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Eastern China has a complex environmental dynamics system in the western

Pacific tectonic domain, and the study of its sedimentary records controlled by

tectonic movements is distinctly significant for exploring sea-land interactions,

global climate change and sea level fluctuations. A reliable OSL (Optically

Stimulated Luminescence) chronostratigraphic framework was established

based on a systematic investigation of the stratigraphic lithology of the

boreholes in Wuhu area, Eastern China, and the depositional environment

since the Late Cretaceous was reconstructed by multiple environmental

proxies. Significant regional changes in sedimentary activity since the

Mesozoic indicate that the Yanshan movement and the Neotectonic

movement controlled the evolution of sedimentary basins and fracture

tectonics in the study area and influenced the paleo-geographic

environment and sedimentary patterns in a regional geotectonic context.

Since the Middle Pleistocene, the temperature and sea level trends were split

into six stages, four of which (MIS 6, 4, 3 and 2) can be categorized as periods of

decline, with MIS 1 being a period of significant increase. The other phase (MIS

5) was characterized by violent fluctuations in climate and sea level, with

periods of increase in MIS 5a, 5c and 5e and decrease in MIS 5b and 5d.

Sedimentary process in eastern China are mainly controlled by regional

geotectonic activity, and the specific evolution of the depositional

environment is also influenced by the combined effects of regional climate

and sea level.

KEYWORDS

tectonic evolution, climate change, sea level, the Late Cretaceous to Holocene, Wuhu
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Introduction

The river-ocean interaction area is a strong ocean-land-

atmosphere interaction zone. Under the impacts on extreme

climate events, sea-level fluctuation and regional crustal

movements, sediments record a vast amount of information

on natural environmental evolution and are therefore very

sensitive to global climate and paleo-environmental changes

(Wang et al., 2007; Wang and Ji, 2011; Yao, 2014; Liu et al.,

2010; Ghandour et al., 2021). The study of climate-sea level

change and local sedimentary response of land-ocean systems

has become a crucial issue in the evolution of the global

environment, and is vital to address current changes in

anthropogenic climate and geospatial patterns (Feist et al.,

2019; Singh and Sinha, 2019; Yang et al., 2022). For example,

studies of the geological setting of Deedsville Bay, the Bahamas,

and the Garigliano Plain have suggested that regional

environmental evolution is mostly controlled by climate

extremes, changes in water regimes, and sea level fluctuations

(Aiello et al., 2021; Kindler and Hearty, 2022; Noorian et al.,

2022). Understanding past environmental evolution is

imperative for exploring global climate-sea level fluctuations

and the distribution of geological resources over long timescales.

The Wuhu area is located in the northern margin of lower

Yangtze plate, with a complex structural system, and was

influenced by the collisional subduction between the

Transpacific plate and Eurasian plate during the Mesozoic-

Cenozoic period, with obvious signs of fracture zone and

volcanic activity (Wang et al., 2007; Zhu et al., 2012; Yang

et al., 2016; Qiu et al., 2018; Wu et al., 2020). Previous studies

have shown that tectonic processes are one of the fundamental

factors affecting the supply of material sources in river basins (Li

and Zhang, 2003; Henderson et al., 2010; Liu, 2018; Lal et al.,

2019). For example, the lower Yangtze River has been strongly

affected by the Indo-China movement (crustal movements

occurring from Triassic to Early Jurassic) since the Mesozoic

by large-scale sea retreat events, which developed extensive

terrestrial sediments in Wuhu, Tongling and Fanchang area

(Zhou and Chen, 1992; Chen, 2020). Moreover, the Yanshan

movement (extensive crustal movement from Jurassic to

Cretaceous in China) was caused by the westward collisional

subduction of the paleo-Pacific plate and Asia-European plate

resulting in extensive magmatic intrusion in eastern China (Yan

et al., 2000; Grant et al., 2014). Changes in climate and sea level

have intrinsic effects on the sediment cycle, including changes in

sedimentation rates, water regime size, and datum. Vegetation

condition, weathering intensity, sediment composition, and

riverine sediment transport can change significantly under the

influence of climate fluctuations during different geological and

historical periods (Bell, 1975; Wang, 2008; Cui, 2017). Therefore,

paleoclimate proxy features such as sediment grain size,

magnetic susceptibility and chromaticity have been used to

reflect and reconstruct the paleo-environment (Xiong et al.,
Frontiers in Marine Science 02
1998; Yan et al., 2000; Bouchez et al., 2011; Aiello et al., 2021).

To date, several geological and sedimentological investigations

have been carried out in the Wuhu riverine area, most of which

focus on Quaternary river and lake sediments and stratigraphic

lithology, while there is a lack of in-depth studies on the

differences of stratigraphic depositional sequences on both

sides of the riverine hedge zone under different tectonic

environments and the evolutionary history of the sedimentary

environment since the Late Cretaceous in the lower reaches of

the Yangtze River.

To reveal the evolutionary history of the sedimentary

environment in eastern China since the Late Cretaceous, we

have investigated and analyzed the sedimentary sequence,

lithological characteristics of the sedimentary strata,

hydrodynamic conditions and redox environment in the

region based on the establishment of a feasible chronological

framework. Our study aims to comprehensively analyze the

sedimentary face characteristics of borehole cores in Wuhu

and its surrounding areas and to reconstruct the complete

history of sedimentary environment evolution based on the

specific local paleogeographic environment and crustal

movement, as well as relative sea level fluctuations and climate

evolution records. This detailed analysis may also be more

helpful in understanding the major geological events that have

occurred since the Late Cretaceous, which have resulted in

significant changes in the geographic pattern of eastern China.

Therefore, our objectives are to: (1) to acquire the evolution

records of the sedimentary environment in the lower reaches of

the Yangtze River since the Late Cretaceous; (2) to explore the

regional tectonic movements and paleo-geographical patterns in

eastern China since the Mesozoic; (3) to reveal the sedimentary

processes response to regional and global climate and sea

level changes.
Regional setting

Wuhu area is located in the plain area of middle and lower

reaches of Yangtze River, with a subtropical humid monsoon

climate, annual average temperature of 17-18°C, abundant light

and rainfall (WLRCC, 1993; Fang, 2005; Su, 2007). Due to the

influence of plate motion, folded tectonic deformation and

extensional tectonic deformation activities in eastern China

since the Mesozoic, the Wuhu region has a complex tectonic

environment. The Wuhu region is at the northern margin of the

Lower Yangzi plate, adjacent to the Tanlu fault zone, the Dabie

orogenic belt and the North China plate (Figure 1), and is

strongly influenced by the riverine ramp zone (Xu and Gao,

2015; Xu et al., 2018). Eastern China is located between the

Eurasian plate and Pacific plate, in the Circum Pacific tectonic

domain, which is mainly composed of the North China Craton,

the South China Block (consisting of the Cathaysia Block and the

Yangtze Craton), large orogenic belts (such as the Jiangnan
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orogenic belt, the Qinling-Dabie orogenic belt, and the Sulu

orogenic belt), and important hydrocarbon-bearing basins (Ren

et al., 2002; Zheng et al., 2013; Xu et al., 2021). Since the late

Mesozoic, tight westward subduction of the paleo-Pacific plate

has led to extensive and extreme tectonic activity in eastern

China, such as regional extension of the continental margin,

intraplate tectonic deformation, magmatic activity, and the

formation of the Craton Basin, resulting in the present-day

regional solid topographic contrast and extensive fracture

zones (Liu, 2007; Zheng et al., 2013. Xu et al., 2021; Noorian

et al., 2022). Among them, the Tanlu fault is the most important

impact-slip fault in East Asia, and its Mesozoic impact-slip

activity divides the Dabie Mountain-Sulu orogenic belt into

the western and eastern segments, affecting regional crustal

stability (Zheng et al., 2013; Zheng, 2019).
Frontiers in Marine Science 03
Material and methods

Field investigation

In November 2020, two boreholes were drilled on both sides

in Wuhu riverine area to obtain sediments, using the rotary

drilling method, where significant chronostratigraphic

development and sedimentary features, and named the ZF (31°

19′56″N, 118°18′45″E; depth: 49.9 m) and FC (31°22′41″N, 118°
26′56″E; depth: 83.4 m) boreholes (Figure 1). Both boreholes

were characterized for sediment texture, color and sedimentary

structure, and sedimentary environmental and chronological

samples were collected. Environmental samples were collected

at intervals of 1 to 1.5 m according to lithologic characteristics,

and 1 to 2 OSL samples were taken from each layer. A total of
FIGURE 1

The important orogenic belt in eastern China, the geographical location of the study area, and the locations of boreholes ZF, FC and DS08;
NCC is the North China Craton, SCB is the South China Block, YC is the Yangtze Craton, and CB is the Cathaysia Block.
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225 environmental samples and 7 OSL samples were obtained

from the ZF borehole, and 367 environmental samples and 8

OSL samples were collected from the FC borehole.
OSL dating

In order to establish a reliable chrono-stratigraphy, 20 cm

lengths of core sediment were selected for dating from

homogeneous sediments from different stratigraphic units or

from above and below close to the stratigraphic interface, which

were deposited in situ without significant interference (Table 1;

Aitken, 1998). Samples were collected from sealed PVC tubes with

quickly and immediately wrapped in aluminum foil, and placed in

black sealed light-proof bags. After removing the outer 2 to 4 cm of

the sample and retaining only the undisturbed dense central

portion, all samples were added 10% HCl and 38% H2O2 to

remove carbonates and organic matter. Following the

precipitation separation of 4-11 µm particles according to Stoker’s

law (Porat et al., 1999; Wintle, 2008; Bowman et al., 2004), the

feldspar in the particles was dissolved with 35% hexafluorosilicic

acid (H2SiF6) and treated with 10% hydrochloric acid to remove

acid-soluble fluoride precipitates (Lai, 2010; Xu et al., 2020). The

ethanol-purified quartz grains were then measured on a Risø TL/

OSL-DA-15 optical release tomograph. OSL dating of all samples

was carried out in the laboratory of the Institute of Geographical

Sciences of the Henan Academy of Sciences.
Grain size analysis

In the laboratory analysis, carbonates and organic matter in

the sediment were first removed by adding HCl (25%) and H2O2
Frontiers in Marine Science 04
(10%) successively to the sample following the chemical

pretreatment procedure described by Konert and Vandenberghe

(1977) and left to stand for 24 h, respectively. A 0.5 mol/L sodium

hexametaphosphate solution was added to soak the samples for

24 h, and the samples were gently stirred every eighth to disperse

completely. All samples were then put into a laser sample jar in

order to be dispersed uniformly again by ultrasonic shaking and

high-speed centrifugation. We measured samples up to 2 mm by

using a Malvern Mastersizer-2000 laser grain sizer, and the

repeatability and stability of the instrument were evaluated

using the Malvern quality standard (QA3002 glass beads). The

basic grain size classification of the sediments mainly followed the

Udden-Wentworth classification (Udden, 1914; Wentworth,

1922). The analytical errors of all the above experiments were

<5% at 95% confidence level. Afterward, the mean grain size (MZ),

sorting coefficient (SO), skewness (SK), and kurtosis (KG) were

calculated for each sample according to the formula of Folk and

Ward (1957). To reduce errors, we used a weighting method to

obtain the average of the grain size index values for all samples at

each sampling site, which was subsequently calculated using

GRADISTAT software version 8. In addition, weakly cemented

and loose sediment samples above 2 mm were sieved on a shaker

for about 10-15 min using sieve analysis and then graded and

weighed, which should be accurate to 0.01 g, or 0.001 g if the

graded amount is less than 1.00 g (Folk, 1974; Liu, 1981; Yuan

et al., 2019).
Magnetization analysis

The magnetization of the sediments was measured indoors

using an MS-2 magnetometer manufactured by Bartington

instruments, UK. All samples were dried in a drying oven,
TABLE 1 The optical luminescence (OSL) dating results of the ZF and FC boreholes in Wuhu.

Lab N. Sample N. Depth(m) U/ppm Th/ppm K/% Q-De(Gy) w.c (%) Q-Dose rate Age (ka)

L769 ZF-001 8.35-8.50 1.98 ± 0.04356 12.2 ± 0.4758 1.79 ± 0.004296 8.31 ± 0.26 22.17 3.062 ± 0.137 2.714 ± 0.148

L770 ZF-003 12.75-12.85 3.68 ± 0.0184 24.5 ± 0.7105 1.83 ± 0.004941 7.41 ± 0.07 36.34 3.952 ± 0.23 1.875 ± 0.111

L771 ZF-005 21.50-21.60 1.86 ± 0.02046 8.79 ± 0.21096 2.13 ± 0.006603 20.53 ± 0.96 15.21 3.216 ± 0.115 6.385 ± 0.376

L772 ZF-007 29.60-29.70 2.38 ± 0.03332 14.1 ± 0.1269 1.94 ± 0.012998 15.60 ± 0.57 17.99 3.533 ± 0.165 4.416 ± 0.262

L773 ZF-009 34.20-34.30 1.69 ± 0.0272 9.84 ± 0.26568 1.96 ± 0.010584 12.21 ± 0.32 26.76 2.762 ± 0.106 4.42 ± 0.205

L774 ZF-011 38.40-38.50 1.84 ± 0.00736 11.7 ± 0.1872 1.82 ± 0.00182 8.55 ± 0.21 28.96 2.769 ± 0.119 3.088 ± 0.153

L775 ZF-013 44.80-44.90 1.45 ± 0.02465 7.43 ± 0.21547 2.51 ± 0.007781 98.65 ± 2.47 13.65 3.362 ± 0.097 29.344 ± 1.12

L756 FC-001 7.60-7.90 2.65 ± 0.037 15.4 ± 0.216 1.55 ± 0.003 20.92 ± 0.47 24.13 3.224 ± 0.169 6.448 ± 0.366

L757 FC-003 14.20-14.30 2.63 ± 0.04 15.6 ± 0.266 1.54 ± 0.002 46.90 ± 0.97 22.89 3.247 ± 0.173 14.444 ± 0.825

L758 FC-005 19.57-19.67 3.18 ± 0.009 16.4 ± 0.262 1.65 ± 0.003 29.03 ± 0.30 34.20 3.197 ± 0.169 9.08 ± 0.488

L759 FC-006 23.02-23.14 2.64 ± 0.063 14.5 ± 0.276 1.33 ± 0.012 38.13 ± 0.30 18.14 3.113 ± 0.174 12.249 ± 0.692

L760 FC-008 27.90-28.10 3 ± 0.075 18.4 ± 0.46 1.9 ± 0.006 237.73 ± 9.50 15.76 4.126 ± 0.22 57.623 ± 3.843

L761 FC-010 32.20-32.30 4.68 ± 0.145 19.4 ± 0.155 1.84 ± 0.004 394.87 ± 3.82 17.56 4.561 ± 0.262 86.584 ± 5.037

L762 FC-012 36.78-36.88 2.74 ± 0.107 18.1 ± 0.399 1.83 ± 0.128 461.91 ± 9.28 21.10 3.760 ± 0.217 122.856 ± 7.515

L764 FC-014 45.10-45.20 2.33 ± 0.047 6.84 ± 0.28 0.9 ± 0.002 300.06 ± 32.98 6.439 2.281 ± 0.129 131.552 ± 16.257
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ground without damaging the natural grain, and soil samples

were collected in 1 cm3 non-magnetic cassettes and weighed

before being tested with an MS-2 magnetization meter. The

instrument’s frequency should be set to 4.7 kHz for high

frequencies and 0.47 kHz for low frequencies, and SI and 0.1

for unit and measurement steps, respectively. During the test, the

background value of the instrument was measured once, then

the magnetization of the sample was measured twice, and the

background value of the instrument was measured once again

after the sample was finally removed. All samples were measured

three times, and the average value was taken as the final

measurement result. After measuring the volumetric magnetic

induction and density of the samples, the low-frequency

magnetic induction (clf), high-frequency magnetic induction

(chf) frequencies, and magnetic induction (cfd) were calculated.
The calculation formula is cfd=(clf-chf)/clf×100%.
Chroma analysis

The samples were naturally and uniformly air-dried in the

laboratory and pounded and ground to a fineness of

approximately 200 nm or less without damaging the sediment

grain structure to minimize the effect of soil moisture and soil

grain size on soil color. The experimental conditions, especially

the background light source, were kept constant throughout the

test. The data were measured using a Minolta CM-2002

spectrophotometer according to the CIELAB colorimetric

system. The samples were calibrated on a standard calibration

white plate of a K-Minolta CR-400 colorimeter made in Japan,

flattened without wrinkling. The same sample was measured

three times in different areas, and the average values of L*
(brightness), a* (redness), and b* (yellowness) were recorded so

that the error was less than 0.07.
Frontiers in Marine Science 05
Results

Lithology description

Through detailed observation and study of the sedimentary

strata of the ZF and FC boreholes with detailed lithology,

sedimentary structure, structure, and sedimentary cycle, it is

found that the sedimentary facies of the ZF and FC boreholes are

significantly different (Tables 2, 3; Figure 2). As shown in

Table 2, the ZF borehole is mainly composed of sand-

dominated fluvial deposits, with a small proportion of clay and

silty clay, showing a typical lower coarse and upper fine binary

structure. The bottom of the borehole (depth 49.9 to 48.75 m) is

mainly weathering products of the amphibolite, including

fragments of grey-purple mudstone encased in bedrock

formed by total weathering and rock fragments formed by

strong weathering (Table 2). Above the bedrock, between

48.75-47.1m depth, the stratigraphy is dominated by a

greenish grey muddy boulder-gravel layer, which is river-lake

facies (Table 2). While the ZF borehole is characterized by a large

amount of yellowish-grey medium to coarse sand and gravel in

47.1 to 42.5 m depth, which belongs to alluvial fan subphase with

a clear erosional boundary with its lower strata. Most of the ZF

borehole sediments consist of stratigraphic silt, fine sand, and

medium-fine sand (depth 42.5 to 0 m), which are belonged to

fluvial facies (Table 2), and there are multiple coarse to fine grain

size sedimentation cycles from the base to the top (Figure 2).

The lithology and sedimentary environment of the strata in

the FC borehole are sophisticated and have shown significant

segmentation with depth (Table 3; Figure 2). The lower

stratigraphy is dominated by moderately weathered bedrock,

including brick-red mudstone and grey gypsiferous mudstone

(depth 83.4 to 74.45 m) and gravelly brick-red siltstone (depth

74.45 to 60.5 m), which were deposited in river-lake facies
TABLE 2 The stratigraphic description and sedimentary facies of the ZF borehole in Wuhu.

Depth of
strata / m

Stratigraphic Description Sedimentary
facies

0-14.50 Grey, greyish-black silty and fine sand with many clay belts, with abundant mica; some soil-forming processes at the top,
containing many plant roots.

River floodplain facies

14.50-32.50 Dark grey, gray-black fine and medium-fine sand, gradually becoming coarser from bottom to top, with a few coarse sand and
gravels.

Alluvial facies

32.50-42.50 Gray-black fine and medium-fine sand, gradually becoming finer from bottom to top, occasional brownish clay belts and plant
roots aggregate; medium to coarse sand at the bottom, with a few yellow gravels.

Alluvial-diluvial
facies、River
floodplain facies

42.50-47.10 Yellowish grey, dark grey medium to coarse sand and gravel with medium to good roundness of the gravel. Alluvial fan subphase

47.10-48.75 Calcareous conglomeratic mudstone with many well-rounded pebbles in the upper part and many greenish silt clumps and gray-
white clayey silt belts in the lower part.

River-lake facies

48.75-49.90 Glaucous diorite-porphyrite weathering residues, the upper part is full weathered with a large number of dark green bedrock
residue grains wrapped in grey-purple mudstone; the lower part is strongly weathered with massive grey-green weathering
residues.

Weathering residues of
bedrock
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(Table 3). The stratigraphy in central part is characterized by a

thick layer of sandy pebble gravel occurring in 60.5 to 37.2 m

depth formed by alluvial, and a lime green clayey silt layer

deposited in a shallow lake at the upper part (depth 37.23 to

34.44 m) (Table 3). In addition, the lithology varies markedly

between 34.44 and 25 m depth in the FC borehole, with complex

sedimentary environment: from the bottom to the top, brownish-

yellow clay layers, brownish-yellow gravelly medium to fine sand

layers, and greenish silt layers occur in sequence. In the upper part

of the FC borehole (depth 25 to 0 m), clay, silty clay, and clayey silt

formed in alluvial sedimentary environment alternate regularly,

and the sediment in this part of the core is significantly finer-

grained compared to the rest of the stratigraphy (Table 3).
OSL results

As shown in Table 1, in the seven OSL ages obtained from

the ZF borehole, all samples belong to the Holocene, except for

ZF-013, which belongs to the Late Pleistocene (Q3). The

stratigraphic characteristics of the stratigraphy suggest that the

stratigraphy in 25 to 0 m depth belongs to the Holocene. The

erosional interface at the base of the loose sand and gravel layer

at 42.5m depth is taken as the lower boundary of the Holocene

(Q4) (Yu and Huang, 1996a; Yu and Peng, 2008; Su et al., 2019),

which is consistent with the stratigraphic and chronological

results of borehole DS08 (Figure 2). According to Yang (2008)

and Su et al. (2019), combining lithological features with dating

results, the depth in 47.1 to 42.5 m in sample ZF-013 is judged to

belong to the late Last glacial period. In addition, because our

sampling site is close to the river channel, affected by the change
Frontiers in Marine Science 06
of the Yangtze River and the Qingyi River channel and the

strong scour of the river, some of the bottom sediments have

been vertically displaced by strong hydrodynamics since the

Pleistocene, caused reversal of stratigraphic, just as the age of ZF-

005 and FC-003 samples (Table 1). The samples collected in

48.75 to 47.1 m depth contained a large number of pebbles and

gravels, which had poor signals during testing. They could only

be judged to belong to the Neogene (N) based on their

lithological characteristics, with the top boundary of the

formation dated to about 23.3 Ma and the bottom boundary

still uncertain (Qiu, 1988; Yu and Huang, 1996b; Xu et al., 2018).

Combined with the study of the lithology of the Late Cretaceous

strata in the Lower Yangtze River area (Xiang et al., 2009; Xu

et al., 2018), it is inferred that the bedrock at the bottom of the

ZF borehole belongs to the diorite-porphyrite formed by large-

scale volcanic activity in the Late Cretaceous period, and the age

of the top boundary of this section corresponds roughly to 65.5

Ma, while the base cannot be determined yet.

Eight OSL ages were obtained in borehole FC (Table 1), of

which the dating data for FC-001, FC-003, FC-005 and FC-006

were similar to those obtained in borehole DS08 at the

corresponding levels (Figure 2), proving that this part of the

formation (depth 25 to 0 m) belongs to the Holocene and using

the base of the loose sand and gravel layer as the bottom

boundary of the Holocene (Yan and Huang, 1991; Su et al.,

2019). Based on dated data of FC-008 and FC-010 (depth 34.44

to 25 m), both are inferred to belong to the Upper Late

Pleistocene (Q), while the lower part of the Upper Late

Pleistocene stratigraphy is missing in the ZF borehole in

conjunction with studies by Yu and Huang (1996a) and Su

et al. (2019). The dated age of FC-012 obtained in 37.2 to
TABLE 3 The stratigraphic description and sedimentary facies of the FC borehole in Wuhu.

Depth of
strata / m

Stratigraphic Description Sedimentary
facies

0-11.50 Grey and dark grey clayey silt and silt, with abundant mica and white shell crumbs, interspersed with brownish clay belts in the upper
part.

Alluvial flat
facies

11.50-25.00 Grey, dark grey clay and clayey silt with a few silt belts, plant roots and white shell crumbs. Flooded lake
facies

25.00-27.40 Caesious silt and clayey silt with a few clay belts and a few wormholes and plant roots. Shallow-lake
facies

27.40-30.70 Yellowish grey medium-coarse sand and gravel with a few belts of greenish silt, fine sand and brownish yellow clay, with wavy
bedding and a few wormholes in the upper part and numerous rust spots in the bottom.

Alluvial facies

30.70-34.44 Brownish yellow clay with a few belts of greenish grey clayey silt, more clayey silt lens and more rust spots, wind-formed loess Continental
facies
(eolian loess)

34.44-37.20 Greenish, green clayey silt and silt with medium-fine sand at the bottom, gradually finer in size from the bottom to the top, with a
few mica

Shallow-lake
facies

37.20-60.50 Brownish yellow and yellowish grey sandy pebble gravels, mainly medium-coarse sand, pebbles and gravels; gravels poorly to well
rounded, various colours, occasional brownish yellow clay belts and greenish grey and greyish purple medium-coarse sand

Alluvial facies

60.50-74.50 Brownish red, dark red siltstone, with strong weathering and soil forming processes, argillaceous-silty cementing, a lot Fe-Mn nodules
and greyish-white clay belts, with a few gravels

River-lake facies

74.50-83.40 Brick-red and dark red mudstone and siltstone alternate with greyish, dark grey gypsum mudstone, medium weathering, with a few
gypsum particles and Fe-Mn nodules.

River-lake facies
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34.44 m depth belongs to the early Late Pleistocene age (75-128

ka) (Zhang et al., 2015), and it can be inferred that the boundary

between the lime green silty clay layer and the brownish yellow

loess layer is the demarcation line of the Late Pleistocene lower

and upper strata combined with pre-studies (Li, 1987; Yu and

Peng, 2008). According to studies of lithology and age in the

Middle Pleistocene stratigraphy along the lower Yangtze River, it

was found that the giant thick sand and gravel layer in FC

borehole in 60.5 to 37.2 m in depth belong to the Middle

Pleistocene and is the top boundary (Yan and Huang, 1996a;

Su et al., 2018). In addition, based on the study of the segmented

lithologic characteristics of the Paleogene strata in Anhui

Province, it is judged that the brick red siltstone and
Frontiers in Marine Science 07
mudstone in74.45 to 60.5 m depth belong to the Paleogene

Period, and the top and bottom boundaries of the strata are

inferred to be 33.7 and 40.3 Ma, respectively (Li, 1984; Li, 1987;

Zhang et al., 2015; Xu et al., 2018). As with the strata in 74.45 to

60.5 m depth, no dating data were obtained at the FC borehole in

83.4 to 74.45 m depth. Combined with the stratigraphic lithology

research of Qiu (1988); Chen (2008) and Jiang et al. (2019), the

brownish to light red siltstone and grayish white to dark gray

gypsum mudstone at the bottom of the FC borehole belong to

the upper strata in the glutenite member of the Late Cretaceous

Xuannan Formation (Chen and Xia, 1985; Li, 1987), which leads

us to infer the top and bottom boundary ages are 65.5 and 70

Ma, respectively.
FIGURE 2

Comparison of sedimentary stratigraphic division between ZF, FC and DS08 boreholes (Su et al., 2019) in the study area.
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Grain size characteristics

The grain size composition of the core sediments from borehole

ZF is dominated by sand and silt, followed by clay and gravel, with

average percentages of 64.33%, 27.47%, 6.98%, and 1.11%,

respectively (Figure 3; Table 4). The mean grain size (MZ) of the

sediment varies from 0.4 to 7.08j with significant fluctuations, and

the values are higher in 48.75 to 49.9m depth and in the top stratum,

mostly ranging from 2.03 to 5.9j. Skewness (SK) varies from -0.64 to

0.32 and is mainly symmetrically distributed between depths 49.9 to

48.75 and 47.1 to 42.5 m; whereas most of the core sediment in the

ZF borehole (depth 42.5 to 0 m) has significantly lower values than

the lower strata, with positive skewness and negative skewness. The

sorting coefficient (SO) of sediment grain size in the ZF borehole

ranges from 1.49 to 34.47, with larger values below 42.5m depth,

where sorting is very poor to poor, and above 42.5m depth, the

sorting coefficient fluctuates less, up to 7.42 only, with sorting from

good to moderate. The kurtosis (KG) varies between 0.59 and 2.45.

From the depth of 48.75m to the top, the sediment kurtosis values

are low, reaching a maximum of 2.01, mainly moderate to normal

kurtosis. In 49.9 to 48.5m depth, the kurtosis values increase and

vary considerably: the lower strata are mainly flat and normal

kurtosis, the middle strata are narrow-normal-broad kurtosis, and

the upper strata are moderate-broad kurtosis. In addition, each

sample of ZF borehole sediment is mainly located in zones IV, V, VI

andVII in the C-M (the graph drawn by applying the C value andM

value of each sample, where C is the particle size corresponding to
Frontiers in Marine Science 08
the particle content of 1% on the cumulative curve of particle size

analysis data, and M value is the particle size corresponding to 50%

on the cumulative curve) diagram (including the low turbulence

sedimentation zone without clear boundary between VI and VII),

and a small amount is distributed in all other zones, which reflecting

that sediments in ZF borehole are mainly transported by rivers.

Among them, the sample points in zones IV and V show mainly

suspension transport, but contain a small amount of rolling

transport components (Figure 4).

The sediment composition of the FC borehole is dominated

by silt, followed by clay, sand and gravel, with average

percentages of 53.74%, 20.61%, 11.21, and 14.59%, respectively

(Figure 3; Table 5). The mean grain size in FC borehole varies

mainly from -3.82 to 6.73, with significant fluctuations, of which

the mean grain size tends to gradual increase in 25 to 0 m depth.

The sediment skewness coefficient fluctuates significantly in the

range of -0.47 to 0.88, of which the skewness shows negatively

and symmetrical distribution between depths 74.45 to 60.5 and

34.44 to 25 m, while the rest of the stratum shows a symmetrical

and positive skewness distribution with coarse grain size. The

sorting coefficients mainly belong to 0.31-5.04, with minor

fluctuations and poor overall sorting in the FC borehole. In

addition, the kurtosis is concentrated chiefly between 0.54 and

2.96 with slight fluctuations in which the kurtosis is mostly very

narrow in the stratum below 60.5m depth and moderate or

constant in 60.5 to 37.2m depth. And between 37.2 and 34.44m

depth, the kurtosis decreases with a range of 0.84 to 1.09 which is
A B

FIGURE 3

Grain size percentage contents and grain size parameters including the mean grain size (Mz), sorting coefficient (So), skewness (Sk), and kurtosis
(KG) index of ZF (A) and FC (B) boreholes sediments.
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mainly narrow, while in the upper strata (depth 34.44 to 0 m) the

kurtosis is mostly very narrow-medium. As can be seen from

Figure 4, the samples of FC borehole are mainly located in zones

VI, VII and VIII (including the low turbulence deposition zone

without clear boundary between VI and VII) in the C-M

diagram with a small number of them are distributed in other

zones, which represents complex sedimentary dynamic

conditions. Among them, the sample points in zones IV and V

show mainly suspension transport, but contain a small amount

of rolling transport components.
Magnetic susceptibility and chromaticity
characteristics

Both high and low-frequency magnetization values of the ZF

borehole sediments were high and fluctuating, with mean values

of 64.3×10-8 m3/kg and 64.67×10-8 m3/kg for high and low-
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frequency magnetization, respectively. And the chromaticity (L*,

a*, and b*) varied significantly, of which a lesser extent

fluctuating of L*(Figure 5; Table 4). The magnetization rate

gradually increased with the depth in 49.9-48.75 m, with no

significant changes in brightness (L*) and redness (a*), while

yellowness (b*) showed a trend of first decreasing and then

increasing. The magnetization values in 48.75 to 47.1 m depth

significantly increase with depth and a small range of

chromaticity fluctuations. In 47.1 to 42.5 m depth, the

magnetization values are minor and do not fluctuate wildly,

with a trend of increasing and then decreasing with depth and a

higher peak value, while a* and b* show significant sub-level

changes, and b* shows a considerable increase. The magnetic

susceptibility and chroma of sediments in 42.5 to 0 m depth

changes frequently and violently, while the magnetic

susceptibility showed a stable-increase-decrease trend with the

rise in depth and the chroma showed a regional stability after

violent fluctuations, of which the maximum value of b* appears
A B

FIGURE 4

The grain size C-M diagram of sediment samples of the ZF (A) and FC (B) boreholes.
TABLE 4 The grain size composition and parameters characteristics and magnetic susceptibility results of the ZF borehole in Wuhu.

Clay
(<2
mm)

Silt (2-
63
mm)

Sand
(2000>63

mm)

Gravel
(>2000
mm)

Mean
grain size
(MZ/j)

Sorting
coefficient

(SO)

Skewness
(SK)

Kurtosis
(KG)

Low-frequency
susceptibiliy

(clf)

High-frequency
susceptibiliy

(chf)

Maximum 29.01% 75.93% 100.00% 28.37% 7.08 37.48 0.32 2.45 132.38 133.5

Minimum 0.00% 0.00% 0.55% 0.00% 0.41 1.50 -0.64 0.60 5.25 4.00

Mean
value

6.98% 27.47% 64.33% 1.11% 3.56 4.58 -0.36 1.32 60.36 59.98

Standard
deviation

6.21 16.89 22.77 3.83 1.20 3.79 0.22 0.46 25.29 25.57

Variation
coefficient

0.89% 0.62% 0.35% 3.47% 0.34% 0.83% -0.63% 0.35% 0.42% 0.43%
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in the lower part accompanied by L* is negatively correlated

with a*.

The magnetic susceptibility values of the FC borehole deposits

are low, the fluctuation range is extensive, and their chromaticity

varies significantly with depth (Figure 5; Table 5). In 83.4 to

74.45 m depth, the magnetic susceptibility has multiple abnormal

peaks, and the overall trend is gradually increasing with the

increase of depth, in which the variation range of L* is small

and both a* and b* show a trend of first decreasing and then

increasing. The change of magnetic susceptibility in the depth of

74.45 to 60.5 m is insignificant, in which the average values of low-

frequency and high-frequency magnetic susceptibility are

6.98×10-8 m3/kg and 6.95×10-8 m3/kg, respectively. In addition,

except an immense valley value at 72.9 m of the brightness (L*),
Frontiers in Marine Science 10
the change of chromaticity is slight, which indicating that the

redox environment is relatively stable. The overall value of

magnetic susceptibility in 60.5 to 37.2 m depth is relatively low,

of which the variation range of high and low-frequency magnetic

susceptibility is 0.625 to 54.625×10-8 m3/kg and 0.875 to 53.5×10-8

m3/kg. In contrast, the chromaticity fluctuates violently, of which

L* and a * was negatively correlated while b* showed a significant

increase. In 37.2 to 34.44 m depth, except a peak appears at

35.41 m, the change range of magnetic susceptibility is relatively

stable with the low value, and the ranges of high and low-

frequency magnetic susceptibility are 2.25-9.875×10-8 m3/kg and

2.375 to 11.75×10-8 m3/kg, in which in 34.44 to 25.0 m depth the

magnetic susceptibility decreases significantly. However, the

variation of L* of is relatively gentle and still has a negative
A B

FIGURE 5

Low-frequency susceptibility (X lf ), luminance (L*), redness (a*) and yellowness (b*) curves of ZF (A) and FC (B) boreholes sediments.
TABLE 5 The grain size composition and parameters characteristics and magnetic susceptibility results of the FC borehole in Wuhu.

Clay
(<2
mm)

Silt (2-
63 mm)

Sand
(2000>63

mm)

Gravel
(>2000
mm)

Mean
grain
size
(MZ/
j)

Sorting
coefficient

(SO)

Skewness
(SK)

Kurtosis
(KG)

Low-frequency
susceptibiliy

(clf)

High-fre-
quency

susceptibiliy
(chf)

Maximum 44.77% 86.56% 56.54% 100.00% 7.91 5.04 0.88 7.01 66.25 66.63

Minimum 0.00% 0.00% 0.00% 0.00% -3.82 0.31 -0.48 0.54 0.88 0.63

Mean
value

20.61% 53.74% 11.21% 14.59% 4.91 2.06 0.14 1.01 9.50 9.51

Standard
deviation

11.31 23.01 12.27 30.96 3.37 1.01 0.24 0.42 8.86 8.84

Variation
coefficient

0.55% 0.43% 1.09% 2.12% 0.69% 0.49% 1.67% 0.42% 0.93% 0.93%
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correlation with a*. In the upper strata of the FC borehole (depth

25.0 to 0 m), the magnetic susceptibility fluctuates wildly, in which

a peak at about 5.3 m occurs while a relatively significant decrease

until approximately 19.67 m shows with a minimum value. And

the fluctuation range of chromaticity in the 25.0 to 0 m depth is

relatively stable, of which the variation ranges are 41.20 to 47.69

(L*), 0.74 to 3.63 (a*), and 6.86 to 15.78 (b*), respectively.
Discussion

Sedimentary environment evolution

The sedimentary history of eastern China is closely related to

climate, sea-level changes and regional tectonic activity (Wei,

2003; Chen et al., 2009; Zhang, 2016; Cui, 2017; Landwehrs et al.,

2021). In particular, the collisional subduction of the North

China Plate with the Yangtze Plate and the interaction of the

paleo-Pacific plate with the Eurasian Plate have had a profound

impact on the marine and terrestrial sedimentation of eastern

China (Li, 1987; Han, 2016).The sedimentary records from the

ZF and FC boreholes and their chronostratigraphic framework

features demonstrate that fluvial and lacustrine deposits have

dominated the study area since the Late Cretaceous (Li, 1987;

Qiu, 1988; Cao et al., 2006). Different deposits developed along

the two banks of the river, and the western bank was intruded by

magma to form amphibolites during the Late Yanshanian

(Zhang and Huang, 1989; Yu and Xu, 2009). Afterwards, the

area was absent from deposition for a long time or was

consumed by intense weathering and denudation (Bai et al.,

2007). However, there are alternating gypsiferous mudstones

and siltstones in the Late Cretaceous east coast in a fluvial-

lacustrine stage. The poor overall grain size sorting of sediments

in this profile (Figure 3) indicates that the east coast was

significantly influenced by watershed variability and unstable

hydrodynamic environments, consistent with the low-energy

depositional environments of lakes, alluvial fans, and fluvial

floodplains (Cao et al., 2006; Chen, 2020). By the early Tertiary

Eocene, thicker layers of brick-red siltstone with more gypsum

and ferromanganese nodules and carbonaceous mudstone bands

were deposited on the east bank of the Yangtze under hot and

dry climatic conditions (Chen and Xia, 1981; Zhu, 2020), but not

on the west bank of the Yangtze. The variation of magnetization

and colorimetric indicators in the FC borehole sediments

(Figure 4) indicates that the hydrodynamic conditions were

weak during the Early Tertiary-Cenozoic period and the redox

environment along the east bank of the river was more stable.

Compared with the Early Tertiary-Cenozoic, the Late Tertiary is

characterized by under-deposition on the east bank and the

development of pebbles and conglomeratic mudstones on the

west bank in a high-energy alluvial fan depositional

environment (Chen and Xia, 1981; Qiu, 1988). In addition, the

frequent uplift of the late Himalayan crust stripped away the
Frontiers in Marine Science 11
thick alluvium that had formed in the region, resulting in a

general absence of early Pleistocene sediments in the study area

(Xu et al., 1987; Fang, 2005; Pu et al., 2012). Similarly, under the

differential sedimentation activity since the Cenozoic, there is no

middle to late Pleistocene sedimentary stratigraphy on the west

bank of the Yangtze River (Qiu, 1988). In the context of frequent

alternation of dry and hot and humid climates in the Middle

Pleistocene, the riverbeds on the east bank of the Yangtze have

considerable specific fall characteristics, forming a typical fluvial

alluvial depositional environment (Xu et al., 1987; Qiu, 1988).In

the Middle Pleistocene, against the background of drastic

changes in climatic and hydrological conditions, the riverbed

on the east bank of the river had a considerable specific drop,

forming a typical fluvial alluvial depositional environment (Xu

et al., 1987; Qiu, 1988). In the high-energy fluvial alluvial

environment, combined with geo-environmental factors such

as mechanical and chemical weathering formed on both sides of

the upper reaches of the river, as well as the extensive

distribution of large amounts of loose clastic material

transported by mountain glaciers, the sedimentary depressions

on the east bank gradually received deposition during generation

and rapidly accumulated a massively thick layer of muddy gravel

(Qiu, 1988; Hu et al., 2016). By the late Middle Pleistocene, the

crust had stabilized and the sinkholes were filled in mainly by

receiving interactive deposits of sand and gravelly clay layers.

Lime green and green clayey silt dominated the study area in the

early Late Pleistocene and the river hydrodynamic conditions

weakened (Yan and Huang, 1999; Gu, 2005; Fan et al., 2006; Luo

et al., 2015). Subsequently, the cold and dry climate of the Last

Glacial Period deposited a group of loess-like clay layers on the

east bank of the Yangtze River, known as the Xiashu Formation

(Yu and Huang, 1996b; Shao, 1999). These homogeneous and

massive loess-like clays may be the product of massive flooding

that began at the end of the Dali Ice Age (Yu and Huang, 1996b;

Shao, 1999; Song, 2014). After the recession of solid river

erosion, subsequent deposition was relatively weak, with only

moderately thick green to yellowish gray medium to fine sandy

alluvium deposited in the upper part of the Lower Shu Loess

(Yan and Huang, 1991; Li, 2014).

In general, the west bank of the Yangtze River is constrained

by the geomorphic pattern, and climate change has less influence

on deposition, while hydrodynamic conditions have more

influence on the area (Su et al., 2019). In the late Late

Pleistocene, borehole DS08 (Figure 2) deposited only a thin

layer of green fine sand, which is similar to the Middle-Late

Pleistocene upper stratigraphy on the east bank of the Yangtze

River, demonstrating the complexity of the depositional

environment and the difference in geomorphology between the

east and west banks of the Yangtze River during the Late

Pleistocene (Qiu, 1988; Su et al., 2019).In the early Holocene

the study area was at a low sea level formed at the apex of the Tali

glaciation, and fluvial erosion dominated by downcutting was

prominent in the valley (Li, 1987; Qiu, 1988; Wei, 2003; Su et al.,
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2019). By the middle of the Holocene, sand layers of different

grain thickness were deposited along the west bank of the

Yangtze under the influence of the Yangtze main current,

creating a depositional environment of river alluvium.

Meanwhile, the east bank of the Yangtze River was in a low-

energy and more closed hydrodynamic environment under the

influence of the lower Qingyi River basin, and riverine muddy

clays were commonly deposited (Figure 2).
Sedimentary process influenced by
crustal movement

Since the Mesozoic, eastern China has undergone a long and

complex tectonic evolution, with major orogenic belts

undergoing resurgence and revival, magmatism and

extensional movements (Zheng et al., 2013; Xu et al., 2021;

Wang et al., 2022). The paleomorphology of the sedimentary

basins in the study area is constrained by the tectonic evolution

of the riverine basin complex in the lower Yangtze River,

which consequently affected the evolution of rivers, their

hydrodynamic condi t ions , and the i r sed imentary

characteristics (Wei, 2003; Xu et al., 2018).

During the Mesozoic, the Indo-China movement in the

Middle and Late Triassic completely withdrew seawater from

the study area, and terrestrial sedimentation developed from the

subduction (Figure 6A). Under the collision and subduction of

the Pacific and Eurasian plates (Figure 6B), the area experienced

large-scale magmatic intrusion and tectonic deformation during

the Middle and Late Jurassic. From the Jurassic to the

Cretaceous, the Izanagi Plate began to subduct to the Eurasian

plate, and the Yanshan movement led to unprecedented

exuberant magmatism and orogeny in eastern China (Hou,

2005; Zheng et al., 2013; Yang et al., 2016; Qiu et al., 2018).

From Late Jurassic to Cretaceous, the Izanagi Plate began to

retreat after low angle subduction, and the Yanshan movement

led to unprecedented magmatism and orogeny in eastern China

(Hou, 2005; Zheng et al., 2013; Tan et al., 2020; Wu et al., 2020).

The riverine region was a tectonically tense environment with

well-developed terrestrial volcano-sedimentary basins and an

overall development of coal-bearing clastic deposits in the Early

to Middle Jurassic inland lake and river stage (Qiu, 1988; Hou,

2005; Wang et al., 2012; Zhong, 2010; Li, 2020). During the Late

Jurassic period, the lower Yangtze River region entered a

synclinal phase under the control of the Yanshan movement,

and large-scale block movements and magmatism occurred in

the region, reaching a peak in the Early Cretaceous (Qiu, 1988;

Hou, 2005; Zheng et al., 2013; Wu et al., 2020). At the same time,

uneven ground uplift dominated the region, and a series of

north-east-trending volcano-sedimentary fault basins and pull-

apart basins developed, forming a basin-ridge tectonic pattern

(Qiu, 1988; Dong et al., 2007; Zhang et al., 2014). The western

bank of the Yangtze River in the study area received moderately
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acidic magmatic intrusion during the first phase of the Late

Yanshan period and lacks Paleoproterozoic (E) sedimentary

stratigraphy (Sun and Peng, 1987; Qiu, 1988). Moreover, its

maximum depth is only 48.85 m, which is consistent with the

intense surface uplift activity that began in eastern China during

the mid to late Cretaceous (Hou, 2005; Qu, 2011). In the late Late

Cretaceous, magmatic activity weakened and basically stopped,

and the east bank of the river was in a relatively stable period of

tectonic subsidence, with a large overall subsidence. The

topographic uplift was large, forming the North Steep Gate

Depression, which received continuous deposition of lacustrine

and alluvial fan-phase red conglomerate composite terrestrial

clastic tectonics and Paleozoic river-lake conglomerate silt (Qiu,

1988; Xu et al., 2018). Under the Yanshan and early Himalayan

movements, the fault block movement in the study area was

active for a long time, forming NE-NNE, near-EW and NW-

trending faults (Figure 6D), leading to differences in depressional

basin development and sedimentary stratigraphy in the area.

Since the Cenozoic, eastern China has inherited the

Mesozoic fault-basin tectonic pattern. In the background of

continuous subduction of the Pacific plate and successive

collisions of the Indian and Eurasian plates, the study area was

uplifted overall but subducted locally, dominated by Neotectonic

differential uplift movements (Qiu, 1988; Yang and Li, 1998; Li,

2017; Xu et al., 2018; Zhu et al., 2020; Wang et al., 2021). In

addition, early Neotectonic activity was dominated by

inheritance, while later differential expression was more

prominent and unstable movements continued throughout the

Neotectonic period (Chu et al., 2008; Song et al., 2008). During

the Late Oligocene, a unified fault basin system was formed

along the Yangtze River in the lower Yangtze River region

(Figure 6C). In contrast, during the Cenozoic, tectonic uplift

movements in the lower Yangtze River region were characterized

by strong east-west and weak central parts, and extensively

uplifted sedimentary rocks were exposed to weathering and

denudation (Li, 1987; Chu et al., 2008; Xu et al., 2018). Under

the influence of differential uplift movements, the east bank of

the Wuhu riverine area has been in the uplift erosion-exfoliation

zone and lacks sediments from this period (Sun and Peng, 1987;

Xu, 2008). Han’s study proposed that the absence of Early

Pleistocene fluvial deposits along the river in this area is due

to the long-term relative stability and slight subsidence of the

crust during the Early Pleistocene. However, at the end of the

Early Pleistocene or the beginning of the Middle Pleistocene,

the crust experienced extensive and distinct unequal upward

movements (Qiu, 1988; Li, 2017; Xu et al., 1999). Tectonic

movements at the end of the Middle Pleistocene caused

significant uplift in the region, with extensive erosion on the

west bank of the river in the region and increased subsidence on

the east bank, increasing the slope of the river channel and

receiving deposits of giant thick gravel layers, which then

gradually stabilized (Xu et al., 1999; Chu et al., 2008; Guo,

2020). Thicker Middle Pleistocene sediments occur only in the
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study area and in a narrow zone between Tanggou and the

mouth of Yuxi, indicating a clear zone of inherited

sedimentation within this range (Figure 6D). During the early

to middle Late Pleistocene, only thin clayey chalk and chalk

layers were deposited along the east bank of the river in this area,

indicating another strong development of Neotectonic

movement (Li, 2017; Chu et al., 2008). However, the

development of upper Late Pleistocene deposits of modest

thickness along the river banks at the end of the Late

Pleistocene does not demonstrate that Neotectonic movement

was still strongly active during this period, as the distribution of

the lower Holocene gravel layer is stable and comprehensive. All

the strata below the sand layer were strongly eroded, while there

is a clear erosional interval. The above features indicate that the

sediments in the upper part of the Late Pleistocene were

destroyed and reduced in thickness by the intense scouring

and erosion of the Holocene rivers (Yan and Huang, 1999),
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which further verifies that the strong differential uplift

movement in the Middle Pleistocene has ended and the

tectonic setting of the region has turned relatively stable (Qiu,

1988; Li, 2017). As shown in Figure 2 and Figure 6D, although

the Neotectonic movement in the study area is complex, the

dominance of subsidence activity is obvious, and there are

significant differences in Holocene Neotectonic subsidence

movements bounded by the two banks of the Yangtze River

(Qiu, 1988; Xu et al., 1999). The west bank of the river receives

thicker fluvial alluvium and fluvial deposits, while the east bank

is dominated by lacustrine deposits followed by fluvial alluvial

phases. The demarcation line between the weak and significant

sedimentation zones is presumed to be roughly at the present-

day location of the Yangtze River, due to the fact that the

present-day riverbed location is essentially the most recent

location of the Yangtze River, as the Yangtze River has

continuously moved southeastward throughout its history, and
A B

C D

FIGURE 6

(A) The extent of deposition in the Lower Triassic Yangtze Sea (Li, 1987); (B) Middle to late jurassic multi-directed convergence of plates in East
Asia and its deformation pattern (Dong et al., 2007); (C) Geotectonic position of Wuhu area (Cai et al., 2013); (D) The Neotectonic movement
(the crustal movement occurring since the Neogene) and relative stability of the crust in the study area (Qiu, 1988).
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neotectonic movements have constrained the general trend of

riverbed migration in the Yangtze River (Qiu, 1988; Jin et al.,

2015; Zhang et al., 2018b). The above features suggest that

Neotectonic movement increased regional differences during

the Holocene per iod and shaped the present-day

geographic pattern.
Response of sedimentary environment to
climate and sea-level change

To explore the response of terrestrial sedimentary systems to

environmental change since the Late Cretaceous at a regional

scale, terrestrial sedimentary records from regional boreholes

were compared with known climate-sea level change records.

The Late Cretaceous, the Neogene, and the Middle Pleistocene to

Holocene deep-sea oxygen isotope stages of the sedimentary

record in the study area were dated to 65.5-70 Ma, 33.8-40.4 Ma,

147.54 -128 ka BP (MIS 6), 128-117 ka BP (MIS 5), 117-58 ka BP

(MIS 4), 58-25 ka BP (MIS 3), 25-11.55 ka BP (MIS 2), and

11.55-4.65 ka BP (MIS 1), respectively (Figures 7–9).

The Cretaceous was a period of greenhouse climate with higher

atmospheric CO2 concentrations and sea levels than today (Nordt

et al., 2003; Davies et al., 2009; O'Brien et al., 2017; Tierney et al.,

2020). The widespread construction of red gravelly complex
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terrestrial debris deposits in eastern China suggests that this period

was still a period of high temperatures, as the extensive climatic and

marine records indicate (Xu, 2008; Wang et al., 2014; Zhang et al.,

2018a) that greenhouse climate changed and evolved rapidly during

the Late Cretaceous (65.5-70 Ma) (Bornemann et al., 2008; Xiang

et al., 2009; Wang et al., 2021; Yan et al., 2022), and greenhouse

climate change and rapid evolutionary turnover during the Late

Cretaceous (65.5-70 Ma). The Pacific Ocean (Cloetingh and Haq,

2015), global sea level change (Miller et al., 2005), and SST (Jiang

et al., 2021a) records indicate extensive sea erosion, significant oceanic

climate, and frequent sea surface fluctuations during this period

(Figure 7). The mean grain size, redness, and low-frequency

magnetization of the sediments follow a similar trend during this

period (Figure 7). Around 70-69.3Ma, higher values ofmagnetization

and redness and smaller mean grain size of the core sediments are

consistent with global warming, gradual sea level rise in the northwest

Pacific Ocean, and decreasing d18O values recorded at Dongge Cave,

China, during this period (Figure 7). During the period 69.3-67.2 Ma,

with higher but decreasing temperatures in eastern China, gradual

global sea level rise, and the influence of river oscillations in the

region, mudstones generally developed in more arid conditions in a

lower energy environment in a confined environment, with the

period and increasing water depths can be found in sediments with

significantly lower redness and magnetization than before (Zhang,

2016; Huang and Han, 2019).
FIGURE 7

Response of substitutive indexes of borehole sediments from FC borehole in Neogene and Late Cretaceous to climate and sea level changes
records. The geological record curves separately from: Mills et al., 2019 (a);Prokoph et al., 2008 (b); Lin and Sun, 1985 (c); Westerhold et al.,
2020 (d); Foster et al., 2017 (e); Wu et al., 1998 (f); Hansen et al., 2013 (g); McArthur et al., 2012 (h); Barrera and Savin, 1999; Friedrich et al., 2012
(i); Jiang et al., 2021 (i); Cloetingh and Haq, 2015 (k); Gao, 2015 (l).
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During the early Neogene (33.8-40.4 Ma), corresponding to

high values of global mean sea surface temperature and atmospheric

CO2 concentration (Figure 7), strongly oxidized red mudstone and

the high-temperature indicator mineral calcium mannite occur in

the depressional basins of the study area under the influence of early

Himalayan movements (Li, 1984; Li, 1987; Zhang et al., 2015).

Zhang, (2016) showed a warm, slightly humid subtropical climate

with low temperatures during the Neogene and a predominance of

angiosperm pollen in the study area (Zhang et al., 1986; Zhao, 1992;

Jiang et al., 2012; Zhu, 2020). The combination of marine oxygen

isotope, carbon isotope, and Sr isotope ratios shows that the sea level

fluctuated dramatically and rose and fell rapidly and that a high-

energy alluvial fan-phase depositional environment developed in

the area under the effect of frequent changes in the river erosion

datum (Figure 7).

During the Quaternary period, the global ice age frequently

alternated with interglacial periods, and the climate was cool and

dry (Gao, 2015; Jiang et al., 2021b). During theMIS 6 period (147.54

-128 ka BP), the deep-sea d18O and solar radiation energy records

indicate (Figure 8) that global temperatures and sea level heights

were low, with an overall trend of slow decline, until around 133 ka

BP, when temperatures began to rise significantly (Lisiecki and

Stern, 2016; Moseley et al., 2021), and in the western Pacific and

Japan Sea regions, sea level rose rapidly (Zheng et al., 2013; Qiu,
Frontiers in Marine Science 15
2013). At this time, the rapid accumulation of giant thick sand and

gravel layers in the study area and the significantly reduced values of

L* and MZ in the sediments suggest that the regional sedimentary

record is well correlated to global climate and sea level fluctuations.

During MIS 5 (128-117 ka BP), the global climate entered an

environment of frequent warm-wet-cold-dry climate alternations,

in which MIS 5a, 5c, and 5e were characterized by relatively high

temperatures and widespread sea erosion along the eastern coast of

China (Zhuang, 2002; Grant et al., 2014; Yuan et al., 2004; Zheng

et al., 2013; Moseley et al., 2021). Especially into the last interglacial

(MIS 5e), temperatures and sea level heights were at high levels

throughout the Pleistocene, and river hydrodynamic conditions

were strong in the study area. In contrast, during MIS 5b and 5d,

temperatures dropped dramatically, the climate was cold and dry,

and a large drop in sea level occurred (Figure 8). Combined with

deep-sea d13C, ice core d18O, and solar radiation records (Guo,

2015; Cheng et al., 2016; Qiu, 2013), the study found that the overall

environmental change was dramatic during MIS 5, but there was

still a slow decline in temperature and sea level. However,

environmental proxies for sediments in the region do not show

frequent drastic changes during the MIS 5 period, and only the

value of a* is consistent with the global and regional climate-sea

level records (Figure 8). In conjunction with Zhao, (2017) and

Cheng et al. (2021), it can be found that the East Asian summer
FIGURE 8

Response of substitutive indexes of borehole sediments from FC borehole in Middle and Late Pleistocene to climate and sea level changes
records. The geological record curves separately from: Lisiecki and Raymo, 2005 (a); Cheng et al., 2016 (b); Moseley et al., 2021 (c); Guo, 2015
(d); Yuan et al., 2004 (e); Linsley, 1996 (f); Qiu, 2013 (g); Lea, 2000 (h); Zhuang, 2002 (I).
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winds provided more precipitation to the eastern coastal region and

the Sea of Japan region in the presence of dramatic global

climate fluctuations.

MIS 4 was a cold phase of the early Last Ice Age, with low solar

radiation energy (Cheng et al., 2016), increased global ice volume,

and a relatively large sea level decline process (Figure 8).

According to the sedimentary tectonic record, the regional

hydrodynamic environment was not stable, and the overall L*

and a* records are roughly the same as the mid-latitude stalagmite

d18O (Moseley et al., 2021) and seawater PH variation (Guo, 2015)

records, suggesting that the study area did not experience

significant effects on the sedimentary environment due to

weakened tectonic activity in a globally cold and dry climatic

context and that regional wind and dust loess The accumulation

of regional wind-dusted loess began (Xu et al., 2021).

AtMIS 3 (25-58 ka BP), there are also significant fluctuations in

temperature and sea level (Figures 8). The climate was warm and

humid at the beginning of MIS 3 (Yuan et al., 2004) until around 50

ka BP when temperatures began to decline, sediment grain size

gradually became more delicate, the hydrodynamic environment

was less energetic, L* values increased, a* values decreased, and

magnetization values decreased. According to several climatic

indicators, the monsoon activity in eastern China gradually

weakened during the period 25-40 ka BP, with decreasing

precipitation and temperature (Yuan et al., 2004; Cheng et al.,
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2016). Around 27 ka BP, temperatures gradually warmed, and sea

levels rose rapidly, enhancing sedimentary hydrodynamic

conditions in the study area (Figure 8).

During MIS 2 (11.55-25 ka BP), global sea level, sea surface

temperature, and solar radiation decreased significantly, making

it the coldest climate and most considerable glacial period of the

Last Ice Age (Zhang, 2013; Cheng et al., 2016). Sediment Mz and

L* values decreased during this phase, while a* tended to

increase, indicating that the regional depositional environment

was significantly turbulent (Figure 8). Combined with studies of

stalagmite d18O at 25-32°N, sea-level changes in the East China

Sea, and records of solar radiation energy at 25°N (Zhuang,

2002; Yuan et al., 2004), it was found that the study area was

influenced by temperate-subtropical monsoon climate and

tectonic movements in the Northern Hemisphere, with a

marked increase in temperature and gradually stronger

hydrodynamic conditions in rivers The study area is

influenced by the temperate-subtropical climate and tectonic

movements in the northern hemisphere.

During the MIS 1 phase, the Yangtze and Qingyi rivers

were deposited in an agglomerated manner, developing

riverine and floodplain phase sediments, which is consistent

with the climate shift to a warm and humid character during

this period in northern latitudes. Frequent climatic fluctuations

began to occur from around 8.2 ka BP, with a slow overall rise
FIGURE 9

Response of substitutive indexes of borehole sediments from FC borehole during the Holocene to climate and sea level changes records. The
geological record curves separately from: Praetorius et al., 2020 (a); Zhu et al., 2003 (b); Zheng, 2018 (c); Li, 2017 (d); Wang et al., 2008 (e);
Yang and Xie, 1984 (f); Walczak et al., 2020 (g); Cheng et al., 2016 (h); Kawahata et al., 2006 (i); Zhang, 2011 (j).
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in sea level (Figure 9). The increase in Mz and L* during the

period 8.2-11.55 ka BP with the SST and PJJA records (Ding

et al., 2020) suggests that the regional sedimentary record

during this period is less sensitive to the effects of global

climate change, but can still reflect solid climatic fluctuations.

The early part of MIS 1 (8.75-11.55 ka BP) has a warmer and

wetter climate and can be identified as a period of marginal

beach deposition and floodplain accretion. In contrast, the

clayey and sandy interbed were formed in the late MIS 1 (4.62-

8.75 ka BP), and between 8.2 and 6.3 ka BP, the region

deposited sandy and clayey interbeds, with a significant

decrease in the sediment Mz and L* and an increase in the

value of X lf (Figure 9). In addition, combined with climate-sea

level change records, precipitation, temperature, and

sporulation records from Chaohu Lake (Wang et al., 2008)

are found around 8.75 ka BP, indicating the onset of a rapid

temperature rise synoptic event at this time and a significant

sea level rise in eastern China (Zheng, 2018), consistent with

regional alluvial phase deposition under strong hydrodynamic

conditions. In contrast, the d18O of NGRIP, d18O of Dongge

Cave, SST, and PJJA records highlight the Younger Dryas

impact hypothesis event at 11.2 ka BP, with a sharp drop in

temperature, with cold-dry climate and a brief drop in sea level

(Zhang et al., 2004; Praetorius et al., 2015; Ding et al., 2020;

Walczak et al., 2020).
Conclusion

Detailed borehole descriptions and sedimentary stratigraphic

delineation of standard boreholes in the study area were combined

with OSL chronostratigraphic framework and multiple

environmental proxy analysis to reconstruct the evolutionary

history of the sedimentary environment in the study area since

the Late Cretaceous. Influenced by the frequent oscillations of

river channels and regional tectonic activity, the west bank of the

study area received fluvial alluvial fan-phase deposition during the

Late Tertiary and was dominated by fluvial alluvial phases after

the Late Pleistocene. Since the Middle Pleistocene, the regional

hydrodynamic environment has changed frequently, and the

depositional environment along the east bank of the river has

become complex, producing lacustrine, fluvial alluvial, and

fluvial deposits.

Since the Mesozoic, the dynamical environment system in

eastern China has been very complex. In the late Cretaceous, the

study area experienced large-scale magmatic intrusion under the

influence of the late Yanshan movement, forming diorite-

porphyrite, and widely developing faults and sedimentary basins.

The Neotectonic movement has been strongly manifested in the

study area four times since the Late Tertiary, at the end of the Early

Pleistocene or early Late Pleistocene, the end of the Middle

Pleistocene, the Early to middle Late Pleistocene and the

Holocene. The numerous depositional interruptions along the
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river banks in the study area further demonstrate the significant

role of differential sedimentation in Eastern China since

the Cenozoic.

The sedimentary record in the study area is in good agreement

with the geological record in the northern hemisphere and

globally. The Late Cretaceous period was characterized by a

significant global greenhouse climate and a high sea level phase,

with a significant decrease in temperature and sea level height

occurring through the Neogene period. Since the Middle

Pleistocene, there have been frequent climatic fluctuations, with

periods in MIS 6, 4, 3, and 2, and MIS 5b and 5d, which can be

classified as periods of decreasing temperature and slow sea level

rise, and periods in MIS 5a, 5c, 5e and MIS 1, when the climate

was warm and wet and rapid sea level rise occurred.
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