial resolution (500 m) limited
their usability in the spatially complex environment. Tian et al.
(2014) produced the first map of SS concentration at moderate
spatial resolution (30 m) in the Deep Bay area of Hong Kong
using HJ-1 satellite images, despite the fact that their study
focused only on a narrow range of SS concentrations and a
specific area inside Hong Kong. Nazeer and Nichol (2015)
developed an empirical model for estimation of SS
concentrations by combining Landsat-5, Landsat-7 and HJ-1
images, although they are old-generation satellites with less
desirable band designations and data bit levels. A recent study
by Hafeez et al. (2019) focused on the comparison of several
machine learning techniques for improving water quality
estimation with Landsat series satellites, while Hafeez and
Wong (2019) tested the performance of using Sentinel-2
images to estimate Chl-a and SS in a single year. These
studies were either limited to using few image dates and in
situ samples for model development and validation, or not
providing a solution to operational water monitoring in
different scenarios.

The objective of this study was to develop an automated
framework to retrieve the spatial and temporal patterns of
different water quality parameters, specifically Chl-a, SS and
turbidity, for coastal waters of Hong Kong by integrating
Sentinel-2 image time-series, in situ measurements from
monitoring stations and the GEE cloud computing capability.
In particular, this study aimed to utilize GEE to (i) query and
pre-process all Sentinel-2 observations that coincided with in situ
measurements; (ii) extract the spectra to develop empirical
models for water quality parameters using artificial neural
networks (ANN); and (iii) visualize the results using spatial
distribution maps, time-series charts and an online application.
The first part of this study presents the processing workflow and
demonstrates that it could be applied to all 22 water quality
parameters collected by monitoring stations. The second part of
this study focuses on the modeling results of three major water
quality parameters, including Chl-a, SS and turbidity. Through
evaluating the empirical modeling performance and analyzing
the water quality changes, this study provided both theoretical
and practical implications, facilitating the implementation of an
effective water resource monitoring program.
Frontiers in Marine Science | www.frontiersin.org 3
MATERIALS AND METHODS

Study Area
Hong Kong is a highly urbanized city lying at the northern limits
of the Asian tropics between latitudes 22°08’N and 22°35’N and
longitudes 113°49’E and 114°31’E (Figure 1). The climate is
subtropical, with hot rainy summers from May to August and
cool dry winters fromNovember toMarch. Situated with the Pearl
River Estuary to the west and surrounded by the South China Sea
to the south and east, Hong Kong has a land area of 1,108 km2

including more than 250 offshore islands. The coastline extends
around 1,200 km and the sea area is 1,648 km2. The marine waters
support diverse forms of marine life ranging from microscopic
algae to dolphins, and are used for navigation, recreation, seafood
production, and supply of flushing and cooling water
(Environmental Protection Department, 2021).

Due to the combination of anthropogenic activities and
variable hydrographical conditions, the coastal waters of Hong
Kong are physically and chemically complex (Hafeez et al.,
2019). For example, in the western areas (e.g. Deep Bay and
North Western Zones), estuarine waters are influenced by
freshwater discharge from the Pearl River. Water quality in
this area is also influenced by the sediment loads and nutrients
in the river discharges (Zhou et al., 2007). Conversely, the eastern
waters (e.g. Mirs Bay) are more oceanic and influenced by the
Pacific currents (Lai et al., 2016). The central areas represent a
transition zone that varies seasonally, in addition to the influence
of local pollution load from Victoria Harbour (Xu et al., 2011).
The water quality also varies spatiotemporally depending on two
seasonal monsoons. While the northeast monsoon prevails and
enhances the effect of China Coastal Current during winter, the
southwest monsoon in summer transports continental shelf
water landward (Zhou et al., 2012). The estuarine plume
covers the northern part of South China Sea when the river
discharge is large in summer. The normal tidal range in Hong
Kong waters is between one and two meters, with flood tide for
oceanic water to flow to the northwestern direction and ebb tide
in the reversed direction.

Water Quality Parameters and
Station-Based Data
The Environmental Protection Department (EPD) of the Hong
Kong government has divided Hong Kong waters into 10 water
control zones (Figure 1) based on the hydrodynamic
characteristics and pollution status. A systematic marine water
quality monitoring program has been in operation since 1986 to
measure a total of 22 water quality parameters (Environmental
Protection Department, 2021). The list of the measured
parameters is shown in Table 1, and they are related to
different aspects of water quality including (i) physical and
aggregate properties, (ii) aggregate organic constituents, (iii)
nutrients and inorganic constituents, and (iv) biological and
microbiological examination. The modeling workflow was
applied to all 22 parameters in the first part of the present
study, while detailed analyses focused on three major parameters,
including Chl-a, SS and turbidity.
May 2022 | Volume 9 | Article 871470
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EPD takes measurements and collects water samples at 76
monitoring stations in open waters every month using their
dedicated marine monitoring vessel equipped with Differential
Global Positioning Systems (DGPS) and an advanced
conductivity-temperature-depth (CTD) profiler. The water
Frontiers in Marine Science | www.frontiersin.org 4
quality parameters are measured from three depths, including
surface water (1 m below the sea surface), middle water (half the
sea depth), and bottom water (1 m above the seabed). Water
samples are collected in a 500 mL Nalgene bottle and analyzed by
EPD’s in-house laboratory. To measure Chl-a concentration
TABLE 1 | Summary statistics of station-based monitoring data of the water quality parameters extracted in this study.

Parameter Unit Mean SD Median Max Min

Physical and Aggregate Properties Temperature °C 24.43 4.31 25.50 33.40 13.80
Salinity psu 29.41 5.07 31.20 34.70 0.20
Dissolved Oxygen mg/L 6.35 1.19 6.20 13.60 1.50
Turbidity NTU 4.80 16.30 2.80 868.40 0.10
pH – 7.95 0.26 8.00 9.10 6.60
Secchi Disc Depth m 2.93 1.06 2.80 22.00 0.20
Suspended Solids mg/L 6.80 9.88 4.50 360.00 0.50
Volatile Suspended Solids mg/L 1.67 1.52 1.30 41.00 0.50

Aggregate Organic Constituents 5-day Biochemical Oxygen Demand mg/L 1.06 0.95 0.80 11.00 0.10
Nutrients and Inorganic Constituents Ammonia Nitrogen mg/L 0.09 0.20 0.04 5.20 0.01

Unionised Ammonia mg/L 0.002 0.004 0.00 0.08 0.00
Nitrite Nitrogen mg/L 0.04 0.07 0.01 1.00 0.00
Nitrate Nitrogen mg/L 0.20 0.30 0.09 2.70 0.00
Total Inorganic Nitrogen mg/L 0.32 0.48 0.16 5.70 0.01
Total Kjeldahl Nitrogen mg/L 0.43 0.39 0.35 9.00 0.05
Total Nitrogen mg/L 0.66 0.58 0.53 9.50 0.05
Orthophosphate Phosphorus mg/L 0.02 0.03 0.01 0.41 0.00
Total Phosphorus mg/L 0.05 0.06 0.03 0.86 0.02
Silica mg/L 1.31 1.75 0.79 21.00 0.05

Biological and Microbiological Examination Chlorophyll-a mg/L 4.65 7.09 2.10 100.00 0.20
E. coli cfu/100mL 784 14504 3 690000 1
Faecal Coliforms cfu/100mL 1588 27189 12 1300000 1
May
 2022 | Volum
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FIGURE 1 | (A) The study area of this study, including the 10 water control zones defined by the Environmental Protection Department (EPD) of the Hong Kong
government; (B) Location of Hong Kong in the regional context.
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(μg/L), the American Public Health Association (APHA) 20ed
10200H2 spectrophotometric method based in-house GL-OR-34
method is used. For SS concentration (mg/L), the APHA 22ed
2540D weighing method based in-house GL-PH-23 method is
used, while turbidity (NTU) is measured on-site by the OBS-3
turbidity sensor linked to a SEACAT 19+ CTD and Water
Quality Profiler.

The marine water quality monitoring data are open data in the
Hong Kong government online database (https://data.gov.hk/). The
data are updated yearly and released usually in the third quarter of
the next year. In this study, we retrieved the water quality data from
2015 to 2020 which match the availability of Sentinel-2 images.
While this study was conducted in late 2021, station-based data
covering the current year were not yet available. A summary of the
station-based data is provided in Table 1.

Selection and Pre-Processing of
Sentinel-2 Images
Sentinel-2 is an Earth observation mission from the Copernicus
Program and consists of two identical satellites. Sentinel-2A was
launched on 23rd June 2015 and Sentinel-2B was launched on 7th

March 2017. The band configuration of Sentinel-2 is given in
Table 2. The bands range from 443 nm to 2190 nm, featuring
four bands at 10-m (Visible and near-infrared [NIR]), six bands
at 20-m (red-edge and shortwave infrared [SWIR]) and three
bands at 60-m (atmospheric) spatial resolution.

In this study, selection of suitable Sentinel-2 images and
subsequent pre-processing steps were done using GEE (https://
code.earthengine.google.com/). GEE includes both a web-based
Code Editor in JavaScript language and a Python application
programming interface (API) for data analysis outside the web
environment (Tamiminia et al., 2020). All the analysis
procedures in this study were written using GEE Python API
in Google Colab (https://colab.research.google.com/) such that
the codes can be directly executed through a web browser with
minimal configuration.

The complete archive of Sentinel-2 images (Level-1C) from
2015 is available as an image collection in the GEE repository.
Despite the ready availability of atmospherically corrected Level-
Frontiers in Marine Science | www.frontiersin.org 5
2A products, this collection only contains images dating back to
2017, which makes it less suitable for time-series analysis.
Instead, Level-1C images covering the study area were queried
in GEE with a maximum cloudy pixel percentage of 20%
according to metadata. A total of 120 cloud-limited scenes
from 23rd October 2015 to 31st December 2021, covering all
seasons of the year, were retrieved and used in this
study (Table 3).

The Level-1C Sentinel-2 data contained spectral values
representing the top of atmosphere (TOA) reflectance.
Atmospheric correction is an important process to obtain
water-leaving reflectance by removing atmospheric interference
from the total signal received by the satellite sensor (Soriano-
González et al., 2019). This study implemented an atmospheric
correction model called Py6S (Wilson, 2013), which is a Python
interface of the “Second Simulation of the Satellite Signal in the
Solar Spectrum” (6S) radiative transfer model (Vermote et al.,
1997), to all Sentinel-2 images with the maritime aerosol setting.
Py6S was chosen since it was found to be the best method over
complex coastal waters of Hong Kong when tested using satellite
images with similar resolutions (Nazeer et al., 2014) and relevant
codes have been developed for GEE (Murphy, 2020).

For each atmospherically corrected image, a cloud mask was
applied based on the s2cloudless dataset, which is a machine
learning-based cloud detector precomputed on GEE (Zupanc,
2017). Cloud shadows were also estimated and masked using the
position of detected clouds and the viewing geometry. Since
some of the images were found to be affected by sun glints, a
simple correction method was applied by subtracting 50% of the
reflectance values of band 11 (SWIR) in each pixel from all
bands. It was based on the assumption that the water-leaving
radiance in SWIR wavelength is very low, thus a significant
proportion of the SWIR signals that appear on the image could
be attributed to sun glints and these signals correlate well with
the glints experienced by other channels (Kay et al., 2009). The
value was selected with reference to previous analysis of surface
reflectance (Kuhn et al., 2019) and manual inspection of images
acquired in adjacent swath with different viewing angles. In
addition, the Modified Normalized Difference Water Index
TABLE 2 | Spectral bands for Sentinel-2 sensors (Drusch et al., 2012). Bands 8, 9 and 10 were eliminated in this study due to the wavelength overlap or absence of
water surface information.

Band number Central wavelength (nm) Bandwidth (nm) Spatial resolution (m)

Band 1 – Coastal aerosol 443 20 60
Band 2 – Blue 490 65 10
Band 3 – Green 560 35 10
Band 4 – Red 665 30 10
Band 5 – Red-edge 705 15 20
Band 6 – Red-edge 740 15 20
Band 7 – Red-edge 783 20 20
Band 8 – NIR 842 115 10
Band 8A – NIR 865 20 20
Band 9 – Water vapor 945 20 60
Band 10 – Cirrus 1380 30 60
Band 11 – SWIR 1610 90 20
Band 12 – SWIR 2190 180 20
May 2022 | Vo
NIR, Near-infrared; SWIR, shortwave infrared.
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(MNDWI) for open waters (Xu, 2006), calculated as the
difference-sum ratio of SWIR and visible green bands, was
applied to all images to separate water pixels from land areas
and remove low-quality pixels with a threshold value of zero.

Among the 13 spectral bands acquired by Sentinel-2, bands 9
(water vapor) and 10 (cirrus) were eliminated as they do not
contain water surface information. Band 8 (NIR) was also
removed since its wavelength overlaps with band 8A and the
latter band provides more precise spectral measurement. The
pre-processed images contained 10 spectral bands ranging from
visible and NIR to SWIR wavelengths. The difference in spatial
resolutions among spectral bands was not an issue in GEE which
uses scale specified by the output to determine the appropriate
level of input image pyramids.

Development of Empirical Models
Sentinel-2 reflectance values were extracted from the location of
in situmeasurements with an allowance of one-day difference, to
ensure sufficient match-up points and consider the short water
residence time of around two days in the wet season (Zhou
et al., 2012). A 20-m buffer was adopted for each sampling point
to reduce the effects of positional accuracy and noise from the
sensor. All sampling locations were at least 200 m away from
land to reduce adjacency effects. Furthermore, low-quality points
were removed by Tukey’s fences method, which considered the
point as an outlier if the value in any one of the spectral bands
exceeded a distance of “1.5 times interquartile range” below the
first or above the third quartiles. This resulted in a total of 352
observations, for which 300 observations in 2015–2019 were
used for training and model development, while the remaining
52 observations in 2020 were used for validation, in order to
demonstrate the model performance to estimate current water
qualities from historical data.

Many algorithms have been proposed for retrieving water
quality parameters from remote sensing reflectance. Among
them, empirical methods aim to establish the relationships
using statistical techniques and have advantages of
computational simplicity and ease of implementation for
different water quality parameters (Ritchie et al., 2003; Wang
and Yang, 2019). A locally optimized algorithm is often
recommended to provide better performances when calibrated
Frontiers in Marine Science | www.frontiersin.org 6
with in situ observations (Tian et al., 2014; Yoon et al., 2019;
Flores-Anderson et al., 2020). To establish a suitable model in
this study, the following band ratios and arithmetic variables,
which were developed with reference to bio-optical properties of
waters (Matthews, 2011), were computed as input predictors.

Two-band ratios—The use of band ratios theoretically
reduces the effects of tidal or seasonal variations and
maximizes the sensitivity to water quality parameters against
other constituents (Gons, 1999). For instance, a blue-green ratio
uses the strong light absorption by carotenoids at 490 nm (blue)
and minimal absorption of photosynthetic pigments at 560 nm
(green). The ratio between 705 nm and 665 nm spectra is also
based on the interaction between backscattering from particulate
matter and the absorption features (Toming et al., 2016). Since
there is little consistency in the optimal band ratios in different
studies (Matthews, 2011), possible ratio combinations of all 10
spectral bands were computed and tested in this study. Instead of
simple ratios, normalized band ratios were adopted in this study
in order to limit the range between -1 and 1 (Equation 1).

Normalized ratio (i, j) =  
R(i) − R(j)
R(i) + R(j)

(1)

Where i and j are any bands from 1 to 12 except 9 and 10, R(i)
represents the reflectance of band i.

Three-band ratio—The three-band method was developed by
Dall’Olmo and Gitelson (2005) with a basic principle to find the
three-band combinations that are most relevant to the
absorption coefficient of the water quality parameters (Wang
and Yang, 2019). A typical example is the use of 665-nm, 705-nm
and 740-nm wavelengths, which showed good agreement with
in situ Chl-a data in turbid and productive waters (Ansper and
Alikas, 2019). In this study, all possible combinations from three
consecutive bands were calculated according to Equation 2.

Three band ratio (i, j, k) =
1

R(i)
−

1
R(j)

� �
� R(k) (2)

Where i, j and k are any three consecutive bands from 1 to 12
except 9 and 10, R(i) represents the reflectance of band i.
TABLE 3 | Dates of the cloud-limited Sentinel-2 scenes retrieved and analyzed in this study.

Month Year

2015 2016 2017 2018 2019 2020 2021

Jan – 1 25 15 25 5,30 14,29
Feb – – 4,14 – – – 18,23
Mar – – – 11,16,21,31 – 15 20,30
Apr – – – 5,10 5,25 9,19,29 –

May – 30 – 15,20,25,30 – 4 9,19
Jun – 19 – – 14 18,28 3,18
Jul – 29 9,29 29 – 13,23,28 8,13,28
Aug – – 13,18 8 8,13 22 17,22
Sep – 17,27 12,17,27 – 7,17,22,27 1 6
Oct 23 27 2,12,22,27 2,7,22 2,12,17,22 11,21,26 1,6,11,16
Nov 22 – 1,16 6,21 1,11,16,21 5,20,25 10,20,30
Dec – 16,26 6,11,21,31 21,26 1,11,26 5,30 5,10,30
May 2
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Line-height variable—The line-height algorithm is based on
band differences and measures the height of a reflectance peak at
a specific wavelength from a linear baseline drawn between two
sides of the peak (Gitelson et al., 1994). The fluorescence line
height algorithm (Gower et al., 1999) and maximum chlorophyll
index (Gower et al., 2005) are examples developed using the
peaks of different MERIS bands related to Chl-a concentrations.
To test the applicability of various choices of peak wavelengths,
line-height variables were computed in this study from each of
the 10 Sentinel-2 spectral bands with the adjacent two bands
(Equation 3).

Line height(i, j, k)

= R(j) − R(i) − ½R(k) − R(i)� � l(j) − l(i)
l(k) − l(i)

(3)

Where i, j and k are any three consecutive bands from 1 to 12
except 9 and 10, R(i) represents the reflectance of band i, l(i)
represents the central wavelength of band i.

The same empirical modeling procedures were then applied
to each of the 22 water quality parameters. ANN is a supervised
machine learning algorithm that consists of highly
interconnected neurons to create weighted links between input
data and output information (Atkinson and Tatnall, 1997). The
typical model, called multilayer perceptron (MLP), uses a feed-
forward connection arranged in input, hidden and output layers
where summation and activation functions were performed. This
type of model has been widely employed to estimate various
water quality parameters (Chen et al., 2004; Chebud et al., 2012;
Sagan et al., 2020) and was found to produce the highest accuracy
when applied to Hong Kong waters previously (Hafeez et al.,
2019). Recent studies also successfully utilized ANN models on
time-series images created from GEE (Amani et al., 2020;
Ghorbanian et al., 2022).

In the present study, the input layer consisted of the spectral
bands and combinations, while the output layer contained the
values of target water quality parameters. The candidate
predictors included the original Sentinel-2 bands, their square
and cubic values, as well as the three types of variables computed
above. To determine an appropriate model architecture that
could achieve the best possible accuracy, a 5-fold cross-
validation on the training dataset was performed to select the
optimal combination of parameters, including (i) five to twelve
input variables which were chosen according to correlations with
the dependent variable, (ii) one or two hidden layers with two to
ten neurons in each layer, and (iii) L2 regularization parameter
from 10-1 to 10-6 which penalizes large weights. The ANN
models adopted the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) solver for weight optimization and
logistic sigmoid as the activation function. The modeling
procedures were implemented in Python with the open-source
scikit-learn package on the web-based Google Colab platform.

Models Evaluation
The models developed based on the training dataset were also
applied to the independent validation set. To assess the
Frontiers in Marine Science | www.frontiersin.org 7
performances, Pearson’s correlation coefficients (r) were
computed for both datasets to measure the strength of
relationships between the predicted and observed values. Two
metrics, including root-mean-square error (RMSE) and mean
absolute error (MAE), were used to measure the deviations of the
results (Equations 4 and 5). Furthermore, to obtain a scale-
independent error measure in relative terms, symmetric mean
absolute percentage error (SMAPE) was also computed
(Equation 6) (Chen et al., 2017). The measure is resistant to
outliers and has both the lower (0%) and the upper (200%)
bounds.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(ŷ i − yi)

2

r
(4)

MAE =
1
no

n
i=1   ŷ i − yi  j j (5)

SMAPE =
1
no

n
i=1

2� ŷ i − yi  j j
yi  j j + ŷ i  j j � 100% (6)

Where ŷi is the predicted value and yi is the observed value of
data point i, n is the number of data points.

Finally, the developed models were applied to all Sentinel-2
images to produce spatial distribution maps of the water quality
parameters within the entire temporal range. The resulting maps
were exported as assets in GEE. Using functions available in
GEE, time-series charts and maps were generated to visualize the
spatial and temporal patterns of each water quality parameter.
To further exploit the potential of GEE, an online application
was created through Earth Engine Apps (Kumar and Mutanga,
2018) which allowed users to explore and analyze water quality
trends with a simple web interface. It should be noted that since
ANN is not natively available in GEE, all the weights and biases
of each neuron in the trained ANN models were manually
transferred using GEE Python API.

Figure 2 shows the methodological flow of this study. It is
noteworthy that while the present study focused on the end-to-
end framework, the proposed workflow consisted of many
interrelated components, including but not limited to the pre-
processing steps and regression algorithms, which would
simultaneously influence the modeling results and require
further investigations.
RESULTS AND DISCUSSION

Evaluation of ANN Regression Models for
All Water Quality Parameters
Table 4 shows the evaluation metrics for the ANN models,
including both model calibration and validation sets, developed
for each of the 22 water quality parameters. The ANN models,
optimized through cross-validations, selected a wide range of
numbers of input variables and neurons for different parameters.
For instance, the models developed for salinity and turbidity
used 8 input variables and 2 neurons in a single hidden layer,
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FIGURE 2 | Flowchart of the proposed framework to estimate water quality parameters using Google Earth Engine (GEE) cloud computing platform and artificial
neural network (ANN) algorithm. (MNDWI, Modified Normalized Difference Water Index).
TABLE 4 | Modeling results of the 22 water quality parameters calculated using artificial neural networks (ANN) on both training and validation datasets.

Parameter Model development (n = 300) Validation (n = 52)

Number of input variables Number of neurons r RMSE SMAPE r RMSE MAE SMAPE

1 Temperature (°C) 12 6 0.780 2.498 8.4% 0.466 2.879 2.277 9.8%
Salinity (psu) 8 2 0.856 1.826 4.4% 0.845 2.769 1.574 7.8%
Dissolved Oxygen (mg/L) 10 (2, 2) 0.620 0.696 8.7% 0.440 0.723 0.592 10.6%
Turbidity (NTU) 8 2 0.666 3.421 49.6% 0.701 1.954 1.607 40.3%
pH 5 (10, 10) 0.477 0.166 1.7% 0.430 0.172 0.147 1.9%
Secchi Disc Depth (M) 9 6 0.658 0.659 17.3% 0.632 0.599 0.454 17.4%
Suspended Solids (mg/L) 11 5 0.839 2.774 38.3% 0.653 4.513 3.618 76.4%
Volatile Suspended Solids (mg/L) 8 (10, 10) 0.673 0.730 37.0% 0.583 0.977 0.752 58.0%

2 5-day Biochemical Oxygen Demand (mg/L) 12 2 0.665 0.472 43.8% 0.306 0.804 0.355 36.3%
3 Ammonia Nitrogen (mg/L) 12 5 0.611 0.069 86.9% 0.554 0.079 0.059 82.1%

Unionised Ammonia (mg/L) 9 (6, 6) 0.285 0.004 127.0% 0.228 0.003 0.002 57.4%
Nitrite Nitrogen (mg/L) 11 (5, 5) 0.684 0.038 96.9% 0.636 0.040 0.027 124.7%
Nitrate Nitrogen (mg/L) 6 (6, 6) 0.870 0.138 94.8% 0.882 0.145 0.084 65.0%
Total Inorganic Nitrogen (mg/L) 8 (6, 6) 0.885 0.175 72.9% 0.859 0.226 0.148 58.0%
Total Kjeldahl Nitrogen (mg/L) 11 (6, 6) 0.334 0.267 43.9% 0.310 0.238 0.191 44.1%
Total Nitrogen (mg/L) 8 (5, 5) 0.748 0.295 41.0% 0.768 0.269 0.222 43.1%
Orthophosphate Phosphorus (mg/L) 5 6 0.731 0.015 67.5% 0.712 0.015 0.011 58.2%
Total Phosphorus (mg/L) 8 5 0.606 0.025 41.1% 0.479 0.028 0.022 43.5%
Silica (mg/L) 11 (8, 8) 0.947 0.405 33.3% 0.925 0.663 0.469 48.3%

4 Chlorophyll-a (mg/L) 9 (6, 6) 0.956 1.414 41.8% 0.898 2.176 1.398 55.1%
E. coli (cfu/100mL) 12 (8, 8) 0.472 1926.1 158.2% 0.138 801.7 367.9 154.8%
Faecal Coliforms (cfu/100mL) 10 (8, 8) 0.396 4892.1 165.3% 0.130 1752.9 900.3 157.8%
Frontiers in Marine Science | www.frontiersin.org
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The numbers of input variables and numbers of neurons were selected through cross-validations of the training dataset. If there are two values in the numbers of neurons, they refer to
the first and second hidden layers respectively. The evaluation metrics include Pearson’s correlation coefficient (r), root-mean-square error (RMSE), mean absolute error (MAE) and
symmetric mean absolute percentage error (SMAPE) between the predicted and observed values. The equations to compute these metrics are provided in Equations 4–6. The water
quality parameters are grouped into (1) physical and aggregate properties, (2) aggregate organic constituents, (3) nutrients and inorganic constituents, and (4) biological and
microbiological examination.
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indicating that the dependent variables correlated well with the
predictors and can be estimated using relatively simple networks.
Contrastingly, the modeling of parameters such as silica and Chl-
a utilized 9–11 variables with 6–8 neurons in two hidden layers.
Despite the complex network, the modeling results were
promising for these parameters. When the training dataset was
considered, correlation coefficients greater than 0.8 were
obtained for salinity, SS, nitrate nitrogen, total inorganic
nitrogen, silica and Chl-a. Among these six parameters, five of
them (except SS) could produce r ≥ 0.845 in the validation set as
well. This proved the applicability of ANN to develop regression
models and predict the values of particular water quality
parameters in this setting.

The water quality parameters investigated in this study could
be categorized into physical properties, nutrient and inorganic
constituents, and biological and microbiological examination.
Results of the ANN models revealed that there was no clear
pattern on the superiority of predicting particular groups of
parameters. The physical properties of waters generally had
moderate relationships with the spectral reflectance and the r
values lied between 0.430 (pH) and 0.845 (salinity). The group of
nutrient and inorganic constituents resulted in a wider range of r
values from 0.228 (unionized ammonia) to 0.925 (silica). For
biological and microbiological constituents, while Chl-a
concentration led to a prediction model with promising fit
(r = 0.898), E. coli and Faecal Coliforms generated the poorest
results among all parameters tested in this study, with very
weak correlations (r = 0.130–0.138) and large deviations
(SMAPE = 154.8–157.8%) from the actual values. Although
some scholars had reported substantial performance when
applying regression models to estimate non-optical parameters
including dissolved oxygen (Pizani et al., 2020), the agreement
was not found in this study (r = 0.440). This could be explained
by the complexity of coastal waters and the lack of consideration
of interrelated optical properties among parameters (Kim
et al., 2020).

From remote sensing perspective, some water quality
parameters were considered as optically active components
(Sobel et al., 2020), such as Chl-a and SS, which cause changes
to the spectral properties of reflected light and are thus remotely
detectable. Reviews by Gholizadeh et al. (2016) and Wang and
Yang (2019) suggested that most of the existing studies
concentrated on these optically active variables while other
parameters without explicit optical properties were not well
investigated. This study attempted to apply the same regression
approach to all parameters and revealed a significant difference
Frontiers in Marine Science | www.frontiersin.org 9
in the model performances in terms of correlation and other
evaluation metrics. The findings in this study did not support
that water quality parameters related to physical properties of
water would produce better prediction performances compared
to those related to nutrient and inorganic constituents. Instead,
the potential to predict the levels of several types of nutrients and
chemicals such as total nitrogen (r = 0.768), orthophosphate
phosphorus (r = 0.712) and silica (r = 0.925) was also suggested.
Nevertheless, since these water quality parameters were seldom
studied using remote sensing methods (Gholizadeh et al., 2016),
their spectral responses and modeling potentials would need to
be further investigated.

Based on the ANN modeling results, the following sections
would focus on three water quality parameters, namely Chl-a, SS
and turbidity, which had relatively accurate estimations and
strong relationships with the predictor variables. This also
allowed in-depth analysis of the remote sensing-based
techniques since these parameters have been investigated in
similar studies.
Variables Used in Chl-a, SS and
Turbidity Models
The variables used as inputs in the ANN models for Chl-a, SS
and turbidity are described in Table 5. Through cross-
validations, each model selected 8–11 predictors which
provided relatively high correlations with the dependent
variables. For the Chl-a model, it adopted a combination of
band 1 (coastal aerosol), band 2 (blue), band 8A (NIR), blue-
green ratio, three-band ratio of band 2, band 3 (green) and band
4 (red), as well as line-heights of band 2, band 4 and band 8A.

As suggested in existing literature, there is little consistency in
the effectiveness of different bands or band ratios in estimating
various water quality parameters, which further depends on the
parameter ranges and study areas (Matthews, 2011; Topp et al.,
2020). For instance, although band 5 in Sentinel-2 corresponds
to a well-known reflectance peak of Chl-a near 705 nm in high-
biomass waters (Gons, 1999), none of the band combinations
directly associated with this wavelength was selected in the
model. While the three-band ratio variables were originally
constructed using the red-edge wavelengths from 665 to 740
nm and were shown to be useful in Ansper and Alikas (2019) and
Free et al. (2020), it became one of the significant predictors of
Chl-a when the same equation was applied to the visible bands in
the present study. These were coherent with previous studies of
Hong Kong water, which proved that a locally calibrated model
TABLE 5 | The variables selected as inputs in the ANN models developed in this study for chlorophyll-a (Chl-a), suspended solids (SS) and turbidity.

Parameter Selected variables

Chl-a (mg/L) B1, B2, (B2)2, (B8A)3, NR(B2,B3), TB(B2,B3,B4), LH(B1,B2,B3), LH(B3,B4,B5), LH(B7,B8A,B11)
SS (mg/L) B3, (B3)2, (B3)3, B4, (B4)2, (B4)3, B5, (B5)2, (B5)3, LH(B4,B5,B6), LH(B5,B6,B7)
Turbidity (NTU) B3, (B3)2, (B3)3, (B5)2, (B5)3, LH(B2,B3,B4), LH(B4,B5,B6), LH(B5,B6,B7)
B1–B12 refer to spectral reflectance of bands 1–12. NR(B2,B3) refers to the normalized ratio of band 2 and band 3, computed according to Equation 1. TB(B2,B3,B4) refers to the
three-band ratio of band 2, band 3 and band 4, computed according to Equation 2. LH(B1,B2,B3) refers to the line-height variable using band 1, band 2 and band 3, computed
according to Equation 3.
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outperformed models established in other study areas including
the standard Case-2 Regional/Coast Color (C2RCC) processing
chain model (Hafeez et al., 2019).

Despite the variety of predictor combinations, the selected
variables were consistent with the prominent spectral
characteristics such as absorption and scattering features of the
optical constituents. As shown in the Chl-a model, 6 out of the 9
selected variables were related to coastal aerosol, blue and green
bands and blue-green ratio, which represented the theoretical
behavior of Chl-a that absorbs blue lights and reflects green lights
(Soriano-González et al., 2019). The properties were more
evident for dinoflagellates and diatoms (Sadeghi et al., 2012),
the two major phytoplankton classes present in Hong Kong
waters (Cheung et al., 2021). The incorporation of band 8A also
matched the observation by other studies that NIR bands could
be helpful to separate Chl-a from other constituents in turbid
coastal waters (Hafeez et al., 2019; Ouma et al., 2020).

For the SS and turbidity models, the selected variables were
dominated by those generated from green, red and red-edge
bands, their square and cubic values, as well as their line-heights
against neighboring bands. Similarly, refractive index and grain
size of SS in Hong Kong waters were found to be sensitive to the
green and red wavelengths in previous work (Nazeer and Nichol,
2015). Red-edge wavelength also becomes influential when
inorganic SS concentrations increase in turbid waters (Topp
et al., 2020). For turbidity, algorithms involving the red band are
generally adopted owing to the scattering of particulates
Frontiers in Marine Science | www.frontiersin.org 10
(Matthews, 2011). In this study, it was interesting that 7 out of
8–11 variables appeared in both SS and turbidity models, and
they used small numbers of neurons (2–5) in the single hidden
layer. This provided another piece of evidence that these two
water quality parameters are closely related to each other and
have relatively simple relationships with spectral variables.
Performances of Chl-a, SS and
Turbidity Models
Figure 3 compares the predicted and observed Chl-a, SS and
turbidity values using both the training and validation datasets.
While the ANN models performed well in the training phase as
shown in the correspondence between the fitted lines and the
one-to-one lines, overfitting was also not a problem in the
models since they generated similar performances when
applied to the independent validation sets. Considering the
validation performance, for Chl-a, the ANN model was able to
accurately predict a data point with high observed value, which
likely represents an occasional algal bloom event. Further
analysis using Spearman’s correlation showed that the
correspondence between the predicted and observed values was
also satisfactory without the effect of this outlier point. However,
the model tended to slightly underestimate the Chl-a
concentrations when the observed values were below 4 mg/L.
For SS, while the fitted line corresponds well with the one-to-one
line, Pearson’s correlation coefficient was lower (r = 0.653),
A B

D E F

C

FIGURE 3 | Scatterplots comparing the predicted and observed values of chlorophyll-a, suspended solids and turbidity using the training set (A–C) and validation
set (D–F). The gray dotted lines indicate the one-to-one relationships and the red lines indicate the best-fitting lines. Note that the x- and y-axes are in logarithmic
scale, while the best-fitting lines and all statistics are calculated based on the untransformed scale. Besides Pearson’s correlation coefficient (r) and root-mean-
square error (RMSE), Spearman’s rank correlation (r) is also computed to provide a measure with lower sensitivity to outliers in the dataset.
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probably due to the larger spread of values around the fitted line
(RMSE = 4.513 mg/L, SMAPE = 76.4%). In contrast to Chl-a, the
model tended to overestimate the SS values when the actual
values were low (< 4 mg/L) and this pattern was visible in both
the training and validation datasets. For turbidity, the agreement
was also strong in terms of correlation coefficient (r = 0.701) and
other error metrics (RMSE = 1.954 NTU, SMAPE = 40.3%).
Nonetheless, when the observed values were large,
overestimation could be an issue found from the scatterplot.

The prediction errors for Chl-a found in this study (55.1%)
exceeded the desired relative error of 35% set by NASA’s Ocean
Biology and Biogeochemistry Program (McCain et al., 2006).
However, the standard was specified for open ocean dominated
by phytoplankton. Coastal and estuarine waters are commonly
referred to as Case-2 waters (Morel and Prieur, 1977), with
optical properties significantly influenced by various constituents
including yellow substance and suspended materials, thus were
expected to be challenging to develop algorithms for predicting
water quality parameters.

To serve as a benchmark of the performance, modeling results
were extracted from previous works on Hong Kong water and
the accuracies were found to vary for different parameters
(Table 6). For Chl-a, the results were comparable and had
similar levels of correlations and errors. While the prediction
of SS seemed to be less satisfactory than those obtained from
previous methods, the prediction of turbidity produced lower
correlation but lower errors as well. This comparison indicated
that, in addition to the modeling algorithm, the selection of input
data and pre-processing steps were more influential on
the results.

In view of this, the findings presented in this study were
encouraging considering the following aspects: (i) This study
represented an operational context that extracted all available
images acquired by Sentinel-2A/B satellites, matched with
station-based measurement and applied a fully automatic
analysis workflow with the capability of GEE; (ii) While linear
regression analysis is more popular in GEE due to easy
Frontiers in Marine Science | www.frontiersin.org 11
implementation (Tamiminia et al., 2020), the use of ANN
algorithm through this platform enabled manipulation of non-
linear relationships (Forkuor et al., 2017) and rapid estimation of
water quality parameters when new images become available;
(iii) This study was more robust than previous works in the same
study area, due to the larger number of observations and
extensive use of images from different years and months,
facilitating the applicability over the spatially and temporally
variable water conditions; (iv) Besides the commonly used RMSE
and MAE, this study also reported relative errors which enable
meaningful comparisons across models developed in different
water regions (Shcherbakov et al., 2013).

Visualization of Model Performance Using
Time-Series Charts
The developed models were applied to all Sentinel-2 images to
produce spatial distribution maps of Chl-a, SS and turbidity from
2015 to 2021. To visualize the temporal patterns of these water
quality parameters, time-series charts were generated by plotting
the average values estimated from each remotely-sensed image
against time (Figure 4). The line graph illustrated that the shapes
and magnitudes of remote sensing estimates generally matched
well with station-based measurements. For example, the
temporal changes of Chl-a concentration showed higher values
commonly found during summer, which were revealed from
both remote sensing estimation and station-based measurement.
From the line graph, some of the peaks found from station-based
measurements could also be obtained using remote sensing
estimation, showing that the method proposed in this study
could capture some of the extreme events as well. It should also
be noted that differences in sampling locations and frequencies of
the two measurement methods could affect their correspondence
presented in the graph.

As shown in Figure 4, the temporal range in this study was
separated into model development (2015–2019), validation
(2020) and prediction (2021) according to the developed
methodology. Historical observations are valuable in time-
TABLE 6 | Comparison of modeling results with other studies focusing on Hong Kong waters.

Parameter Study Year of
analysis

Image data No. of
scenes

Method Sample
size

r RMSE MAE Others

Chl-a (mg/
L)

Hafeez et al. (2019) 1999–2015 Landsat-5, 7, 8 38 Artificial neural
network (ANN)

120 0.91 2.70 1.13 –

Hafeez and Wong
(2019)

2017 Sentinel-2 15 C2RCC-Nets 45 0.84 2.10 – –

This study 2015–2021 Sentinel-2 120 ANN 352 0.90 2.18 1.40 –

SS (mg/L) Tian et al. (2014) 2012 HJ-1 8 Regression (red-
green ratio)

11 0.90 – – Mean relative error:
12.78%

Nazeer and Nichol.
(2015)

2000–2012 Landsat-5, 7,
HJ-1

57 Regression (red,
green)

200 0.85 2.60 2.04 –

Hafeez et al. (2019) 1999–2015 Landsat-5, 7, 8 38 ANN 120 0.92 3.30 1.83 –

Hafeez and Wong
(2019)

2017 Sentinel-2 15 C2RCC-Nets 45 0.85 2.40 – –

This study 2015–2021 Sentinel-2 120 ANN 352 0.65 4.51 3.62 –

Turbidity
(NTU)

Hafeez et al. (2019) 1999–2015 Landsat-5, 7, 8 38 ANN 120 0.85 3.10 2.61 –

This study 2015–2021 Sentinel-2 120 ANN 352 0.70 1.95 1.61 –
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series to estimate the model coefficients, followed by predicting
new values and identifying abnormal changes in the monitoring
period (Hamunyela et al., 2020; Elhag et al., 2021). This was also
demonstrated in this study and water qualities in later years were
estimated using models calibrated from previous data. Since the
data release of station-based measurement by the Hong Kong
government usually has a time lag of more than half a year,
continuous monitoring of the latest year (2021 in this study)
could be complemented by the remote sensing approach.
Spatial and Temporal Variations
of Chl-a, SS and Turbidity Across
Hong Kong Waters
The spatial and seasonal variabilities in the whole study area are
also visualized through high-resolution maps (Figure 5). In all
seasons, it showed higher SS loads and turbidity in the western
part compared to the eastern waters, mainly due to the
contrasting effects of Pearl River discharge from the west and
oceanic currents from the east (Lai et al., 2016). High values
particularly during spring and summer, as a consequence of the
southwest monsoon and strong riverine inputs (Environmental
Protection Department, 2021), were also evidenced in the maps.
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The high Chl-a concentrations in the shallow waters of Deep Bay
were consistent with those revealed in Hafeez et al. (2019) (8.0–
15.6 mg/L), owing to domestic wastewater and agricultural runoff
(Zhou et al., 2007).

In Victoria Harbour, while moderate values of Chl-a
(7.0–10.0 mg/L) were reported in Hafeez et al. (2019),
this study tended to observe lower concentrations on average
(2.0–4.0 mg/L). This was probably because the present study
utilized a larger number of images and Chl-a concentration tends
to remain at low levels with high flushing rates most of the time
throughout the year (Xu et al., 2010). Tolo Harbour, a land-
locked inlet located in northeastern Hong Kong, was suggested to
have highly eutrophic water and regular algal blooms due to
restricted water exchange, low tidal flushing and persistent
stratification (Lai et al., 2016). The maps produced in this
study provided further observations that high Chl-a
concentrations in that area tended to occur more frequently in
autumn and winter. This seasonal variation matched with the
findings of a recent forecasting study by Deng et al. (2022) and
could be related to the downwelling process and concentration of
algal biomass in that period (Xu et al., 2010). In the southern
waters, slightly higher Chl-a concentrations were observed in
summer from the produced maps, which also agrees with the
A

B

C

FIGURE 4 | Time-series line chart of (A) chlorophyll-a concentration, (B) suspended solids, and (C) turbidity in Hong Kong water from 2015 to 2021, obtained from
station-based measurement (blue lines) and remote sensing estimation (orange lines) respectively. For station-based measurement, values are calculated as the
mean value of all measurements in all locations taken in the same month. For remote sensing estimations, values are calculated as the mean of all estimated values
at the locations of monitoring stations in each image. Note that the two measurement methods also differ in sampling locations (e.g. affected by cloud cover and
water pixels) and frequencies (e.g. image acquisition dates).
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observations by Zhou et al. (2012) that these areas represent the
estuarine coastal frontal region and favor the development of
algal blooms in July and August.

Besides seasonal trends, the robustness of the developed
model was further demonstrated when applied on a particular
occasion. During a red tide incident that occurred in Victoria
Harbour from 13th to 16th July 2020 caused by phytoplankton
species Amphora spp. (Agriculture, Fisheries and Conservation
Department, 2021), the Chl-a concentration map produced from
the Sentinel-2 image acquired on 13th Jul 2020 successfully
revealed high values in that location (Figure 6). The estimated
Chl-a values in the nearby areas were also consistent with
station-based measurements within the same period. While
moderate to high concentrations were found in Victoria
Harbour and North Western Water Control Zones, the map
was able to present low concentrations, on the contrary, in Port
Shelter at the same period. These results again confirmed the
prediction ability in the monitoring period using models
calibrated from historical data, where potential anomalies in
water conditions including algal bloom events and their spatial
variabilities could be captured.

Customized GEE Application
Finally, using functions available in GEE, an online application
was created (https://khoyinivan.users.earthengine.app/view/
Frontiers in Marine Science | www.frontiersin.org 13
marine-water-quality-hk) to allow users to explore and analyze
water quality trends with a simple web interface (Figure 7).
Besides zooming and panning the map to show different
locations, users can interact with the applications in several
ways, including displaying the concentration map of water
quality parameters for a specific date and plotting time-series
charts of parameters for a specific location.
Achievements and Limitations of
This Study
The online application, together with the analysis workflow,
takes advantage of the cloud computing GEE infrastructure
and the readily available Sentinel-2 satellite images. In this
study, the comprehensive archive of Sentinel-2 dataset was
seamlessly searched and processed in the cloud platform,
without the need for downloading image data as in the
conventional processing approach (Kumar and Mutanga, 2018;
Li et al., 2021). The method is cost-effective as the Sentinel-2
data, GEE and Python software are open-source and freely
available. Sentinel-2 will revisit the study area every five days
with the two-satellite constellation and become available in GEE
(Rudiyanto et al., 2019). Since the mapping processes can also be
implemented automatically with the algorithm coded in GEE
and Python, this enables monitoring from continuously updated
FIGURE 5 | Spatial distribution maps of chlorophyll-a concentration, suspended solids and turbidity in Hong Kong water in the four seasons, calculated as the
mean value of all remote sensing-based estimations within each meteorological season in 2015–2021. (DB, Deep Bay; VH, Victoria Harbour; TH, Tolo Harbour;
SW, Southern Water).
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FIGURE 6 | (A) True color composite of Sentinel-2 image acquired on 13th July 2020 and (B) the estimated chlorophyll-a (Chl-a) concentration map, overlaid with in
situ data measured in the monitoring stations.
FIGURE 7 | A screenshot of the developed online application in Google Earth Engine showing the water quality map for a specific date and time-series charts for a
specific location.
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remote sensing datasets in a timely manner and generates
actionable information for decision-making (Markert et al.,
2018; Page et al., 2019). Although the obtained levels of
accuracies were below the desired standard, the end-to-end
cloud computing workflow demonstrated in this study should
be investigated considering the cost and computational efficiency
for rapid information delivery.

The developed methodology and GEE scripts can further be
extended to larger scales to increase usability and transferability
(Kumar and Mutanga, 2018). It was anticipated that integrated
use of remote sensing, in situ measurements and computer
modeling can lead to an enhanced knowledge of the water
quality (Gholizadeh et al., 2016). Still, the remote sensing tool
would require support from existing in situ monitoring
infrastructure and established laboratories (Pompêo et al.,
2021). Hence, the routine measurements of biophysical and
chemical properties of water by EPD of the Hong Kong
government provide great opportunities for experimentation in
this study.

Nevertheless, the remote sensing approach is limited by
satellite repeat cycles and cloud coverage. Sent et al. (2021)
described that in their work, only 55% of the total images
available over the 2-year study period were cloud-free and in
good atmospheric conditions. The percentage was even smaller
(31.7%, 120 out of 379 images) in this study (Table 3), due to the
subtropical oceanic monsoon climate in Hong Kong (Tian et al.,
2014). Moreover, the image availability was non-homogeneous
throughout the year with fewer images available in the wet
season (spring and summer), making routine water monitoring
even more challenging. Future work can explore the combined
use with other satellite missions, such as Landsat satellites (Page
et al., 2019), to enhance the observing capability.

Another limitation in the model development process in this
study was the lack of in situ reflectance data. The calibration and
evaluation of the algorithms were performed solely using
satellite-based reflectance and station-based water quality
measurements, which inhibited the understanding of the
atmospheric influence and the true relationships between
water-leaving reflectance and water quality parameters (Yoon
et al., 2019). As illustrated in Kuhn et al. (2019), 70–90% of the
signals in water pixels came from atmospheric effects and the
choice of correction methods could bias parameter retrieval
accuracies, posing challenges to land observation satellites like
Sentinel-2. Adjacency to land areas further affected the optical
complexity of coastal waters and hindered the use of algorithms
developed for open oceans (Moses et al., 2017), as evidenced by
the high NIR and SWIR reflectance of water pixels in this study.
Many scholars have performed intercomparison of various
atmospheric correction and bio-optical algorithms (Gernez
et al., 2017; Poddar et al., 2019; Soomets et al., 2020; Sent
et al., 2021), using both in situ and satellite measurements, to
assess the retrieval performances in specific regional waters.
Future work can focus on the identification of optimal
algorithms for predicting water quality parameters, including
Frontiers in Marine Science | www.frontiersin.org 15
both optically active and inactive parameters, that can be
incorporated into GEE applications for operational monitoring.
CONCLUSION

Using coastal waters of Hong Kong as the study area, this study
utilized GEE to (i) query and pre-process all Sentinel-2
observations that coincided with in situ measurements; (ii)
extract the spectra to develop empirical models for different
water quality parameters using ANN; and (iii) present the results
using spatial distribution maps, time-series charts and an online
application. Together these features enabled novice users to
discover, analyze and visualize spatial and temporal patterns
from remotely-sensed images. This study demonstrated that the
integration of Sentinel-2 satellite images, in situ measurements
and the GEE cloud computing platform can offer new
opportunities for providing cost-effective and timely prediction
of water quality parameters. With multiple water quality
parameters analyzed in this study, the mapping results could
help comprehensive understanding the dynamics of water
qualities within the study area in multiple years, raise
awareness of environmental changes in relation to human
activities and promote sound management policies. When
longer records of both water quality measurements and freely
available earth observation data become available in the future,
more integrated and robust predictive models can be developed
to continue to contribute towards an effective water resource
monitoring framework.
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