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An unprecedented large-scale outbreak of harmful algae, including Karenia selliformis
and Karenia mikimotoi, was reported in mid-September 2021 in the northwest Pacific
Ocean off southeastern Hokkaido, Japan. It inflicted catastrophic damage on coastal
fisheries in the ensuing months. To understand the spatiotemporal distribution of
Karenia spp. abundance, we conducted extensive ship-based surveys across several
water masses during 4–14 October, 2021 and analyzed in-situ data in combination
with Sentinel-3-derived ocean color imagery with a horizontal resolution of 300 m.
High chlorophyll-a concentrations (exceeding 10 mg m−3) were identified mainly in
coastal shelf–slope waters of <1,000-m water depth occupied by Surface Coastal
Oyashio Water or Modified Soya Warm Current Water. Karenia spp. abundance was
strongly correlated with chlorophyll-a concentration, which typically had a shallow
vertical maximum within the surface mixed layer. Large- and small-scale distributions
of Karenia spp. abundance at the ocean surface were estimated from two satellite-
imagery products: maximum line height and red-band difference. Maps generated of
Karenia spp. abundance revealed snapshots of dynamic Karenia bloom distributions.
Specifically, the cores of Karenia blooms were located on continental shelves,
sometimes locally exceeded 104 cells mL−1, and seemed to be connected intermittently
to very nearshore waters. Relatively high-abundance areas (>103 cells mL−1) of
Karenia spp. on the shelf were characterized by submesoscale (i.e., 1–10 km) patch-
or streak-like distributions, or both. Within a roughly 24-h period from 12 to 13
October, Karenia-spp. abundances averaged over the shelf abruptly increased more
than doubled; these abundance spikes were associated with the combined effects
of physical advection and algal growth. The obtained maps and features of Karenia
spp. abundance will provide basic estimates needed to understand the processes and
mechanisms by which algal blooms can inflict damage on regional fisheries.

Keywords: harmful algal bloom, Karenia, northwestern Pacific Ocean, in-situ measurement, Sentinel 3

INTRODUCTION

Harmful algal blooms (HABs) are a critical global problem, and their increasing frequency and
severity may be tied to climate change (e.g., Wells et al., 2015, 2020; Frölicher and Laufkötter,
2018; IPCC [Intergovernmental Panel on Climate Change], 2019; Trainer et al., 2019). Over the
last decade, many incidents that have inflicted devastating damage on marine ecosystems and
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human well-being across the world’s oceans have been attributed
to HABs of record-breaking scale; the HABs have been associated
with basin-scale ocean and atmospheric variability, particularly
anomalously high temperatures (i.e., marine heatwaves)
(Lefebvre et al., 2016; McCabe et al., 2016; Ryan et al., 2017;
León-Muñoz et al., 2018; Roberts et al., 2019; Bondur et al., 2021).

An unfortunate feature of large-scale HABs along open
coastlines is that even if natural, healthy marine environments are
maintained without artificial eutrophication, HABs can develop
and progress without initially being noticed by human observers
and can bloom abruptly to uncontrollable levels (e.g., Anderson
et al., 2008; Vargo et al., 2008; White et al., 2014; Du et al., 2016;
Crawford et al., 2021). Even in places where harmful algal species
have been rarely observed, once a harmful outbreak occurs,
further outbreaks can occur repeatedly in subsequent years (e.g.,
Kim et al., 2007; Onitsuka et al., 2010; Feki et al., 2014). Hence,
it is essential to retroactively understand this spatiotemporal
transition, including the development, maintenance, and decay
of specific HABs, in order to mitigate the impacts of HABs on
human well-being as much as possible. An important challenge
that needs to be addressed before we tackle this problem is how
to precisely estimate the spatiotemporal distribution of HABs by
combining information from several data types.

Unprecedented large-scale HABs occurred in Pacific coastal
waters off southeastern Hokkaido, Japan, in mid-September 2021,
about a month after the subsidence of the most intense and
extensive marine heatwaves ever recorded over the northwest
Pacific Ocean (Kuroda and Setou, 2021). There had been no
previous reports of large-scale events attributed to HABs over
the whole of this study region, where the marine environment
has largely been maintained in its natural, healthy condition.
The HABs consisted of Karenia and other species and included
Karenia selliformis, Karenia longicanalis, and Karenia mikimotoi
(Iwataki et al., 2022). As a result, serious potential impacts on
coastal ecosystems and fisheries were reported for southeast
Hokkaido (see the bold magenta line in Figure 1A): sea urchins
experienced mass die-offs, chum salmon died in fixed nets, and
juvenile fishes died in rearing facilities. Although is unclear what
level of Karenia spp. abundance causes mortality in these species,
the order of magnitude of Karenia spp. abundance observed in
our study (>102–104 cells mL−1) might be sufficient to cause
ecological damage according to previous toxicity assessments
(e.g., Shi et al., 2012; Basti et al., 2015).

Kuroda et al. (2021a) provided an initial report on the
HABs, in which they described the development of the HABs
from August to September 2021 and inferred potential source
areas by combining three analyses: satellite-derived chlorophyll
a concentrations (SCCs) at the sea surface, a realistic high-
resolution (1/50◦) ocean circulation model, and particle-tracking
simulations. The HABs occurred in a crossroad-like confluence
zone of subarctic and subtropical waters. The areal extent of SCCs
exceeding 5 or 10 mg m−3 in the study region started to slowly
increase after 20 August, when the marine heatwaves subsided,
intermittently exceeded the climatological daily maximum after
late August, and reached record-breaking extremes in mid-
to-late September (Figure 2). About 70% of the SCCs that
exceeded 10 mg m−3 occurred in places where water depths

were <300 m (i.e., coastal shelf waters), where small-scale
submesoscale variations are expected to dominate. The high
SCCs were tightly linked with low-salinity water (e.g., subarctic
Oyashio and river-influenced waters), whereas high-salinity
subtropical water appeared to suppress the occurrence of HABs.

It should be emphasized that the analysis presented by Kuroda
et al. (2021a) has some limitations. One limitation is that the
study dealt only with the HAB developmental stage (i.e., up to
late September) and did not describe the transition to full-blown
HABs. The second limitation is that the study was based primarily
on remote sensing and simulations, with little analysis of in-
situ measurements. For instance, the use of ocean circulation
model outputs entails some degree of uncertainty, and although
high-SCC areas were analyzed as a metric of HAB extent, the
validity of this metric needs to be verified by in-situ observations.
Another limitation is that the study focused on the overall
distribution of SCCs; the spatiotemporal transition of Karenia
blooms in coastal shelf waters is often characterized by small-
scale structures, and is difficult to understand on the basis of the
overall SCC distribution.

To address these limitations, here, we analyzed the results
from ship surveys conducted on 4–14 October, 2021 and
spanning a wide area across several water masses in the
Pacific Ocean off southeast Hokkaido. The study aimed to
describe the distribution of Karenia spp. blooms together
with chlorophyll-a concentrations in relation to oceanographic
conditions. Moreover, to understand both large- and small-scale
distributions of Karenia spp. blooms, we generated maps of
Karenia spp. abundances by combining in situ measurements
with Sentinel-3-derived ocean color imagery with a horizontal
resolution of 300 m.

MATERIALS AND METHODS

Field Measurements From Aboard a
Research Vessel
In-situ Measurements
We performed extensive ship surveys from aboard R/V Hokko-
maru (international gross tonnage, 1246 t; designed draft,
4.5 m) from 4 to 14 October, 2021 in the northwest Pacific off
southeastern Hokkaido, Japan (Figure 1). During the surveys,
we took measurements with conductivity–temperature–depth
(CTD) sensors, collected water samples with a bucket and
Niskin bottles, and obtained a continuous recording of near-
surface temperature, salinity, and chlorophyll-a concentration
along the ship track.

Surveys were first carried out along the A Line during 4–
10 October (Figure 1B, closed red circles) and then along the
L lines during 10–14 October (Figure 1B, closed blue circles).
The A Line, which extends about 500-km southeast from the
Hokkaido coast, is a regular monitoring transect that has been
used by the Japan Fisheries Research and Education Agency to
monitor the state of the Oyashio (with a focus on its mesoscale
variability) since 1987 (e.g., Kuroda et al., 2017, 2019). For our
study, CTD measurements were obtained at 28 stations along
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FIGURE 1 | (A) Himawari-8-derived sea surface temperatures around Japan on 9 October, 2021. White areas denote clouds. Geographic names are enclosed in
rectangles: SJ, Sea of Japan; SO, Sea of Okhotsk; NP, North Pacific; and CE, Cape Erimo. The bold magenta line roughly indicates coastal waters where fisheries
experienced devastating damages that were attributable to harmful algal blooms after mid-September 2021. (B) Absolute geostrophic velocity at the sea surface,
estimated from near-real-time gridded altimetry products. Closed red and blue circles indicate conductivity–temperature–depth (CTD) stations along the A Line and L
lines, respectively. The star symbol indicates the location of the Katsurakoi fishery harbor. Schematic flow patterns are depicted by colored vectors: SC, Soya Warm
Current; CO, Coastal Oyashio; OY, Oyashio; TC, Tsugaru Warm Current; and CE, clockwise eddy. Positions where the Oyashio crossed the A Line were determined
on the basis of 5◦C isotherms at 100-m depth. Daily areal extents of satellite-derived chlorophyll-a concentrations were estimated within the blue dashed square
(Figure 2).

the A Line (i.e., in order from north to south, Stns. B01, A01,
B02–B04, A02, A025, A03, A035, A04, A045, and A05–A21).
The L-lines consist of seven cross-shelf transects (i.e., lines L1–
L7 in order from east to west), each with 15–17 stations spaced
about 2 km apart and located mainly on the Pacific shelf; these
transects have been used to capture submesoscale variability in
association with the Coastal Oyashio on the shelf (e.g., Sakamoto
et al., 2010; Kusaka et al., 2016; Kuroda et al., 2021b). It should be
noted that the ship survey was not used to observe very nearshore
waters of depth <20 m, where low-salinity river discharge is
expected to dominate (e.g., Kuroda et al., 2021a), because the
research vessel could not enter shallow waters without significant
risk of stranding.

Conductivity–Temperature–Depth sensors combined with
dissolved oxygen, fluorescence, and turbidity sensors were
lowered to the vicinity of the seafloor or to 3,100 dbar for
the A Line, and to 490 dbar for the L lines. At all CTD
stations, a bucket was also used to sample water from a depth
of a few dozen centimeters, and the temperature, salinity, and
chlorophyll-a concentration of the sampled water were also
obtained. Subsurface waters at standard depths (10, 20, 30, 40,
50, 60, 80, 100, 125, 150, 200, 300, 400, 500, 600, 800, 1,000,

1,250, 1,500, 2,000, 2,500, and 3,000 dbar in the case of the A
Line) were also sampled by using Niskin bottles on a CTD–rosette
sampler system. The sampled water was aliquoted into smaller
bottles on deck for transport to a shore-based laboratory, where
we obtained measurements of conductivity/salinity (in 200- or
250-mL subsamples), chlorophyll a concentration (100 mL from
the standard depths above 200 m), and Karenia spp. abundance
(250 mL for the L lines at 10-m depth or 1,000 mL for the A Line).

Moreover, along the track of R/V Hokko-maru, near-
surface temperatures, salinities, chlorophyll-a concentrations,
and geolocations were continuously recorded at intervals of
1 min by digital sensors and a global positioning system receiver.
Ship speeds ranged from 0.0 to 14.9 knots during the period
of analysis; the mean was 4.9 knots. The spatial resolution of
the ship-track data therefore changed from 0 to 460 m, with an
average of 151 m; this indicated that the ship-track data could
be used to capture submesoscale variations with a typical scale of
0.1–10 km (McWilliams, 2016; Kuroda and Toya, 2020).

Shore-Based Measurements
In a shore-based laboratory of Fisheries Resources Institute
(Kushiro Station), salinity/conductivity was measured with high
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FIGURE 2 | Daily areal extent of high satellite-derived chlorophyll-a
concentrations exceeding 10 mg m−3 across the study region (i.e., within the
blue dashed square in Figure 1B). The original time series published by
Kuroda et al. (2021a) was extended to 30 November, 2021. The black bold
line indicates the daily areal extent in 2021. White circles denote climatological
daily means calculated over the previous 23 years (1998–2020), and the blue
line indicates the climatological daily mean plus three standard deviations.
Red shading shows the range between the lowest daily minimums and
highest daily maximums recorded over the previous 23 years. Horizontal
double-headed arrows represent the periods of the ship survey (black) and
the Sentinel-3 data (green) that were analyzed in this study. Chlorophyll-a
concentrations were based on near-real-time and reprocessed L4 products of
global daily datasets with a horizontal grid of about 4 km that were created by
merging sensor data from SeaWiFS, MODIS, MERIS, VIIRS-SNPP, and JPSS1
and downloaded from the European Union’s Copernicus Marine Service.

accuracy by using a Guildline Model 8400B “Autosal” Laboratory
Salinometer, Smith Falls, ON, Canada.

Chlorophyll-a concentrations were measured manually by
using the procedures described by Kasai et al. (1998). Water
samples were filtered onto 25-mm Whatman GF/F glass
fiber filters immediately after sampling and preserved in N,
N-dimethylformamide as described by Suzuki and Ishimaru
(1990). Samples and filters were frozen onboard R/V Hokko-
maru and stored in the dark until they could be measured
with a fluorometer (Model 10AU, Turner Designs, San Jose, CA,
United States) in a shore-based laboratory.

For enumeration of Karenia spp., water samples of 250 or
1,000 mL were fixed and preserved with acid Lugol’s solution
(final concentration, 4%) at 5◦C. Samples were concentrated
to a volume of 25–50 mL by reverse filtration through 2-µm
pore-size filters (Dodson and Thomas, 1964). A 0.2–0.5-mL
sample of the concentrated algal cells was settled in a chamber
(SCS N04, Matsunami, Osaka, Japan) and counted under an
inverted microscope (ECLIPSE TE300, Nikon, Tokyo, Japan).
Karenia spp. were taxonomically identified on the basis of the
results of Iwataki et al. (2022).

Correction of Sensor Values
Conductivity–Temperature–Depth-derived raw data were
processed and averaged at 1-dbar intervals. Profiles of CTD-
based salinity and chlorophyll a were corrected by using a
linear regression between CTD-based sensor values and values
manually measured from sampled waters. Moreover, erroneous
temperature, salinity, and chlorophyll-a values recorded at
depths of 0–4 m by the CTD were replaced by values obtained

by linear interpolation between the 0-m bucket sample and
a CTD measurement at 5-m depth. Interpolation errors were
mostly negligible because the surface mixed layer was formed
near the sea surface (typically, 20–25 m) throughout the period
of our ship survey.

Near-surface temperature, salinity, and chlorophyll-a
concentration along the ship track were corrected by using a
linear regression against the temperature (R2 = 0.995), salinity
(R2 = 0.996), and chlorophyll a concentration (R2 = 0.737) of the
bucket-sampled water.

Field Measurements From a Harbor
After mid-September 2021 (when Karenia blooms were first
observed), surface water samples were collected daily around the
Katsurakoi fishery harbor (144◦26.77′E, 42◦56.81′N; indicated
by the star symbol in Figure 1B). Samples were collected
from three fixed sites within a few hundred meters of the
harbor. Buckets were used for sample collection at two of the
sites, and an automated seawater intake to our shore-based
laboratory was used at the other site. Water samples were filtered
onto 25-mm Whatman GF/F glass fiber filters immediately
after sampling to measure chlorophyll-a concentrations with a
fluorometer. For enumeration of Karenia spp., water samples
were fixed and preserved at 5◦C with acid Lugol’s solution
(final concentration, 4%) for measurements conducted prior
to 28 September, and with Hepes-buffered paraformaldehyde
and glutaraldehyde (Katano et al., 2009) for subsequent
measurements. Karenia spp. abundances (cells mL−1) were
estimated from 46 randomly selected samples collected during 21
September–22 October, 2021.

Satellite Measurements
Ocean color imagery based on Sentinel-3A/3B Ocean and Land
Color Imager Level-2 Full Resolution were downloaded from
Copernicus Online Data Access. The horizontal resolution was
about 300 m, and the time interval between images was near-
daily. The data period analyzed was from 3 October to 18
October, 2021 (Supplementary Table 1), roughly corresponding
to the time period of the ship survey. For analysis, we selected
imagery with a relatively small ratio of cloud coverage (< 20%)
over the shelf off southeastern Hokkaido. We used normalized
water-leaving reflectance (ρw[λ]) for a wavelength band centered
at λ and chlorophyll-a concentrations that were derived from one
of two algorithms: a neural network-based approach (hereafter,
“NN”) for optically complex waters (Doerffer and Schiller, 2007)
and a maximum band ratio semi-analytical algorithm (hereafter,
“OC4ME”) for open oceans (Morel et al., 2007; Cherif et al., 2021;
Moutzouris-Sidiris and Topouzelis, 2021).

Chlorophyll-a estimates obtained from NN and OC4ME
had limited accuracy on the Pacific shelf (see section “Maps
of Chlorophyll-a Concentration” for details), where there
was considerable submesoscale variability in areas of high
chlorophyll-a concentration (>20 mg m−3). Therefore,
reflectance-based maximum line height (MLH; Smith and
Bernard, 2020) was used instead of NN and OC4ME to estimate
chlorophyll-a concentrations at the sea surface.
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Surface abundances of Karenia spp. were estimated
from satellite-derived reflectance-based variables by using
two methods. One method directly estimated Karenia spp.
abundances through a combination of reflectance-based red
band difference (RBD; Jordan et al., 2021) and in-situ Karenia
spp. abundance. The other method entailed two steps: in the
first step, chlorophyll-a concentrations were estimated by using
a combination of MLH and in-situ chlorophyll a concentrations,
as mentioned above, and in the second step, chlorophyll-a
concentrations were converted into Karenia spp. abundances by
using an observed relationship between them.

RBD and MLH are defined as follows:

RBD = ρw(681)− ρw (665)

MLH = max[LH (681) , LH (709)],

where LH(λ) is defined as follows:

LH (λ) = ρw (λ)

−ρw (665)−

{
[ρw (753)− ρw (665)] ×

(
λ− 665

753− 665

)}
.

Relationships between the spectral properties of Karenia spp.
and the Sentinel-3 spectral bands are illustrated in the schematic
diagram in Supplementary Figure 1. Calculations of RBD and
MLH were both based on the 665–753-nm spectral band, as
opposed to OC4ME, which is based on the 443–560-nm spectral
band. The 665–753-nm spectral band has an important advantage
over the spectral band used in OC4ME in that the former is not
strongly influenced by the absorption associated with colored
dissolved organic matter (e.g., at around 440 nm), which is
frequently found in the coastal waters of our study area (e.g.,
Isada et al., 2021).

Red band difference is frequently used for detecting and
monitoring Karenia spp. blooms (e.g., Amin et al., 2009; Wolny
et al., 2020; Jordan et al., 2021). LH(λ), which is similar to
fluorescence line height (Gower et al., 1999), with a baseline
formed by the reflectance between 665 and 753 nm, was applied
to all spectra (Smith and Bernard, 2020). MLH was expected
to be appropriate for detecting both low (<about 20 mg m−3)
chlorophyll-a concentrations and the high (>about 20 mg m−3)
chlorophyll-a concentrations associated with red tides, because
the reflectance peak at 681 nm is generally related to chlorophyll-
a fluorescence emissions; however, at higher biomass this peak
shifts to longer wavelengths owing to the combined effects of
increased phytoplankton absorption and backscattering, as well
as pure water absorption (e.g., Gower et al., 1999, 2005; Gower,
2016).

Finally, after generating maps of Karenia spp. abundance,
we estimated specific rates of change (hereafter, “growth rate”),
assuming exponential algal growth, from two maps of satellite-
derived Karenia spp. abundance. Specifically, growth rate was
estimated as r =

[
ln (Kt2)− ln (Kt1)

]
/4t, where 4t is the

time interval between satellite images and Kt1 and Kt2 represent
Karenia spp. abundances estimated in a given region at times t1
and t2, respectively (i.e.,4t = t2− t1). This estimation method

was based on the work of Stumpf et al. (2008), who developed the
method for satellite-derived chlorophyll-a imagery.

RESULTS

Overview of Oceanographic Conditions
The oceanographic conditions in our study area during the cruise
can be seen from satellite-based data captured on 9 October,
2021 (Figure 1). The northern part of the A Line was occupied
by cold waters, and the southern part was occupied by warm
waters (Figure 1A). In the cold-water area, the Oyashio flowed
southwestward along the continental slope off southeastern
Hokkaido, came in contact with the Tsugaru Warm Current
south of Cape Erimo, formed a sharp thermal front, and then
flowed along the edge of anticyclonic mesoscale eddies, with
several meanders (Figure 1B). A part of the Oyashio then crossed
the A Line again near Stn. A15.

Inshore of the Oyashio, the Coastal Oyashio flowed along
the Pacific shelf off southeastern Hokkaido as a downstream
extension of the Soya Warm Current in the Sea of Okhotsk.
The Coastal Oyashio crossed several L lines. As explained in the
subsequent section “Field Measurements,” the Coastal Oyashio
transported Modified Soya Warm Current Water, which is
formed by the mixing of a subtropical water mass referred to as
Soya Warm Current Water that outflows from the Sea of Okhotsk
with surrounding subarctic waters on the Pacific shelf.

Transition of Algal Blooms
In terms of large-scale variability along the shelf (i.e., on a scale
of ∼500 km), as briefly mentioned in the section “Introduction,”
the areal extent of SCCs exceeding 10 mg m−3 around the
study region (Figure 1B, blue dashed square) reached a record-
breaking level in mid-to-late September 2021 (Figure 2), which
was roughly comparable to the climatological mean plus six
standard deviations. During the first half of our study period
(i.e., 3–18 October), this record-breaking level was further
maintained. The maximum areal extent of SCCs in 2021 was
observed on 9 October. However, during the second half of our
study, the areal extent decreased rapidly. Hence, we examined
both the maintenance and decay periods of algal blooms.

Field Measurements
Along the ship track, temperatures, salinities, and chlorophyll-
a concentrations changed dramatically as the research vessel
repeatedly crossed subarctic and subtropical water masses, as
well as water masses created by mixture of the two (Figure 3).
Roughly speaking, cold (warm) waters corresponded to low-
salinity (high-salinity) waters. Cold low-salinity subarctic (warm
high-salinity subtropical) waters corresponded to high (low)
concentrations of chlorophyll a with high (low) spatial variability.
Along the ship track around the L lines on the Pacific shelf
during 10–14 October, chlorophyll-a concentrations reached
particularly high values, typically >10 mg m−3, intermittently
exceeded 20 mg m−3, and even reached up to 35 mg m−3.
High chlorophyll-a concentrations >20 mg m−3 were distributed
as patch-like local maxima along the ship track (Figure 4).
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The spatial scale of local maxima >20 mg m−3 was not
more than about a few kilometers and was therefore associated
with submesoscale variability (Figure 4B). In addition, high
chlorophyll-a concentrations roughly corresponded to high
abundances of Karenia spp., as is described below.

On the Pacific shelf around the L lines, salinities were
persistently lower than 33.6, and temperatures were in the range
11.0–17.0◦C (Figure 3). These water masses were classified as
Modified Soya Current Water (generally defined by temperatures
>7.0◦C and salinities of 33.0–33.7 on the Pacific shelf off
southeastern Hokkaido) and Surface Coastal Oyashio Water
(temperatures >2.0◦C and salinities of 32.0–33.0) (Oguma et al.,
2008; Kusaka et al., 2013). Hence, subarctic water masses and

modified subtropical waters with particularly high chlorophyll-a
concentration were present simultaneously on the Pacific shelf.

Surface chlorophyll-a concentrations were examined in
relation to three environmental variables: water depth, sea surface
salinity, and temperature (Figure 5). Some 83% of chlorophyll-
a concentration measurements exceeding 10 mg m−3 were
obtained in places where the water depth was <1,000 m,
i.e., primarily coastal shelf–slope waters (Figures 5A,B). These
high chlorophyll-a concentrations were also associated with
two different surface salinities (Figure 5C), with local peaks
at salinities of 32.9–33.0 and 33.4–33.5. The lower and higher
salinity peaks corresponded to Surface Coastal Oyashio Water
and Modified Soya Warm Current Water, respectively. However,

FIGURE 3 | Sea-surface temperatures (red line, corresponding to the red left-hand axis), salinities (blue line, corresponding to the blue left-hand axis), and
chlorophyll-a concentrations (green line, corresponding to the green right-hand axis) along the ship track during 4–14 October, 2021. The upper horizontal axis
denotes the timing of conductivity–temperature–depth (CTD) measurements.

FIGURE 4 | Surface chlorophyll-a concentrations (colored grid cells) along the ship track during 4–14 October, 2021. Grid cells shows averages across (A) 5′

(longitude) × 5′ (latitude) (i.e., an approximately 7 × 9 km rectangle) and (B) 45′ ′ (longitude) × 30′ ′ (latitude) (i.e., an approximately 1 × 1 km rectangle). Karenia spp.
abundance at a depth of 10 m is also shown by the area of red circles. Red closed circles indicate that Karenia spp. were not found.
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FIGURE 5 | Scatter plots of surface chlorophyll-a concentration along the ship track versus (A) water depth (for all measured depths), (B) water depth (for depths
<1,000 m), (C) sea-surface salinity, and (D) sea-surface temperature. For each panel, frequency distributions of chlorophyll-a concentrations exceeding 10 mg m−3

are denoted by red bars, corresponding to the red right-hand axis (%).

the high chlorophyll-a concentrations in the two water masses
were not associated with different sea-surface temperatures (i.e.,
the frequency distribution of temperature showed a single mode)
(Figure 5D). Chlorophyll-a concentrations for salinities >33.7
and temperatures >17.5◦C were mostly lower than 3 mg m−3,
which suggests that massive algal blooms were much less
common in pure subtropical waters. The above relationships
were qualitatively consistent with those of SSCs as a function
of simulated variables (Kuroda et al., 2021a), except for the
marked in-situ discrimination between Surface Coastal Oyashio
Water and Modified Soya Warm Current Water, and missing
measurements of river-discharge-influenced waters with salinity
<32.0 near the coast.

At CTD stations, vertical profiles of chlorophyll-a
concentration tended to show a vertical maximum at the
surface (Figure 6A). Also, at most of the CTD stations, the
surface mixed-layer depth ranged from 1 to 54 m (Figure 6B).
The modal mixed-layer depth was 20–25 m. Namely, algal
blooms were not homogeneous within the surface mixed layer
but were intensified at the sea surface. Mixed-layer depths were
weakly correlated with the surface chlorophyll-a concentration
(Figure 6C). This indicates that satellite measurements of the
sea surface could appropriately capture the distribution of algal
blooms during the period of the ship survey, despite the seasonal
development of a surface mixed layer.

Interestingly, chlorophyll-a concentrations at depths of 0 and
10 m were correlated with each other (Figure 6D). The ratio of
chlorophyll a at 0 m to that at 10 m was averaged over all profiles
and estimated as 2.4 (Figure 6A); this value was used to scale
Karenia spp. abundances that were sampled at 10-m depth.

Karenia spp. abundance at 10-m depth was examined in
relation to the surface chlorophyll-a concentration along the

ship track (Figure 4, open red circles). Measured abundances
ranged from 0 to 277 cells mL−1 during the period of the ship
survey. High Karenia spp. abundance was most common in the

FIGURE 6 | (A) Profiles of chlorophyll-a concentrations based on
conductivity–temperature–depth (CTD) measurements. Bin-averages and
standard deviations are indicated by closed red circles and horizontal bars,
respectively. (B) Frequency distribution of mixed-layer depths based on CTD
measurements. (C) The same as Figure 5, but for chlorophyll-a
concentrations as a function of mixed-layer depths at CTD stations.
(D) Scatter plots of chlorophyll-a concentrations at 0 versus 10 m at CTD
stations.
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northern part of the A Line and along sections of the L lines with
high chlorophyll-a concentrations. Meanwhile,Karenia spp. were
wholly absent in the southern A Line (i.e., Stns. A09–A21), which
was occupied by subtropical waters, except at Stn. A15. At 10-m
depth, Karenia spp. abundance was positively correlated with the
chlorophyll-a concentration (Figure 7, closed red circles) after
log10(x + 0.1) transformation of both variables. This indicates
that, to a first-order approximation, chlorophyll-a concentration
can be regarded as an index of Karenia spp. abundance off
southeastern Hokkaido, at least during autumn 2021.

To obtain a more robust statistical relationship between
chlorophyll-a concentration and Karenia spp. abundance, we
also examined the data collected from the Katsurakoi fishery
harbor (Figure 7, closed blue circles). Karenia spp. abundances
(chlorophyll-a concentrations) from the harbor ranged from 0
to 9,600 cells mL−1 (1.75–123.20 mg m−3), which was markedly
higher than those obtained from the ship survey. By combining
the two data sources, we obtained a robust log–log regression line
spanning a wide range of values of both variables (R2 = 0.75).

Combination of in-situ and Satellite
Measurements
Maps of Chlorophyll-a Concentration
To estimate maps of chlorophyll-a concentration as accurately as
possible, we first compared satellite-derived variables measured at
0029–0035 coordinated universal time (UTC) on 9 October with
in-situ chlorophyll-a concentrations at the sea surface along the
ship track during 0300–2,400 (UTC) on the same day (Figure 8).
On that day, the research vessel traversed a considerable
distance along the A Line from south to north (Figure 8A,
magenta line). OC4ME-based chlorophyll-a concentrations were
most-closely correlated to in-situ measurements, although the
original OC4ME estimates included some noise around clouds
as well as overestimated chlorophyll-a concentrations (R2 = 0.78;

FIGURE 7 | Scatter plots of Karenia spp. abundance versus chlorophyll-a
concentration based on in-situ observations. The two variables were
transformed by log10(x + 0.1). Red and blue closed circles indicate data
points from the ship survey at 10-m depth and from the vicinity of the
Katsurakoi fishery harbor at the sea surface, respectively. Open circles denote
that abundance is equal to zero. The thick black line shows the log–log
regression line.

Figure 8B). Estimates of NN more frequently included noise
around clouds and were strongly polarized, but there was still
a strong correlation with in-situ measurements (R2 = 0.57;
Figure 8C). MLH and RBD estimates were quite similar and were
strongly correlated with in-situ measurements (Figures 8D,E).
These large positive correlations (Figures 8B–E) were attributed
to the large-scale differences in chlorophyll-a concentrations
between coastal-shelf and offshore waters; i.e., the presence of
algal blooms in the subarctic northern A Line and the absence
of blooms in the subtropical southern stations (Figures 8A, 9A).
However, for areas of relatively low chlorophyll-a concentration
(<3 mg m−3), chlorophyll a derived from RBD and MLH were
positively biased and noisier than those derived from OC4ME;
this reduced the correlations obtained (Figure 9A).

To test the validity of satellite-derived estimates on the shelf
(where harmful blooms were most intense) at the submesoscale,
we compared satellite-based variables measured at 0052–0055
(UTC) on 12 October and 0025–0028 (UTC) on 13 October
with in-situ surface chlorophyll-a concentrations along the ship
track that were measured during the above time periods ±4 h
(Figures 9B,C). Chlorophyll-a concentrations based on MLH
and RBD changed most synchronously with those obtained
from in-situ measurements, whereas OC4ME-based estimates
were less representative of small-scale variations in chlorophyll a
(Figure 10), particularly on 13 October (Figure 9C), when small-
scale noise was apparent. Therefore, we concluded that MLH
and RBD were best suited to describing the spatial variability
of chlorophyll-a concentrations on the Pacific shelf. We also
estimated regression lines between satellite-derived variables
and in-situ chlorophyll-a concentrations for the combined data
obtained on 9, 11–12, and 12–13 October (Table 1).

Note that MLH and RBD tended to overestimate chlorophyll-
a concentrations on the shelf (Figures 9B,C). For the ±4 h
relative to the satellite observation time on 12 and 13 October,
mean chlorophyll-a concentrations based on MLH and RBD were
estimated as 10.7 and 6.6 mg m−3, respectively—higher than the
5.6 mg m−3 measured in situ. Moreover, correlations declined
if the time window was expanded beyond ±4 h of the satellite
observation time (data not shown). This suggests that algal-
bloom frontal structures changed rapidly spatiotemporally at the
submesoscale, as is indicated by a previous analysis of thermal
fronts on the Pacific shelf (Kuroda and Toya, 2020).

Maps of Karenia spp. Abundance
First, we generated maps of surface Karenia spp. abundance by
combining satellite-derived surface RBD with in-situ Karenia
spp. abundance at a depth of 10 m. In-situ Karenia spp.
abundance was positively correlated with satellite-derived RBD
once the abundance was log-transformed (Figure 11). Satellite-
derived RBD was converted to Karenia spp. abundance by
using a log–linear regression (Figure 11). We assumed that the
average ratio (i.e., 2.4) of chlorophyll-a concentrations between
the two depths (Figure 6A) was identical to that of Karenia spp.
abundances, and estimated Karenia spp. abundance at a depth of
10 m was converted to that at the surface.

Second, we also generated maps of Karenia spp. abundance
from maps of chlorophyll-a concentration. We used MLH
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FIGURE 8 | (A) Chlorophyll-a concentrations on 9 October, 2021, derived from the maximum band ratio semi-analytical algorithm (OC4ME) and corrected by the
regression equation shown in Table 1. The magenta line represents the ship track from 0313 (UTC) to 2355 (UTC) on the same day. Scatter plots show surface
chlorophyll-a concentrations along the ship track versus (B) OC4ME-derived chlorophyll-a concentrations, (C) Neural network (NN)-derived chlorophyll-a
concentrations, (D) maximum line height (MLH), and (E) red-band difference (RBD). Coefficients of determination are shown in the top left-hand corner of each
panel. For (B,C), coefficients of determination shown in parenthesis were estimated when data points with large deviations around the edges of clouds (indicated by
open circles) were not excluded.

to estimate chlorophyll-a concentration for this analysis,
mainly because MLH performed well in matching the spatial
variability of chlorophyll-a concentrations on the Pacific
shelf (see the preceding section “Maps of Chlorophyll-a
Concentration”) and MLH was most prone to underestimating
chlorophyll-a concentrations in coastal waters where harmful
algal blooms were not reported. This suggested that MLH-
based chlorophyll-a concentrations most reduced contamination
associated with colored dissolved organic matter in coastal waters
(Supplementary Figure 2).

Maximum line height-derived chlorophyll-a concentrations
were estimated by using the regression equation in Table 1
and converted into Karenia spp. abundances by using the
regression equation in Figure 7. We assumed that Karenia
spp. were absent at chlorophyll-a concentrations <2.2 mg m−3,
a threshold that corresponds to the maximum in-situ surface
chlorophyll-a concentration at which Karenia spp. were not
identified (Figure 7).

Maps generated by using the two methods for 9 October,
2021 were largely consistent with each other, particularly for
large- and small-scale structures of Karenia spp. abundance.
However, the second method tended to generate higher estimates
(Figures 12A,B). The bias was about 0.3 log10(cells mL−1)

over the whole study region, which means that there was an
approximately 2-fold difference in estimated Karenia abundances
between the first and second methods. Possible reasons for this
bias are discussed in section “Uncertainties of Estimated Karenia
spp. Abundance.”

Spatiotemporal Distribution of Karenia spp.
On 9 October, the core of the Karenia bloom appears to have been
primarily located on the shelf (Figure 12C); Karenia abundances
exceeding 103 cells mL−1 on the shelf (Figure 12C, yellow colors)
tended to exhibit streak-like structures of width <10 km, which
were associated with submesoscale filaments. The streak-like
filaments extended roughly in parallel to the coastline, rather than
normal to it. Moreover, particularly high abundances exceeding
104 cells mL−1 (Figure 12C, red colors) were distributed in
a patch-like manner on the shelf. These small, surface-level
structures are also identifiable in the ship-track data as patch-
like localized chlorophyll-a maxima of up to a few kilometers in
scale (Figure 4B).

Karenia spp. abundances on the continental slope were
lower overall than those on the shelf. However, relatively high
abundances on the slope (∼102 cells mL−1; Figure 12C,
green colors) occurred along the edge of a mesoscale
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FIGURE 9 | Time series of surface chlorophyll-a concentrations based on
in-situ measurements (black lines), maximum band ratio semi-analytical
algorithm (OC4ME)-derived estimates (red lines), maximum line height
(MLH)-derived estimates (blue lines), and red-band difference (RBD)-derived
estimates (green lines) that were corrected by using the regression equations
listed in Table 1. The Sentinel-3 data shown in panels (A–C) correspond to
images obtained on 9 October 0029–0032 (UTC), 12 October 0052–0055,
and 13 October 0025–0028, respectively. For panels (B,C), in-situ
chlorophyll-a concentrations were compared during the 4 h before or after the
Sentinel-3 observations.

clockwise eddy with a diameter of about 100 km (Figure 1B,
light blue eddy).

Karenia spp. abundances in very nearshore waters were
typically on the order of <101 cells mL−1 (Figure 12C, white)
and were clearly lower than those on the shelf. However,
this might have been caused by estimation biases in the data
from Sentinel 3. Despite this possible bias, high abundances
exceeding 103 cells mL−1 were distributed locally near the coast
(Figure 12C, light purple arrows) and were connected to high-
abundance patches on the shelf by streak-like filaments.

On the basis of the RBD-derived Karenia spp. abundances
for 3–18 October, the above-described features were common
throughout our study period, although the spatiotemporal
distribution of Karenia spp. blooms changed greatly (Figure 13).
In particular, dynamic changes became apparent within a single
day from 12 to 13 October (Figures 13C,D). Karenia spp.
abundances on the shelf increased abruptly, and high-abundance
patches also expanded to the vicinity of the coastline. Streak-like
structures with high abundances exceeding 103 cells mL−1 were
more apparent on 13 October, particularly in the western half of
the study region. When Karenia spp. abundances were averaged
over the shelf (Figure 13A, pink polygon), the rate of increase in

abundance was estimated to be 2.1- and 2.6-fold per day for RBD-
and MLH-derived estimates (Figure 13F), respectively. The rate
of increase of Karenia abundance exceeded that of chlorophyll-
a concentrations (∼1.5-fold per day). Moreover, on 18 October,
when algal blooms over the Pacific shelf decayed gradually
(Figure 2), a streak-like structure became highly intensified
along the coastline just east of Cape Erimo, where Karenia
abundances exceeded 104 cells mL−1 (Figure 13E). Hence, a
western-intensified structure became more apparent during the
decay period of the algal blooms over the shelf.

DISCUSSION

Uncertainties of Estimated Karenia spp.
Abundance
In this study, we generated maps of estimated Karenia spp.
abundance by using two methods, the first based on RBD and the
second on MLH. The MLH-derived abundances were about twice
as high as those derived from RBD. First, we discuss the possible
reasons for this difference below.

There are at least three weaknesses associated with the RBD-
based estimation, in which RBD was directly converted into
Karenia spp. abundance. First, in-situ Karenia spp. abundances
measured during our ship survey ranged from 0 to 277 cells mL−1

(Figure 11). Therefore, RBD-derived estimates of abundance
>277 cells mL−1 (before conversion to abundance at 0-m
depth) were determined by extrapolating the regression line
between RBD and in-situ Karenia spp. abundance (Figure 11).
This extrapolation is likely associated with some degree of
error. Second, the sample size (n = 68) used to estimate
the regression line itself was somewhat small (Figure 11),
especially in comparison with the sample size of surface
chlorophyll-a concentrations along the ship track (Figures 8, 10).
Third, the period of observation differed between Karenia
spp. abundances determined from water samples and those
determined from satellite measurements. We permitted a
maximum time difference of 6.9 days for the A Line and 1 day
for the L lines (Figure 11); if we had used a smaller maximum
time difference, the number of data points available would have
been further reduced.

Likewise, there are at least two weaknesses associated with
the MLH-based estimation, in which MLH was used indirectly
to estimate Karenia spp. abundance. First, although small-
scale variations of chlorophyll-a concentrations on the shelf
were reasonably well reproduced by MLH-derived estimates,
MLH-based chlorophyll-a concentrations on the Pacific shelf
were positively biased in comparison with in-situ chlorophyll-a
concentrations (Figures 9B,C). This bias could be attributable to
centimeter-scale vertical heterogeneities of chlorophyll a near the
sea surface, which are captured differently by satellite imagery
and in-situ surveys (e.g., Harvey, 1966; Mitchell and Fuhrman,
1989). Second, as with RBD, very high MLH-derived chlorophyll-
a concentrations (exceeding 123.20 mg m−3) were determined
by extrapolation of a regression line (Table 1). The threshold
of 123.20 mg m−3 corresponds to an abundance of 104.4

(∼25,000) cells mL−1 (Figure 7).
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FIGURE 10 | Panels (A–D) are the same as Figures 8B–E, respectively, but only for data points collected during the 4 h before or after the Sentinel-3 observations
on 12 and 13 October, 2021.

At present, it is difficult to determine which of the
two methods more closely matched the actual Karenia spp.
abundances. We therefore chose to apply both methods and
evaluate the two resultant sets of Karenia spp. abundances
while taking the uncertainties of each method into account.
In future work, these weaknesses could be mitigated by
increasing the sample size for the regressions used in each

TABLE 1 | Equations and determination coefficients of regression lines for in-situ
chlorophyll-a concentrations and satellite-derived variables.

Variables Regression line equations R2

OC4ME Y = 0.444X+0.346 0.68

NN Y = 0.570X+0.385 0.57

MLH Y = 401.984X+0.171 0.56

RBD Y = 422.452X+0.226 0.54

OC4ME, maximum band ratio semi-analytical algorithm; NN, neural network-based
approach; MLH, maximum line height; RBD, red band difference. To estimate
statistical values in this table, satellite-derived variables measured on 9, 12, and 13
October were compared with in-situ chlorophyll-a concentrations obtained during
0300–2400 (UTC) on 9 October and during the ±4 h around the observation time
of Sentinel 3 on 12 and 13 October, respectively (see Figure 9). X and Y represent
satellite-derived variables and in-situ chlorophyll-a concentrations, respectively.

method. This could be accomplished by incorporating in-
situ measurements of Karenia spp. abundance obtained by
other organizations.

FIGURE 11 | Scatter plots of Karenia abundance at 10-m depth along the A
Line and L lines. Data collected from the L lines (black closed circles) were
measured within 1 day (“<1D”) of an observation by Sentinel 3. Data collected
from the A Line are colored according to time interval (in days) between the
abundance measurement and an observation by Sentinel 3, where the longest
interval was 7 day.
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FIGURE 12 | Maps of Karenia abundance (log10[cells mL−1]) on 9 October 2021, estimated (A) directly from red-band difference (RBD) or (B) indirectly from
maximum line height (MLH) and estimated chlorophyll-a concentrations. The color scale of panel (B) is offset from that of panel (A) by 0.3, which corresponds to
about a 2-fold difference [i.e., 100.3

∼2]. (C) The same as panel (A), but for a smaller area. Light purple arrows indicate high abundances in very nearshore waters.

There were large uncertainties in RBD- and MLH-derived
abundances near the southeast coast of Hokkaido, and these
methods may have underestimated in-situ Karenia spp.
abundances in this region. To examine this in more detail, we
extended the analysis period of Sentinel-3 data and extracted
RBD- and MLH-derived Karenia spp. abundances from the
300-m grid cell that was closest to the Katsurakoi fishery
harbor. On 21 September, when the second-largest in-situ
Karenia spp. abundance (103.9 cells mL−1) was recorded, RBD-
and MLH-derived abundances were estimated to be 103 and
103.9 cells mL−1, respectively. Although the MLH-derived value
was reasonable, the RBD-derived value underestimated the in-
situ abundance by about one order of magnitude. Interestingly,
in-situ Karenia spp. abundances from the fishery harbor differed
greatly among the three monitoring sites established at that

location, which were all within a few hundred meters of each
other. On 23 September, when Sentinel-3 imagery and in-situ
Karenia spp. abundances from all three sites were available, we
obtained in-situ abundances of 103.4, 102.9, and 102.4 cells mL−1

from the three harbor sites and RBD- and MLH-derived
abundances of 102.3 and 102.6 cells mL−1, respectively. Thus,
satellite-derived estimates failed to reproduce the highest
observed in-situ abundance on that day. This indicates that
the spatial distribution of in-situ Karenia spp. abundances near
the coast can change drastically, even within a few hundred
meters. Hence, further work is needed to evaluate the accuracy
of satellite-derived abundances near the coast by examining
very-nearshore in-situ Karenia spp. abundances from additional
coastal sites. Simultaneously, it will be important to use ocean-
color images with a finer spatial resolution. Although Sentinel-2
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FIGURE 13 | (A–E) The same as Figure 12C (units: log10[cells mL−1]), but for (A) 3, (B) 9, (C) 12, (D) 13, and (E) 18 October, 2021. CE, Cape Erimo. (F) Karenia
abundance (lines) and chlorophyll-a concentration (bars) averaged over shelf–slope regions with water depth <1,000 m [i.e., the pink polygon in panel (A)] and
derived from red-band difference (dashed line, open circles) and maximum line height (solid line, closed circles). Estimated chlorophyll-a concentrations were based
on maximum line height and a regression equation (Table 1).

ocean-color imagery (which has a horizontal resolution of 10,
20, or 60 m) might be feasible (e.g., Caballero et al., 2020), some
methodological changes will be required because Sentinel 2 does
not capture the 681-nm spectral band.

It is noteworthy that the satellite-derived Karenia spp.
abundances estimated in this study are still imperfect; they
will need to be refined to accurately monitor the presence

or absence of Karenia spp. or to precisely detect signs of
impending Karenia spp. blooms from weak reflectance signals.
A preliminary evaluation of these use cases was conducted
by using Sentinel-3 images from July 2017 to October 2021
(Supplementary Figure 3). Our tentative results indicate that
MLH-derived Karenia spp. abundances overestimated the true
abundances in some cases, despite the likely absence of Karenia
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blooms in 2017–2020, particularly during massive spring diatom
blooms and autumn blooms off the southeast coast of Hokkaido
(e.g., Okamoto et al., 2010; Suzuki et al., 2011; Isada et al.,
2019; Kuroda et al., 2019). This overestimation was likely caused
by the fact that the MLH-based estimate relates Karenia spp.
abundances to chlorophyll-a concentrations. A similar pattern
of overestimation in spring and autumn was also identified for
RBD-derived Karenia spp. abundance, although the estimated
abundances during 2017–2020 never exceeded the record-
breaking abundances reached in October 2021. Hence, more
sophisticated algorithms are still needed to precisely discriminate
harmfulKarenia blooms from non-harmful algal blooms by using
satellite data, e.g., Siswanto et al. (2013), El-Habashi et al. (2016),
El-Habashi et al. (2019), and Martinez-Vicente et al. (2020).

To identify Karenia blooms more precisely, it is necessary
to estimate the reflectance spectral properties of Karenia spp.
(in particular, K. selliformis, the properties of which have not
yet been reported) and the other dominant species in our study
area. It should be remembered that the RBD method that we
employed was originally proposed by Amin et al. (2009) for
Karenia brevis and non-K. brevis species (mainly diatoms) along
the west coast of Florida (Supplementary Figure 1). In fact, our
cell enumeration data (not shown) revealed that diatoms existed
in mixture with Karenia spp. off the Hokkaido coast and that the
abundance of diatoms relative to Karenia spp. tended to increase
as Karenia spp. abundance declined. This tendency can be also
seen in Figure 7; deviations of Karenia spp. abundance from the
log–log regression line tended to decrease as in-situ chlorophyll-
a concentrations increased (i.e., as Karenia spp. abundance
increased). Moreover, note that the dominant diatom species and
their spectral properties probably differ between the west coast
of Florida and our study area. Hence, further work is needed to
identify the dominant diatom species from long-term monitoring
data along the A Line and to precisely measure the spectral
properties of Karenia spp. and non-Karenia spp. associated with
the dominant diatoms in our study area.

The Rapid Increase in Karenia spp.
Abundance
We successfully generated maps of Karenia spp. abundance and
described the spatiotemporal variations in abundance from 3 to
18 October, 2021 (Figure 13). However, the possible physico-
biochemical dynamics responsible for spatiotemporal changes in
Karenia spp. abundance remain largely unexamined. Here, we
focus on the 24-h period from 12 to 13 October, when Karenia
spp. abundances averaged over the shelf abruptly increased over
2-fold (Figures 13C,D). Throughout this period, as is indicated
in Figures 13C,D, our study area had few clouds along the shelf,
suggesting that light conditions were favorable for algal growth.

In general, any enhancement of algal abundance can be caused
by biological growth, physical advection, or a combination of
the two (e.g., Richardson, 1997; Stumpf et al., 2008; Thyng
et al., 2013). If the abrupt increase of Karenia app. abundance
from 12 to 13 October were caused solely by algal growth, the
growth rate would have been 0.74 and 0.96 day−1 for RBD-
and MLH-derived abundances, respectively. These growth rates

exceed the growth rates or maximum growth rates of Karenia
species reported by previous studies, which range from 0.04 to
0.41 day−1 for K. selliformis (Medhioub et al., 2009; Mardones
et al., 2020), and from 0.216 to 0.727 day−1 for K. mikimotoi
(Shen et al., 2016; Zhao et al., 2017). This discrepancy indicates
that physical advection might also have contributed to the abrupt
abundance increase, as suggested by the interpretation of Stumpf
et al. (2008).

Physical advection can occur on a variety of spatiotemporal
scales. At the shelf scale (defined here by the pink polygon in
Figure 13A), horizontal onshore-offshore advection probably
had a negligible effect on the abrupt increase in Karenia
spp. abundance during the 24-h period, because Karenia spp.
abundances were higher on the shelf than on the offshore slope.
At the shelf scale, therefore, we need to primarily consider
sources of vertical advection such as wind-induced upwelling,
which might uplift pre-existing Karenia spp. populations from
the subsurface or concentrate Karenia spp. near the sea surface
through a shoaling of the mixed layer/pycnocline (e.g., Pitcher
et al., 1998). However, high-resolution mesoscale model data
from the Japan Meteorological Agency’s weather forecast system
(Saito et al., 2006) indicate that northeasterly winds with a
velocity of 3.2–6.2 m s−1 predominated at 2 m above the sea
surface over the shelf throughout 12 October. This wind regime
would have favored coastal downwelling, rather than upwelling.
Therefore, Karenia spp. abundance increased at the sea surface
in spite of gentle downwelling-favorable winds, particularly on
the western shelf.

Regarding physical advection at finer scales, the streak- and
patch-like submesoscale structures we observed are likely to
be among the key elements for understanding any physical-
biological coupling that occurred. Streak-like filaments are also
frequently identified in maps of satellite-derived chlorophyll-
a concentration (e.g., Malanotte-Rizzoli et al., 2014; Shulman
et al., 2015; Lehahn et al., 2017). Filamentary structures are
generally interpreted as Lagrangian coherent structures, which
are attributed mainly to horizontal advection (Lehahn et al.,
2007; Hernández-Carrasco et al., 2018, 2020). However, this
interpretation is likely to be complicated in our case, because
Karenia spp. growth could have been superimposed on purely
Lagrangian transport processes, and strong vertical advection
induced by submesoscale variations could have contributed to
the abrupt shelf-scale increase of Karenia spp. abundance (e.g.,
Meng et al., 2020). Further research will be needed to examine
how small-scale submesoscale variations combined with algal
growth contributed to the abrupt shelf-scale increase of Karenia
spp. abundance, including the observed western intensification
of Karenia blooms. Unfortunately, although clarification of these
physical–biochemical processes is urgently needed, this is beyond
the scope of our study.

CONCLUSION

Unprecedented outbreaks of harmful Karenia algae were
reported in mid-September 2021 in the northwest Pacific
Ocean off of southeastern Hokkaido, Japan, and inflicted
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catastrophic damage on coastal fisheries in the ensuing
months. To understand the distribution of Karenia spp.
blooms, we conducted extensive ship surveys and analyzed
in-situ data in combination with Sentinel-3-derived ocean-
color imagery. High chlorophyll-a concentrations (exceeding
10 mg m−3) were detected mainly in coastal shelf–slope
waters <1,000 m deep that were occupied by Surface Coastal
Oyashio Water and Modified Soya Warm Current Water,
and Karenia blooms occurred around the confluence of
subtropical and subarctic waters. Abundances of Karenia
spp. were correlated with chlorophyll-a concentrations,
which typically had a vertical maximum at the surface
within the homogeneous surface mixed layer (typical mixed-
layer depths were around 20–25 m). Moreover, large- and
small-scale distributions of Karenia spp. abundances at
the ocean surface were estimated by using two methods
based on Sentinel-3-derived MLH and RBD. The two
methods provided consistent spatial maps of Karenia spp.
abundances, except in very nearshore waters. In addition,
MLH-derived abundances were about twice as high as
RBD-derived abundances, primarily because of uncertainties
attributable to limited sample ranges and sample sizes of in-
situ Karenia spp. abundances, which can be improved by
the addition of more in-situ Karenia abundance data to our
regression models.

Our estimates of Karenia spp. abundance revealed the
spatiotemporal distributions and dynamic features of Karenia
blooms on the Pacific shelf off southeastern Hokkaido. The
cores of Karenia blooms (typically > 103 cells mL−1) were
generally confined to the shelf. High-abundance areas were
characterized by streak-like structures (>103 cells mL−1)
associated with submesoscale filaments that tended to be
oriented parallel to the coastline, as well as by patch-
like structures (>104 cells mL−1). In very nearshore
waters, Karenia spp. blooms were local, intermittent,
and connected to blooms in shelf waters by streak-
like structures. We also observed a greater-than 2-fold
increase in Karenia spp. abundance within roughly 24 h
from 12 to 13 October; this was associated with the
combined effects of physical advection and algal growth.
Our findings illustrate the impossibility of using ship
surveys to capture the overall spatial structure of Karenia
blooms, which change on an hour-to-hour basis, off
southeastern Hokkaido. Hence, the maps of RBD- and MLH-
derived Karenia spp. abundances generated in our study
can provide the basic information needed to understand
the processes and mechanisms by which harmful algal
blooms during late summer–autumn 2021 caused damage to
regional fisheries.
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