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Objective: During the last few years, underwater object detection and marine

resource utilization have gained significant attention from researchers and

become active research hotspots in underwater image processing and analysis

domains. This research study presents a data fusion-based method for

underwater salient object detection and ocean environment monitoring by

utilizing a deep model.

Methodology: A hybrid model consists of an upgraded AlexNet with Inception

v-4 for salient object detection and ocean environment monitoring. For the

categorization of spatial data, AlexNet is utilized, whereas Inception V-4 is

employed for temporal data (environment monitoring). Moreover, we used

preprocessing techniques before the classification task for underwater image

enhancement, segmentation, noise and fog removal, restoration, and color

constancy.

Conclusion: The Real-Time Underwater Image Enhancement (RUIE) dataset

and the Marine Underwater Environment Database (MUED) dataset are used in

this research project’s data fusion and experimental activities, respectively.

Root mean square error (RMSE), computing usage, and accuracy are used to
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construct the model’s simulation results. The suggested model’s relevance

form optimization and conspicuous item prediction issues in the seas is

illustrated by the greatest accuracy of 95.7% and low RMSE value of 49 when

compared to other baseline models.
KEYWORDS

data fusion, marine big data, ocean environment, underwater saliency detection,
underwater image processing
1 Introduction

Oceans cover about 70 percent of the earth’s surface and

hold enriched natural resources that endeavor in long-term

human development. With the emergence of advanced

information and communication systems, the researchers paid

significant attention to the exploration of mysterious areas of the

ocean, marine exploitation, and observation. However, facing

relatively hashed and unconstrained marine scenes, there are

legion austere inimical factors such as water with high turbidity,

dreary color, uneven illustration, and a perilous underwater

atmosphere that gravely compromises the accuracy and

accessibility of underwater photos in real-world contexts (Jian

et al., 2021). To tackle these issues, numerous research reports

have been published on how to effectively perform underwater

image and visionary processing tasks. Qiao et al. (2022),

proposed a novel generative adversarial network (GAN)

architecture to address color distortion or under/overexposure

problems in underwater images. Their model generates high-

quality enhanced images to address the non-uniform

illumination problems in images. Moghimi and Mohanna

systematically analyzed the extant data and identified different

real-time underwater image enhancement models proposed in

the literature (Moghimi and Mohanna, 2021). Halimi et al.

present an effective technique for boosting underwater image

resolution by concurrently reconstructing the reflectivity and

complexity of the image using the greatest marginal probability

estimate (Halimi et al., 2017).

The aim of salient object recognition, which makes use of

image/video segmentation, is to pinpoint the most eye-catching

and aesthetically attractive objects or regions in a picture (Wang

et al., 2018), image foreground annotation (Cao et al., 2016),

image quality assessment (Gu et al., 2016), and video

summarization (Cong et al., 2019). In-depth research has been

carried out utilizing very superior artificial intelligence (AI)

algorithms to identify saliency in photographs of natural

settings during the past few years. It is imperative to note that

salient object identification differs greatly from studies on

anomaly detection and conventional object detection. First of

all, unlike anomaly detection and salient object recognition,
02
which only commit to discovering locally notable objects,

object detection is a comprehensive job that focuses on

detecting everything. Salient object detection produces a

saliency probability map at the pixel level as opposed to object

detection and anomaly detection, which always identify items

with bounding boxes. The researchers used a range of algorithms

to discover significant details in images and videos, such as Lee

et al. (2018), proposal of a manipulated deep learning model for

saliency detection using a convolutional neural network (CNN)

and GoogLeNet. This model uses both low-level and high-level

features. Google is used to gather high-level data, while CNN

architecture is used to extract low-level attributes. By comparing

a local region’s differences from other areas in an image, these

attributes were utilized to assess a region’s relative importance.

Zhang et al. (2019), proposed a pipelined model for detecting

salient objects in underwater photos, using deformable

convolutional networks. Using the CNN approach, scientists

first reduced noise in underwater photographs to improve

contrast. Increase the feature extraction capabilities by

implementing a deformable position-sensitive ROI pooling

method with RPN and rebuilding the ResNet-101 feature

extraction sub-network by using a deformed convolution model.

After studying the literature, it was concluded that most of

the models either had a low identification rate, especially in high

turbidities, or were highly time-consuming and required more

data for the testing and validation process. Our research work

addresses these problems with the following key objectives:
• To develop a hybrid deep learning model consists of

upgraded AlexNet with Inception v-4 for salient object

detection and ocean environment monitoring. AlexNet

is considered for the spatial data classification while

Inception v-4 is exploited for temporal data

(environment monitoring).

• To perform semantic-based data fusion of two publicly

available datasets (MUED and RUIE) and perform

training and validation tasks of the hybrid model.

• To accurately identify saliencies and perform shape

optimization using this hybrid model and fused

database. An overall identification rate of 95.7% is
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achieved by this model. After comparing its

performance with benchmark techniques, our model

outperformed even on smaller dataset.
The remainder of this research article is organized by introducing

the representative models on different underwater image processing

and data fusion-based models in Section 2. Section 3 introduces the

experimental setup exploited to accomplish this research work.

Results and discussion are outlined in Section 4 of the paper

followed by the conclusion in Section 5.
2 Literature review

This portion of the study summarizes recent research reports

in the subject area under consideration and several data fusion-

based models that have been proposed by academics for

deployment in various deep learning application domains.
2.1 Underwater salient objects detection

The congenital capabilities of humans to percept, efficiently

perceive, and distinguish salient objects in videos or images keep

them ahead of machines (Li et al., 2019). Saliency detection is

used in the machine vision and underwater image processing

sectors to provide computers the capacity of people to analyze

underwater images, which also plays a key role in discovering

marine resources. Consequently, many underwater saliency

detection models have been developed freshly.

The problem of identifying the prominent components from

underwater photos using conventional saliency detection

techniques is made more difficult by the uncertainty of

underwater settings. The intricacy and diversity of undersea

ecosystems have recently sparked a lot of study attention. Xu

et al. (2019), proposed Generalized robust principal component

analysis (GRPCA) as a unique method for underwater target

detection. This model functions by extracting visual

characteristics from underwater pictures that have specific goal

in recognition and images representation. –, developed an

effective underwater target layered background framework

based on the visual information perception and processing of

a frog’s eye, which can distinguish prominent objects from the

background of a picture with object contour. Chen et al. (2017),

suggested employing a monocular vision sensor to recognize

underwater objects using a prominent object identification

approach. This technique reduced background noise in order

to increase underwater detection accuracy (Ullah et al., 2019;

Khan et al., 2019; Su et al., 2020). Jian et al. (Jian et al., 2021; Jian

et al., 2021), suggested forward and backward cues for saliency

objects detection using visual spatial temporal features. For

object localization and tracking they defined a weighted

centroid calculation algorithm for center prior generation and
tiers in Marine Science 03
tracked it in scene images. A real-time neural network

architecture is used for saliencies detection in frames.
2.2 Data fusion background

Data fusion has drawn a lot of interest in data mining and is

being used in a variety of research fields, including both civilian

and military applications including monitoring animal habitats,

risks identification, surveillance, and espionage operations. Data

fusion techniques were initially employed to combine data into a

single, featured dataset that corresponded to the converted matrix

(Maragos et al., 2008). The fusion process is now carried out

through data fusion techniques, which collect data characteristics

from several sources. For instance, the most basic type of data

fusion is merging two one-dimensional datasets. Additionally, it

may be done by combining the semantics of the data. In

accordance with the characteristics of the data and the machine

learning approach employed for the fusion process, many data

fusion algorithms produce different optimization solutions. Zheng

et al. (Zheng, 2015), categorized data fusion methods into three

different classes (feature-based fusion, semantic-based fusion, and

stage-based fusion), as shown in Figure 1.

When adopting feature-based data fusion, the same

dimensional data characteristics are directly combined after

being collected from various sources, and then they are

evaluated using machine learning models. Before the direct

catenation of data features, careful consideration is given to the

elimination of duplicate records before the merging process;

second, keep the same dimensions for all the records in the

fused database because model performance can be adversely

affected during the merging process if you do not; and third,

over-fitting is another significant challenge to face during the

training process. In the stage-based data fusion models, the

characteristics of the data are classified into several classes, and

the data from each class is subsequently examined and combined

appropriately (Zhu et al., 2018). The foundation of the semantic

meaning-based data fusion method is the semantics of the data.

The technique of semantic-based data fusion divides data

semantics into four categories: transfer learning data fusion,

multi-view data fusion, similarity-based data fusion, and

probabilistic dependency data fusion. Using data derived from

several sources, data values are obtained and assessed in a multi-

view-based data fusion system. Co-training, multi-kernel learning,

and subspace learning procedures are subcategories of this fusion

process. Khan et al. (2021), performed semantic-based data fusion

for traffic monitoring and flow predictions in smart cities.
3 Experimental setup

As shown in Figure 2, this study used a hybrid deep learning

model made up of Inception v-4 and AlexNet. The AlexNet and
frontiersin.org
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inception-v4 architecture are merged in this research project.

The revised AlexNet structure and the addition of the Inception-

v4 module increase the network’s reprocessing capacity. The

batch normalization layer (BN) is also used to increase

generalization abilities, hasten convergence, and stop the

gradient from fading. During the training process, mean m and

variance s is calculated using (Eq.1) and (Eq.2) to normalize

each sample in the batch. The normalized bath values are

calculated using (Eq.3).

m   =  
1
No

k
i=1xi (1)

m   =  
1
No

k
i=1 xi − mð Þ2 (2)
Frontiers in Marine Science 04
bxi = xi − mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 − ϵð Þ

p (3)

where N represents total number of samples in a batch and

xi represents the input samples. The BN layer’s convolution

output for a two-dimensional image input is (N, C, W, H), where

W and H stand for the dimension of the feature map and C

stands for the number of output channels. Afterward, each batch

sample may be expressed separately as xc, w, h. Each sample is

individually normalized by the BN, thus the resultant number of

m is also C × W ×H.

The BN layer has the ability to manage gradient explosion,

restrict the gradient from vanishing, inhibit overfitting, and

accelerate network training and convergence. Figure 2 shows

how the inception-v4 model’s structure was employed in the
FIGURE 2

Experimental setup.
FIGURE 1

Different data fusion techniques.
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proposed research project. Input data (images) are provided at

the input layer. The number of hidden layers can be defined

based on the nature of the research problem and hardware

specifications. A huge amount of data and many hidden layers

require more simulation time for a simple hardware

combination (normal computers with no GPU installed). The

output layers, or fully connected layers (FCL), generate the

output based on the information generated from hidden

layers. It can also be termed the “SoftMax layer.” Different

activation functions like rectified linear unit (ReLu) and tanh

are used for validation purposes. This research work uses

transfer learning with five hidden layers. The convolution layer

calculates texture information from the input image. Following

then, the Inception-V4 continues to feature extraction as a

communications system, which is made up of several

convolutional and pooling procedures.

The Inception-X module, where X stands for A, B, and C,

improves feature utilization by teaching image features through

multiple concurrent feature transferring mechanisms.

Reduction-X shrinks large feature maps into small feature

maps while increasing the number of channels, with X

denoting the A and B modules. This research work proposes

monocular vision sensor to recognize underwater objects using a

prominent object identification approach. This technique

reduced background noise in order to increase underwater

detection accuracy. This technique avoids high computational

complexity without experiencing a significant information loss

(Tian et al., 2021). The average pooling layer therefore decreases

the number of parameters while increasing the model’s

robustness while also lowering the deviation from the

computed mean. Additionally, the dropout layer is used in the

two completely connected layers to prevent the overfitting issues,

in which a certain number of neurons are briefly removed from

the network during training. The results of the SoftMax

regression are finally transferred to the (0, 1) probability

interval via the output layer (Hang et al., 2019). Jian et al.

(2021), reviewed multiple feature extraction and analysis

techniques for underwater image processing. They also

presented a benchmark underwater image database for

identifying the strengths and weaknesses of the existing

algorithms for underwater saliencies and images. This database
Frontiers in Marine Science 05
offers offer unparalleled opportunities to researchers in the

underwater vision and beyond (Jian et al., 2019). Moreover,

the authors in (Ullah et al., 2017; Ullah et al., 2019; Ahmad et al.,

2021; Yasir et al., 2022) suggested manipulated feature extraction

techniques for object detection underwater, on sea surfaces, etc.

When numerous parallel convolution paths are employed, the

number of social parameters is reduced. The connectivity with

deepening layers can accomplish a similar (or superior)

performance with fewer parameters than the connection

without deepening layers. The first layer just has to focus on

learning the most recent information and can learn successfully

with less training data. Feature information may be separated

into tiers by growing the network, improving learning efficiency.
3.1 Data acquisition

In this research, we use two different databases that are

publicly available for simulations and experimental work, as

depicted in Table 1. These two databases are fused together to

evaluate and train the model from two different perspectives

simultaneously. A few images of the underwater objects are

depicted in Figure 3.
3.2 Data fusion

After selecting underwater image databases, the same

dimensional data is fused using (Eq. 4). All these varying input

values must be multiplied with different weights accordingly.

The resultant input map can be obtained by fusing the data as

depicted in (Eq. 4).

Xoutput   =   (Wturb � Xturb) + Wpose � Xpose

� �
+ Wvariety �  Xvariety

� �
(4)

Where “×“ is applied for element wise multiplication and

Xturb, Xpose, Xvariety represent the input turbidity of water,

diversity in pose, and diversity in variety, while Wturb, Wpose,

Wvariety depict the learning parameters classifying numerous

impact degree of these factors. The finalized value at tth time
TABLE 1 Databases for underwater image processing.

Database Type of data Providers

MUED
(Jian et al.,
2019)

This collection includes 8600 underwater pictures of 430 distinctive prominent items against noisy backgrounds. It is also
quite different in terms of position, variety, stance, water turbidity, etc.

1. Ocean University of
China, Qingdao
2. Shandong
University of Finance
and Economics

RUIE (Liu
et al., 2020)

More than 4000 underwater genuine photographs are available in this database, which is divided into three groups based
on their classification: underwater image quality sub-aggregate, underwater color cast sub-aggregate, and underwater
higher-level task-driven sub-aggregate.

Dalian University of
Technology
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interval is depicted by X̂t . For normalizing the output values a

specific range (1, –1) is defined using the hyperbolic function

depicted in (Eq. 5).

X̂t   = tanh(Xoutput) (5)

This fused dataset is used for training and testing purposes.

The highest accuracy rate of 95.7% is calculated for salient

objects detection in underwater images.
3.3 Training and validation of the model

Different input and performance parameters used for the

validation of the proposed hybrid model are depicted in Table 2.

The simulation results are calculated in Python using

TensorFlow and Keras libraries for the recognition and

classification of reviews. After validating using these different

performance metrics an overall accuracy rate of 95.7% is

achieved, which reflects the applicability of this hybrid data

fusion-based model for the identification of saliencies.
Frontiers in Marine Science 06
4 Results and discussions

The experimental results and underlined discussion are

briefly outlined in this section of the paper. To test the

applicability of the proposed algorithm different performance

metrics are used that are given below.
4.1 Varying training and test sets

The proposed hybrid deep learning model’s recognition

characteristics are evaluated using a variety of training and test

sets. Figure 4 illustrates that the accuracy results grow together

with the training set as can be seen. The suggested model has the

greatest accuracy rate, which is 95.7%. This model’s ability to

recognize important things in underwater photos and video and

carry out shape improvement is demonstrated by the high

accuracy rate.
TABLE 2 Different parameters used for the validation and experimental work in the proposed research work.

S. No Parameters Values

1. Number of inputs 11800

2. Activation function ReLu and tanh

3. Epoch size 25

4. Filter 5 × 5

5.
Number of hidden
layers

5

6. Dropout 0.2

7. Batch size 32 × 32

8. Optimizer Adam

9. Performance metrics
ROC curve, AUC values, precision, accuracy, true-false values, varying training and test sets, miss-classification rate, simulation
time.
A B C

FIGURE 3

Some sample images of MUED database with a couple of subclasses.
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4.2 Varying epoch size

To evaluate the performance of the proposed hybrid deep

learning system based on different epoch size. In this case an

epoch size of 25 is selected for the evaluation purposes. The

corresponding results of the model for the sentiment analysis are

depicted in Figure 5.

From Figure 5, it is depicted that the graph contains a

comparatively lower over-fitting values, which reflects the

applicability of the model for the selected sentiment

analysis problem.
4.3 ROC curve

A classification model’s performance is graphically depicted

as a receiver operating characteristic curve (ROC curve), which

is valid for all classification thresholds. This graph shows the

two parameters:
Frontiers in Marine Science 07
• True Positive Rate

• False Positive Rate
True Positive Rate (TPR) is an alternate term (synonym) for

recall and can be mathematically represented in (Eq. 6) as

follows:

TPR =  
TP

TP + FN
(6)

False Positive Rate (FPR) can be mathematically represented

in equation (7) as follows:

FPR =  
FP

FP + TN
(7)

At different categorization criteria, TPR vs. FPR are shown

on a ROC curve. As more items are classified as positive when

the classification threshold is lowered, both False Positives and

True Positives rise. The hybrid model’s proposed ROC curve is

shown in Figure 6.
FIGURE 5

Performance evaluation of the proposed model using varying epoch size.
FIGURE 4

Recognition abilities based on varying training and test sets.
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For validating the proposed research problem, the hybrid

model is validated using different well-known baseline models

reported in the proposed field. These baseline models include:
Fron
• ARIMA – Auto-Regressive Integrated Moving Average

(ARIMA) is extensively used for time series

identification problems.

• Conv1D Net – Significantly suggested in the extant for

temporal dependent problems.

• LSTM (Khan and Nazir, 2022) – Long Short-Term

Memory (LSTM) models are typically used for

sequential data analysis and time prediction problems.

• St-Res Net – A sophisticated machine - learning model

was developed by Zhang et al. (2017),, When compared

to other algorithms, this one delivers correct outcomes

for crowd and time forecasts.
The root mean square error rate (RMSE) value is selected as

a validating point for comparing these benchmark algorithms
tiers in Marine Science 08
with the proposed research work. The generic followed for the

RMSE value calculation is depicted in Eq. (8) as follows:

RMSE   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

X*T
oi xi  −   �xið Þ2

s
(8)

where T depicts the time interval while X represents the

number of inputs observed during the corresponding iteration.

xi represents the predicted value (positive, negative, or neutral

response of the user), while �xi is the original. The RMSE-based

performance results are depicted in Figure 7 below.

The proposed model’s lowest RMSE value when compared

to the chosen benchmark methods demonstrates the usefulness

of the presented study. The usefulness of the suggested approach

for detecting prominent objects in background or underwater

photos may also be deduced from this RMSE value.

For comparing the performance of the proposed hybrid

model with the selected benchmark models. Accuracy is used

as the performance metric in this validation process, which uses
FIGURE 7

RMSE based results of the proposed model with the selected benchmark algorithms.
FIGURE 6

Performance evaluation of the proposed hybrid model using ROC curve.
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varying training and test sets. The identification capabilities of

different users’ emotions are depicted in Figure 8. From Figure 8

it is observed that our model outperformed by producing high

identification rates based on varying training and test sets.
4.5 AUC values

The performance of the proposed model is also validated by

using the area under the curve (AUC) values based on a

fluctuating number of hidden layers. The underlined results

are depicted in Figure 9 below.
Frontiers in Marine Science 09
From Figure 8, one can easily observe that the performance

of the proposed model decreases after hidden layer 4 (the

maximum AUC value of 95.7 is recorded at h4). This is

because of the complexity of the model and the entire high

simulation time. So, in our case, a deep learning structure with

four hidden layers is an optimum design in our case. Figure 10

shows how much time the suggested hybrid model requires

ultimately based on the various hidden layer counts. Figure 10

shows that as the number of hidden layers rises, so does the

simulation duration. The circuit complexity and high simulation

cost are reflected in the sudden rise in simulation time beyond

hidden layer 4.
4.6 F-score, precision, and error-rate

The pertinency of the proposed model is also validated using

the f-score, precision, and error rate generated. The underlined

results are depicted in Figure 11 below.

The small miss-classification rate and high accuracy,

precision, recall, and F-score values represented in Figure 11

reflects the pertinency of the proposed hybrid model for the

optimum identification of saliencies in underwater images.
5 Conclusion

In this research, we present a hybrid deep learning model for

salient object recognition in underwater photos that combines

improved AlexNet and Inception v-4. The suggested model can

precisely find saliencies with various sizes, water turbidities, and

ocean habitats and successfully reduce the crowded backdrops

thanks to the data fusion and hybrid architectural design. In

order to combine data and conduct experiments, this study

combines the MUED and RUIE databases. Model simulation
FIGURE 9

AUC values based on the number of hidden layers.
FIGURE 8

Performance analysis of the proposed hybrid model with the selected baseline models.
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results are produced utilizing accuracy, computing usage, and

root mean square error (RMSE). The suggested model’s

suitability for shape optimization and salient item recognition

in underwater photos is demonstrated by its high accuracy of

95.7% and low root-mean-square errors (RMSE) values when

compared to existing baseline models. The suggested hybrid

model’s usefulness in the intended study topic is shown by

experimental findings. Our model considerably outperformed

other benchmark models by producing effective outcomes with

minimal training data.
Frontiers in Marine Science 10
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