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Acoustic surveys are the standard approach for evaluating many fish stocks around the 
world. The analysis of such survey data requires the accurate echo-classification of target 
species. This classification is often challenging as many organisms exhibit overlapping 
characteristics in terms of shape, acoustic amplitude, and behavior. In this study, a random 
forest approach was used to distinguish juvenile Pacific salmon (Oncorhynchus spp) 
from Pacific herring (Clupea pallasii) aggregations using the acoustic and morphological 
characteristics of their echo traces. The acoustic data was collected with an autonomous, 
multi-frequency echosounder deployed on the seafloor in the Discovery Islands, British 
Columbia from May to September 2015. The model was able to differentiate juvenile 
Pacific salmon from Pacific herring with a 98% accuracy. School depth and school mean 
volume backscattering strength were the most important predictors in determining the 
school classification. This study supports other publications suggesting that random 
forests represent a promising approach to acoustic target classification in fisheries science.
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INTRODUCTION

Acoustic surveys are commonly used to monitor fish and zooplankton in many parts of the world. 
These surveys can be conducted from a moving vessel (Johannesson and Mitson, 1983; Simmonds 
et al., 1991; Simmonds and MacLennan, 2005; Parker-Stetter et al., 2009) or from fixed platforms 
(Thomson and Allen, 2000; Kaartvedt et al., 2009; Sato et al., 2013). Acoustic surveys are an integral 
part of a number of fish stock management programs. Examples in Canada include the Pacific Hake 
joint stock assessment (Edwards et al., 2022), the Atlantic herring stock assessment in the northern 
Gulf of St. Lawrence (Chamberland et al., 2022), and the capelin stock assessment in Newfoundland 
(Bourne et al., 2021). In 2015, a project was initiated to monitor juvenile Pacific salmon during their 
northward out-migration to reach the Pacific Ocean from the Strait of Georgia through the Discovery 

doi: 10.3389/fmars.2022.857645

ORIGINAL RESEARCH
published: 11 July 2022

http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.857645&domain=pdf&date_stamp=2022-07-11
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#articles
mailto:shani.rousseau@dfo-mpo.gc.ca
https://doi.org/10.3389/fmars.2022.857645
https://www.frontiersin.org/articles/10.3389/fmars.2022.857645/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.857645/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.857645/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.857645/full
https://doi.org/10.3389/fmars.2022.857645
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
http://creativecommons.org/licenses/by/4.0/


Rousseau et al. Salmon and Herring  Acoustic Classification

2Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 857645

Islands and Johnstone Strait. Several fixed, upward looking 
echosounders were deployed in small bays in order to track 
the migration timing and relative abundance of juvenile Pacific 
salmon through the area (Rousseau et al., 2018). The Discovery 
Islands archipelago has been characterized as a high nutrient 
low chlorophyll (HNLC) region limited by light availability, and 
has been suggested to constitute a bottleneck region for juvenile 
Pacific salmon due to reduced food availability (Mckinnell et al., 
2014). Pacific herring is also common in the area (Haegele et al., 
2005).

The study involved the recording of several months of acoustic 
data each year, and a need emerged for replicable, automated 
methods of data processing and classification. The identification 
and classification of fish species is an ever-existing challenge 
in fisheries acoustics research. In many cases, acoustic targets 
are classified through “expert scrutiny”, based on information 
gathered from various means of validation sampling such as 
pelagic trawl, seine, and underwater video cameras, as well as 
prior knowledge on the frequency response, schooling behavior 
and typical habitat of each species. In addition to being highly 
time-consuming, this method involves a significant level of 
subjectivity as it relies heavily on the analyst’s knowledge and 
experience, and each validation method is subject to its own bias 
(McClathie et al., 2000; Fernandes, 2009; Boldt et al., 2019).

In recent years, efforts have been undertaken to automate part 
or all of the acoustic classification process in order to improve 
accuracy and replicability. Multi-frequency analysis can provide 
a way to increase objectivity and has been used successfully 
to differentiate krill from fish (Watkins and Brierley, 2002; De 
Robertis et  al., 2010). However, when applied to more similar 
species, such as fish with a swim bladder or similar size classes of 
zooplankton, the success of this technique is often limited by the 
overlap in their frequency-response (Lavery et al., 2007; Gauthier 
et al., 2014; Sato et al., 2015). Several attempts have been made 
to improve the classification process by the introduction of 
multiple predictors, such as combining acoustic response with 
morphological characteristics of the aggregations using linear 
statistical models (Lawson et  al., 2001; Woodd-Walker et  al., 
2003), and obtained promising results. More recently, several 
studies have explored machine learning methods such as neural 
networks and random forests as a way to integrate acoustic 
frequency response and school shape characteristics to automate 
and improve classification (Cabreira et  al., 2009; Fallon et  al., 
2016; Brautaset et al., 2020; Proud et al., 2020).

In this study, we used acoustic data from one of the 
autonomous echosounders deployed in the Discovery Islands, 
British Columbia to evaluate the use of a random forest classifier 
to distinguish juvenile Pacific salmon (Oncorhynchus spp) 
from Pacific herring (Clupea pallasii) aggregations using their 
acoustic response and the morphological characteristics of their 
echo traces. We developed a training dataset using acoustic 
data classified through expert scrutiny informed by net-based 
fish sampling from a purse seining program, a high-resolution 
imaging sonar, and prior knowledge from extensive herring 
survey monitoring programs in the Strait of Georgia and the west 
coast of Vancouver Island.

MATERIALS AND METHODS

Data Sources
As part of a larger study aiming to better understand the 
early marine survival of juvenile Pacific salmon in the coastal 
waters of British Columbia, several autonomous, single-beam 
echosounders (Acoustic Zooplankton and Fish Profiler (AZFP), 
ASL Environmental Sciences) were deployed in the Discovery 
Islands between 2015 and 2020. The instruments were deployed 
on the seafloor looking upward. This enabled us to continuously 
monitor the relative abundance, distribution, and behavior of 
juvenile salmon through the area (Rousseau et al., 2018). In the 
lower mainland of British Columbia, a large number of rivers 
and streams, which support wild salmon populations, enter the 
Strait of Georgia, and the majority of juvenile salmon from these 
systems reach the Pacific Ocean by migrating north through 
the Discovery Islands and Johnstone Strait (Tucker et al., 2009; 
Beacham et al., 2014), a region located between the eastern side 
of central Vancouver Island and the British Columbia mainland 
(Figure  1). These areas are characterized by narrow restricted 
channels that have very high current velocities and often high 
wind conditions, and this often restricts the use of net-based 
surveys for juvenile salmon.

Data Collection
For the purposes of this study, we used data collected by one 
autonomous echosounder deployed in Okisollo Channel from May 
to September 2015. Okisollo Channel is a sheltered body of water 
separating the islands of Sonora and Quadra in the Discovery Islands, 
British Columbia (Figure 1). This site was the most accessible among 
all sites sampled, and in 2015 we were able to obtain bi-weekly fishing 
data and conduct bi-weekly high-resolution sonar surveys of the area 
during the expected migration window of juvenile salmon (Neville 
et al., 2016; Freshwater et al., 2019) to provide groudtruthing. The 
site was located in a small bay approximately 170 m from shore, at a 
bottom depth of 55 m. The echosounder operated at 4 frequencies 
(67, 125, 200, 455 kHz); however only the three lower frequencies 
were used in this study. The highest frequency (455 kHz) exhibited 
attenuation beyond our acceptable 10 dB signal to noise ratio at 
ranges greater than 30 meters. Each transducer was calibrated by 
ASL Environmental Sciences using a calibrated hydrophone and 
transmitter in a freshwater tank. Calibration checks using a 12.7 mm 
diameter tungsten-carbide sphere were carried out each year (before 
and after each deployment) to ensure that measured outputs were 
within 1 dB of the sphere’s theoretical value on or near axis.

A sampling interval of 3 s and a vertical sampling of 0.09  m 
were chosen as a compromise between data resolution, battery 
consumption and data storage space. A pulse duration of 500 µs 
was used at 67 kHz, and 300 µs was used for higher frequencies. A 
digitization rate of 64 kHz was used for all frequencies.

Monthly average sound speed (Mackenzie, 1981) and absorption 
coefficient (Francois and Garrison, 1982) were calculated from 
temperature and salinity profiles collected between May and July 
2015 (SBE-25 Sea-Bird Scientific). Monthly values for August and 
September were calculated from a linear interpolation of the May to 
July time series.
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Purse seine surveys were conducted twice a week from May 12 to 
July 15 in 2015 following the known presence of juvenile salmon in 
the area. Sampling was performed with a small mesh purse seine on 
a commercial seiner during slack and low flow tides (Neville et al., 
2016; Freshwater et al., 2019). The seine was equipped with a bunt 
of 7 mm mesh designed to retain juvenile salmon and other small 
pelagics. Purse seining was carried out close to the acoustic mooring 
site, often within 200 m distance and on a few occasions directly on 
top of the mooring. As the seine sampled the top 20 m of the water 
column, it is likely that Pacific herring, which is often found deeper 
in the water column during day time (Thompson et al., 2016), was 
under-sampled compared to juvenile Pacific salmon. All species 
captured by the purse seiner were counted and identified (Table 1). 
Oncorhynchus spp and Clupea pallasii were the only fish species 
caught by the purse seine in the study area.

Additional information on Pacific herring acoustic signature and 
school characteristics were obtained from midwater trawl-verified 
echograms collected on mobile acoustic surveys off coastal British 

Columbia. These data were collected from the CCGS W.E. Ricker 
operating a hull-mounted Simrad EK60 echosounder at 38 and 120 
kHz (see Boldt et al., 2016 and Gauthier et al., 2016 for a general 
description of the main surveys). These surveys confirmed that 
Pacific herring was found at depth during the day and was identified 
as high-density and vertically elongated schools in the acoustic 
echograms. Boldt et  al. (2019) provide information regarding the 
challenges of target validation in Pacific herring and other forage 
fish acoustic surveys.

Small mobile surveys, using a vessel-mounted, side-
looking imaging-sonar (Sound Metrics DIDSON), were also 
conducted in the area of the mooring and helped inform 
juvenile salmon target classification. The beam of the 
DIDSON was oriented horizontally from the starboard side 
of the vessel, with a detection window range of 5 to 10 meters. 
Surveys were conducted twice a week between June 11 and 
July 7 2015. Aggregations of juvenile salmon forming near the 
surface and detected by the DIDSON were visually confirmed 
by the vessel operator. The DIDSON data revealed that 
juvenile salmon aggregated rather loosely near the surface at 
our sampling site, in contrast to the denser, deeper schools 
typical of herring (Trumble and Humphreys, 1985).

Acoustic Data Analysis
The acoustic analysis was performed with Echoview (version 8.0) 
(Echoview Software Pty Ltd 2015) and the R software for statistical 
computing (version 3.5.3) (R Core Team, 2019) with RStudio 
(version 1.1.463) (RStudio Team, 2018). Echograms showing 
the main steps of the data analysis process are displayed in 

FIGURE 1 |   Location of AZFP mooring (black star) in the Discovery Islands, between Vancouver Island and the mainland of British Columbia

TABLE 1 | Total number of juvenile Pacific salmon and Pacific herring individuals 
caught by the purse seiner in Okisollo Channel. 

Species Catch

Chinook Salmon 2
Chum Salmon 2555
Coho Salmon 47
Pink Salmon 27
Sockeye Salmon 1761
Pacifi Herring 395
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Figure  2. Background noise was removed from the acoustic 
data by linear subtraction using the Background Noise 
Removal algorithm implemented in Echoview (De Robertis 
and Higginbotton, 2007). Thresholds for maximum estimated 
noise were -125 dB at all three operational frequencies and were 
determined empirically by estimating the volume backscattering 
strength in the background signal where no biological targets 
were detected. A signal-to-noise ratio of 10 dB specified the 
acceptable limit for a signal to be deemed distinguishable from 
noise.

A multi-frequency method developed by Fernandes (2009) 
was used to remove data outside of fish schools for the purpose 
of improving the single-frequency SHAPES algorithm (Coetzee, 
2000) implemented in Echoview for school detection (Barange, 
1994). This method proved efficient at removing all non-fish 
signals, as well as several bands of noise caused by side lobes and 
multiple surface reverberations present in the 67 kHz echograms 
(see Rousseau et al., 2018 for details). Acoustic data at 67, 125 and 
200 kHz were thresholded to -70 dB to remove non-fish echoes 
and summed across all frequencies. The resulting combined 
virtual echograms were thresholded empirically to -180 dB. A 
5x5 median convolution kernel was applied to remove single 
targets and noise spikes, followed by a 7x7 dilation convolution 
kernel to compensate for any loss of data within schools caused 
by the previous filtering steps. Finally, a mask was applied 
onto the raw data to all acoustic signal excluded through the  
previous steps.

Fish schools were detected on the masked raw data thresholded 
at -70 dB. An imaginary GPS linear track of 1 knot (0.51  m/s) 

was generated to convert the time units into virtual distance, 
since Echoview required GPS input to apply the school detection 
algorithm. A minimum horizontal threshold corresponding to 29 
seconds and a minimum vertical threshold of 1 m were selected for 
fish school detection.

The depth of each school was determined by subtracting their 
mean range from the range of the acoustically detected surface. 
Schools were detected between sunrise and sunset hours only. 
At night, both juvenile salmon and herring lose their schooling 
behavior and tend to spread out in scattering layers, making it more 
difficult to distinguish the two species.

Schools were classified through expert scrutiny based on the 
groundtruth information gathered from the on-site imaging sonar 
and purse seine surveys, as well as information from trawl-verified 
Pacific herring schools along the coast of Vancouver Island. All 
salmon species were included in the same class, as their echoes and 
behavior are likely too similar to allow for an acoustic classification.

The difference in backscatter at all three frequencies (ΔMVBS) 
was calculated (in the logarithmic domain) for each school and used 
as predictor variables in the random forest. The transducers’ beam 
width at half power varied from 10° at 67 kHz to 8° and 9° at 125 
kHz and 200 kHz, respectively, resulting in a maximum diameter 
difference of approximately 2 meters at the surface. The relatively 
long period for school detection (29 seconds at a minimum) 
ensured that the school occupied the transducers’ beam footprint, 
and that the packing density (fish m-3) inside the two beams was 
comparable.

The following 23 variables were exported from Echoview 
for each school: mean Sv 67kHz (dB), mean Sv 125kHz (dB), mean 

FIGURE 2 | Steps of the acoustic data analysis: raw data at 67, 125 and 200 kHz, respectively (A–C) raw data after background noise has been removed and 
surface and near-field have been masked (D–F) sum of all three echograms and school detection (G) and school regions applied to echograms (H–J). The colorbar 
shows the volume backscattering strength (dB re 1 m). The colorbar on the right-hand side also applies to echograms (A–F), while echogram (G) shows a different 
scale. The vertical range represented in the echograms is approximately 50 meters. The echograms cover a period of 20 minutes on May 13 2015 (herring school), 
and a period of 30 minutes on May 19, 2015 (juvenile salmon schools)
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Sv 200kHz (dB), minimum Sv 67kHz (dB), maximum Sv 67kHz (dB), 
thickness (vertical extent) (m), perimeter (m), area (m2), 
skewness of Sv 67kHz distribution, kurtosis of Sv 67kHz distribution, 
coefficient of variation of Sv  67kHz distribution, horizontal 
roughness coefficient of the Sv 67kHz distribution (dB re 1 m2 m-3), 
3D volume (m3), area backscattering coefficient at 67 kHz (ABC, 
m2 m-2), mean distance from transducer (m), mean depth (m), 
number of samples, time interval (seconds), date, time of day,  
ΔMVBS67-125kHz (dB), ΔMVBS67-200kHz (dB), and ΔMVBS125-200kHz 
(dB). Unless otherwise stated, predictors derived from the acoustic 
data were calculated from the school’s signal at 67 kHz, because swim 
bladdered fish backscatter is slightly stronger at lower frequencies  
(Lavery et al., 2007).

Random Forest Model
Classification and regression trees are an increasingly popular 
statistical approach and have been used notably in ecology 
(De’ath and Fabricius, 2000), psychology and medical sciences 
(Strobl et al., 2009). This approach is particularly useful in cases 
where the data is complex, relationships non-linear, and the 
number of predictor variables is high (Breiman et  al., 1984). 
Random forest models, in particular, are easy to implement, 
with very little tuning required (Hastie et al., 2009). They are not 
affected by correlations and interactions between variables, and 
do not overfit (Breiman, 2001).

A random forest is a modification of bagging, where a 
collection of classification trees grown on bootstrap samples of 
observations, cast a vote on the most popular class. During the 
tree growing process, each node is split using a random subset 
(m) of predictor variables (p). The unpruned trees and ensemble 
averaging work to reduce bias (the difference between the true 
mean and the average of the estimate) and variance (the expected 
deviation around its mean) (Hastie et al., 2009).

The random forest analysis was implemented in the R 
software environment using the party package (Hothorn et al., 
2006; Strobl et al., 2007; Strobl et al., 2008). The cforest function 
in the party package uses conditional inference, an unbiased 
recursive partitioning algorithm, to select predictor variables 
through permutation-based significance tests. Strobl et al. (2007) 
demonstrate that this unbiased recursive partitioning method, 
applied by subsampling without replacement rather than 
bootstrapping, results in unbiased variable selection, in contrast 
to the CART algorithm implemented in the randomForest 
package (Liaw and Wiener, 2002).

The dataset was composed of 2659 acoustic regions (see 
Figure  2) representing 343 herring schools and 2316 juvenile 
salmon schools. Because such an imbalanced dataset can lead 
to poor prediction performance (Chen et  al., 2004), we chose 
to down sample the dominant class, as it was shown to lead to 
better performance than over-sampling (Drummond and Holte, 
2003). A training dataset was first created by randomly extracting 
80% of the schools from each class, and then extracting a 15% 
subsample from the juvenile salmon class. As a result, 80% of the 
data corresponding to herring was used in the training dataset, in 
contrast to 12% for the juvenile salmon schools. The remaining 

20% of data from each class was used for validation of the random 
forest model.

The 23 variables initially selected were evaluated for 
collinearity to eliminate redundancy. Random forests do 
not require that all variables be non-correlated; however, 
correlated variables may make the importance order of each 
variable unclear (Breiman, 2001). The following statistics were 
conducted to verify collinearity: partial correlation (Whittaker, 
1990), collinearity in a linear model (Chambers et  al., 1992), 
and the variance inflation factor (Naimi et  al., 2014). As such, 
the following 13 non-correlated predictors were subsequently 
retained for the analyses (Table 2): mean Sv 67kHz, mean Sv 125kHz, 
minimum Sv 67kHz, ΔMVBS67-125kHz and ΔMVBS67-200kHz, thickness, 
area, kurtosis, coefficient of variation, mean depth, time interval, 
date and time of day.

Several parameters can be tuned to optimize the random forest 
model. In practice, values should be selected as to minimize the 
out-of-bag error estimate (oob error). The oob error is a means 
to estimate the accuracy of the model (Liaw and Wiener, 2002; 
Hastie et al., 2009). Its value is obtained by dividing the number 
of wrongful classifications by the total number of samples. The 
oob error becomes almost identical to a K-fold cross-validation 
as bootstrap samples increase (Hastie et al., 2009). For node size, 
Hastie et al. (2009) recommend a value of 1, the minimum size of 
the terminal nodes of the forest. Increasing this number causes 
smaller trees to be grown. The choice of the number of trees to 
generate (ntree) should minimize the out-of-bag error estimate 
(oob error); however, a larger number of trees is preferable to 
increase the accuracy of variable importance (Breiman, 2002). 
The variable importance describes the ranked importance of each 
variable in improving classification accuracy. For classification, 
the default value for the number of random subsets m to be 
selected at each node is √p, but it should be chosen in order 
to minimize the oob error. Increasing m will decrease bias but 
increase variance (Hastie et  al., 2009). In situations where few 
variables are relevant in the prediction process, a very small m 
may result in a decrease in prediction accuracy, because many 

TABLE 2 | Variables included in each random forest model.

Variable Run 1  
(All)

Run 2 
 (Five most  
important)

Run 3  
(Two most 
 important)

Run 4  
(Morpho-metric)

Run 5  
(Acoustic)

Mean Sv67kHz (dB) • • •   • 

Mean Sv125kHz (dB) • •     • 
Minimum Sv67kHz (dB) •       • 
ΔMVBS67-125kHz (dB) •       • 
ΔMVBS67-200kHz (dB) •       • 
Thickness (m) •     •  
Area (m2) •     •  
Kurtosis •        
Coefficient of  
variation

• •      

Depth (m) • • •    
Time interval (s) •     •  
Time of day •        
Date • •      
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of the trees being built will not incorporate any of the relevant 
variables (Díaz-Uriarte and Alvarez de Andrés, 2006).

Here, a m value of 2 predictors per splits was selected as it 
minimized the oob error. For the number of trees, the oob error 
was computed for ntree up to 2000. The oob error decreased 
rapidly until it reached a minimum around ntree = 50. It reached 
stability at ~ 1250 trees. To ensure the accuracy of variables 
importance and the stability of the model, we chose a ntree value 
of 1500, as it did not increase computing time significantly.

Variable importance was measured using the permutation 
accuracy importance method. This method as well as several 
alternatives are discussed in Strobl et  al. (2007, 2008; 2009). 
The permutation accuracy importance looks at the difference 
in accuracy before and after permuting each predictor variable 
to assess the importance of each variable in predicting the 
classification. This method allows for an unbiased measure of 
variable importance compared to other methods such as the 
Mean Decrease in Accuracy and the Gini Index, in particular in 
cases where missing values are present, when predictor variables 
vary in their scale of measurement or their number of categories, 
and when some of the predictor variables are correlated.

We evaluated model performance with three different metrics: 
accuracy (K = 1 – oob), true skill statistic (TSS = Sensitivity + 
Specificity - 1, Allouche et al., 2006) and area under the receiver 
operating characteristic (ROC) curve (hereby named AUC), 
which represents the true positive rate (TPR, or sensitivity) 
plotted against the false positive rate (FPR, 1 – specificity) over 
a continuum of thresholds (Fielding and Bell, 1997; Kuhn and 
Johnson, 2013). Accuracy is the most direct way to evaluate 
the model; however, ROC curves and TSS are insensitive to 
class imbalance (Allouche et  al., 2006; Kuhn and Johnson, 
2013). Allouche et  al. (2006) show that TSS is correlated with 
AUC, as they are both derived from sensitivity and specificity. 
Nevertheless, we present and discuss both metrics here. For 
the purpose of specificity and sensitivity calculations, juvenile 
salmon schools were selected as the primary class (positives), 
while herring schools were selected as the secondary class 
(negatives).

RESULTS

When including all non-correlated variables, the accuracy 
measures on the validation dataset were 98.1, 97.8 and 98.9% 
for K, TSS and AUC, respectively (Table 3). Table 4 shows the 
confusion matrix and the oob error for the training and validation 
datasets. Mean depth was the most important variable, followed 
by mean Sv 67kHz and date. Coefficient of variation, mean Sv 125kHz, 
ΔMVBS67-200kHz, ΔMVBS67-125kHz and thickness followed, but their 
order varied slightly depending on the random selection of the  
training dataset. Minimum Sv 67kHz, area, time interval, time of 
day and kurtosis were the least important predictors (Figure 3).

When conducting the random forest on the five most 
important variables (Table 5), K increased slightly to 98.3%, while 
TSS and AUC both decreased (93.0 and 96.5%, respectively). The 
variable importance remained unchanged, except for a swap 
between the mean Sv 125kHz and coefficient of variation variables. 

Kuhn and Johnson (2013) show that using non-informative 
predictors in random forests may lower performance. However, 
the decrease in the TSS and AUC values, originating from a low 
(0.94) specificity in the validation dataset, suggests that in this 
case, keeping all predictors did improve performance.

Using only the two most important variables, mean Sv 67kHz and 
mean depth, all metrics remained close to the previous values 
(97.9, 93.8 and 96.9% for K, TSS and AUC, respectively). Using 
only the main morphometric variables (thickness, time interval 
and area) decreased the performance metrics to 89.2, 68.8 and 
84.4% for K, TSS and AUC, respectively. Using only the main 
acoustic variables (mean Sv 67kHz, mean Sv 125kHz, ΔMVBS67-125kHz, 
ΔMVBS67-200kHz and minimum Sv 67kHz) resulted in values of 92.6, 
90.3 and 95.1% for K, TSS and AUC, respectively.

TSS consistently provided the lowest performance metric, due 
to lower specificity values in the validation dataset. TSS decreased 
by 4.8 and 4% when removing all but five and two predictors, 
respectively. Run 5, which used only acoustic variables, presented 
the lowest sensitivity-to-specificity ratio, meaning that the model 
performed better at classifying herring than juvenile salmon in 
this case. AUC values were higher than TSS but lead to similar 
conclusions in model performance.

DISCUSSION

Variable Importance
School depth and mean Sv67kHz were the dominant predictors 
to classify juvenile salmon and herring schools. Many other 
studies report the importance of school depth in classification 
accuracy (Lawson et al., 2001; Cabreira et al., 2009; D’Elia et al., 
2014). Juvenile salmon were commonly found nearer the surface, 
whereas herring schools were most often found at mid and deep 
water during day time. The acoustic signal of a herring school 
is generally strong, as they form tight schools and swim in a 
synchronized fashion (Blaxter, 1985). In contrast, our DIDSON 
surveys showed that juvenile salmon, although exhibiting strong 
directional swimming following a disturbance (i.e. avoidance 
reaction), generally formed loose aggregations and were less 
polarized, resulting in a generally lower mean Sv 67kHz and mean 
Sv 125kHz.

During this study, a temporal mismatch was observed 
between juvenile salmon and herring in the area (Figure  4). 
Juvenile salmon migrated through the area mainly between 
May and July, while herring, although present throughout the 
summer, were found in larger numbers in August and September. 
This explains the importance of the date predictor. Including 

TABLE 3 | Performance metrics of the validation dataset for each random forest model.

Run Accuracy (%) TSS (%) AUC (%) Sensitivity Specificity

1 98.1 97.8 98.9 0.98 1.00

2 98.3 93.0 96.5 0.99 0.94

3 97.9 93.8 96.9 0.98 0.96

4 89.2 68.8 84.4 0.91 0.78

5 92.6 90.3 95.1 0.92 0.99
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data from several years may help improve the transferability 
of the model if the date variable is included, since the timing 
of juvenile salmon migration and the presence of herring in 
the area may change from one year to the next. The inclusion 
of environmental data, such as temperature, may also help 
improve classification, since it can influence migration timing 
(Corten, 2001; Sykes et al., 2009).

The model results suggest that mean Sv is a better classifier 
than ΔMVBS in the case of juvenile salmon and herring 
schools. Mean Sv 67kHz and mean Sv 125kHz ranked second and fifth 
in prediction importance, respectively, while ΔMVBS67-125kHz 
and ΔMVBS67-200kHz ranked seventh and sixth, respectively. 
Indeed, the probability density functions of juvenile salmon 
and herring schools ΔMVBS show a greater overlap than that 
of their mean Sv (Figure 5).

The importance of the coefficient of variation reflects the 
schooling behavior of each species. The acoustic signal of 

herring schools was stronger at the center, possibly reflecting 
a higher fish density compared to along the edges, although 
this could be the result of beam volume averaging. In 
contrast, the acoustic signature of juvenile salmon schools was 
generally weaker and more uniform, following our findings 
from the DIDSON surveys that individuals in juvenile salmon 
aggregations swam rather loosely and did not exhibit strongly 
polarized swimming, except during escaping events.

Our results suggest that using all 13 non-correlated 
predictors selected for this study leads to the best model 
performance, mostly due to the higher error rates in the 
classification of the herring class when applying the model 
to the validation dataset, when variables are removed. Mean 
depth and mean Sv67kHz were the most important variables 
in the classification process, and were sufficient on their 
own to provide a model accuracy greater than 90% with all 
performance metrics.

TABLE 4 | Confusion matrix for random forest generated using training dataset of 555 and validation dataset of 528 randomly selected regions. 

  Training Validation

Predicted Herring Juv. salmon oob error Herring Juv. salmon oob error

Observed
Herring 271 4 0.015 68 0 0.000
Juv. salmon 5 275 0.018 10 450 0.022

All non-correlated variables were included (Run 1).

A

B

FIGURE 3 | Importance of variables in the random forest model using all non-correlated variables (A) and 5 most important variables (B).
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Advantage of Random Forests Over Other 
Classification Methods
Echoview offers a school classification algorithm that allows 
the user to conduct classification using many selection criteria, 
including the most important variables in this study, mean Sv 
and range (or depth). However, the thresholds for these criteria 
must be selected manually by the analyst, through trial and 
error, which makes the selection process subjective and time-
consuming. The advantage of the random forest method is that 
variable interaction is taken into account, and that the threshold 
selection does not rely on the analyst, because it is chosen within 
the model to minimize error.

Fallon et  al. (2016) used a random forest approach to 
distinguish icefish, krill and mixed aggregations of weak 
scattering fish species and obtained an accuracy (K) of 95%. In 
their study, minimum Sv, mean aggregation depth (m), mean 
distance from the seabed (m), and geographic positional data 
were the most important variables in improving classification 
accuracy. Proud et al. (2020) also used a random forest model to 
classify Dagaa fish from other scatterers in Lake Victoria. Their 
most important variables were school length, school height and 
school Nautical Area Scattering Coefficient (NASC), whereas 
temperature, dissolved oxygen and turbidity were not important 
classification factors. Although environmental variables did not 
contribute significantly to the classification in their study, it may 
still be relevant to consider such variables since they are often 

measured in conjunction to acoustic surveys, are easily included 
into the random forest model, and can influence the distribution 
of many species of fish, including Pacific salmon and Pacific 
herring (Schweigert, 1995; Azumaya et al., 2007).

A brief review of the literature reveals that in recent years, 
the development of machine learning methods to classify active 
acoustic data has converged toward random forests and deep 
neural networks (Fallon et al., 2016; Brautaset et al., 2020; Proud 
et al., 2020; Sarr et al., 2020; Marques et al., 2021; Blanluet et al., 
2022). In their study, Sarr et  al. (2020) obtained the best and 
most stable performance with a random forest model when the 
training dataset was small, while a deep neural network gave 
the best performance with a large training dataset. Woodd-
Walker et  al. (2003) also evaluated a simple artificial neural 
network technique with a small training data set, but reported 
poor results for the least dominant class of their imbalanced 
dataset. Given that fisheries acoustic studies are often plagued 
with a lack of groundtruthing, random forests are likely the best 
candidate in many situations, although more studies comparing 
both methods would be required to draw conclusions. Using the 
same data source as this study, Marques et al. (2021) proposed 
a deep learning approach based on an instance segmentation 
framework to identify Pacific herring and juvenile Pacific salmon 
schools, using pixel-level annotations of 67 kHz echograms. 
While they obtained good results on unclassified schools (best 
performance of 92.12 mean average precision (mAP)), the 
performance was lower for classified schools (performance of 
60.18 and 40.19 average precision (AP) for herring and juvenile 
salmon, respectively, using the same model configuration as 
for unclassified schools).

Deep neural networks have the advantage of requiring 
very little data pre-processing as they can draw information 
from the raw data (Brautaset et al., 2020), resulting in reduced 
analysis time and effectively removing challenges associated 
with bottom detection and school definition. On the other 
hand, random forests can incorporate a large number of 
variables to improve classification and provide information on 
the importance of each variable. This can prove advantageous 
not only to improve the classifier, but also to guide which 
variables should be monitored and sampled in the field in 
priority and which samples may be dropped with limited 
consequences on classification accuracy. It can also provide 
useful scientific insight into which environmental factors may 
be important in influencing fish population dynamics, thus 
contributing to the improvement of population models used 
in an ecosystem approach to fisheries management.

TABLE 5 | Confusion matrix for random forest generated using training dataset of 555 and validation dataset of 528 randomly selected schools. 

  Training Validation

Predicted Herring Juv. salmon oob error Herring Juv. salmon oob error

Observed
Herring 273 2 0.007 64 4 0.059
Juv. salmon 3 277 0.011 5 455 0.011

Using five most important variables only (Run 2).

A

B

FIGURE 4 | Nautical area backscattering coefficient (m2 nmi-2) for juvenile 
salmon (A) and herring (B).
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CONCLUSION

To our knowledge, this study is the first to attempt to classify two 
swim bladdered fish species using a random forest approach. 
We automated the school detection and classification process 
using Fernandes (2009) multi-frequency method and Echoview’s 
school detection algorithm, followed by a random forest model, 
and were able to differentiate between juvenile salmon and herring 
schools with an accuracy of 98% and higher, depending on the 
performance metric used. For long-term monitoring studies, 
consistency in the classification is as important as accuracy. Machine 
learning methods such as random forests not only provide this 
consistency by removing human bias associated with manual post-
processing of the acoustic data, but they also reduce data processing 
time significantly. Proper data labeling is critical to reduce bias 
and improve accuracy of the classification model. However, a 
model biased by errors in the validation of the acoustic data only 
propagates an uncertainty that was already present with the “expert 
scrutiny” approach. Thus, although not ideal, a machine learning 
approach trained with imperfectly validated data is still preferable, 

because it leads to a systematic bias rather than an unpredictable 
uncertainty that is linked to the analyst’s choices. Over time, 
the algorithm’s accuracy can be iteratively improved with the 
addition of newly validated data to the training dataset, and 
this updated algorithm can easily be applied to previously 
analyzed data to ensure consistency.
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