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Dietary sodium butyrate
administration alleviates high
soybean meal-induced growth
retardation and enteritis of
orange-spotted groupers
(Epinephelus coioides)

Liner Ke, Yingmei Qin, Tao Song, Kun Wang and Jidan Ye*

Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei
University, Xiamen, China
An 8-week feeding trial was conducted to investigate whether dietary sodium

butyrate (SB) administration alleviates growth reduction and enteritis of

orange-spotted grouper (Epinephelus coioides) caused by high soybean

meal (SBM) feeding. The control diet (FM diet) was formulated to contain

48% protein and 11% fat. Soybean meal was used to replace 60% FM protein in

FM diet to prepare a high SBM diet (HSBM diet). Sodium butyrate (SB) at 0.1%,

0.2%, and 0.3% were added to HSBM diets to prepare three diets. Triplicate

groups of 30 groupers (initial weight: 33.0 ± 0.3 g) were fed one of the diets

twice daily, to apparent satiety. HSBM diets had lowered growth rate and feed

efficiency vs FM diets (P <0.05). Growth rate and feed efficiency were improved

by dietary SB administration and were in a dose-dependent manner (P <0.05). A

similar pattern to the growth rate was observed for plasma LDL-C and gut

digestive activity of lipase, trypsin, and protease, but the opposite trend was

observed for intestinal contents of D-lactic acid and endotoxin, in response to

dietary SB inclusion levels (P >0.05). The muscular thickness in the middle and

distal intestines in SB-treated diets were higher than that in HSBM diets

(P <0.05). The mRNA levels of intestinal pro-inflammatory cytokines IL-8, IL-

1b, IL-12 and TNF-a had a decreasing trend, and the mRNA level of intestinal

anti-inflammatory cytokine TGF-b1 had the opposite trend, with increasing SB

inclusion levels (P < 0.05). The above results indicate that dietary SB

intervention could enhance growth and feed utilization of groupers with

SBM-induced enteritis by promoting intestinal digestive enzyme activities,

reducing mucosa permeability, maintaining the integrity of intestinal

morphology and attenuating the intestinal inflammatory response.
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sodium butyrate, growth performance, intestinal injury, Epinephelus coioides,
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Introduction

Farmed marine fish generally require a high-quality protein

feed, and fish meal (FM) is the major protein source that can

fully meet the demand for the high-quality protein due to its

high protein level, balanced amino acids profile, and less anti-

nutritional factors in comparison with terrestrial animal and

plant proteins (Zhao et al., 2021a; Mahamud et al., 2022). This

determines the importance of FM as a protein source in marine

aquaculture. However, over the past few decades, there has been

a huge contrast between the rapid expansion of global

aquaculture and the declining production of marine fishery

catches (FAO, 2020). This causes a great deficit between FM

supply and demand, making it a general consensus in the

industry to find alternative protein sources of FM (Hardy,

2010). Soybean meal (SBM) is widely regarded as the most

potential plant protein source to replace FM in marine fish feeds

due to its relatively balanced amino acids profile, stable supply

and low price. However, the majority of fish, especially

carnivorous fish, show an obvious intolerance to SBM when

given a diet containing a high percentage of SBM (Baeverfjord

and Krogdahl, 1996; Zhu et al., 2021). Some anti-nutritional

factors in SBM are the direct factors inducing enteritis, the so-

called SBM induced enteritis (SBMIE) (Carmona, 2008), which

leads to poor growth and other side effects, such as damage to the

intestinal mucosal barrier, disturbance of the intestinal flora, an

increased presence of inflammatory cells (Gatlin et al., 2007;

Booman et al., 2018; Wang et al., 2020; Zhang et al., 2022).

Therefore, how to prevent and control the widespread SBMIE is

the key to maintaining normal daily fish culture and reducing

disease risk. One of the effective ways to mitigate fish intestinal

damage and enteritis caused by SBM-based feeds is the dietary

use of functional feed additives through the nutrition regulation

strategy (Peng et al., 2013; Ferrara et al., 2015; Rimoldi et al.,

2016; Zhao et al., 2019).

Butyric acid is a metabolite of intestinal bacterium

Clostridium butyricum, and as an important energy substance,

provides energy for intestinal epithelial cell metabolism

(Topping and Clifton, 2001; Hamer et al., 2007; Robles et al.,

2013), promotes cellular function, and maintains intestinal

health (Biagi et al., 2007). Butyric acid is a volatile fatty acid,

and its stable form is sodium butyrate (SB). In animal feeding

practice, SB, as a substitute for butyric acid, is often used as a

functional additive in livestock and poultry feeds as well as

aquafeeds (Bedford and Gong, 2018; Lin et al., 2020). The

positive effects of dietary SB supplementation on growth

performance have been achieved in fish such as turbot

(Scophthalmus maximus L.) (Liu et al., 2019; Yu et al., 2021),

yellow drum (Nibea albiflora) (Wu et al., 2020) and Pengze

crucian carp (Carassius auratus Pengze) (Fang et al., 2021). The

above study results showed that SB supplementation in high-

SBM diets could alleviate SBMIE of fish by promoting digestion
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and absorption capacity and maintaining the integrity of

intestinal morphology and structure, as well as intestinal

microbial homeostasis (Liu et al., 2019). In addition, dietary

SB was found to exert a regulatory role in the expression of

related genes, such as intestinal inflammatory factor genes and

growth-related factor genes (Wu et al., 2020; Abdel-Tawwab

et al., 2021; Yu et al., 2021).

Grouper is a carnivorous marine fish that has been widely

cultivated in Southeast Asia and China due to its fast growth and

high quality of fish flesh (Dennis et al., 2020; Qin et al., 2022).

The aquaculture output of grouper in China reached 192,045

tons in 2020 (China Fishery Statistics Yearbook, 2021). Great

progress regarding its nutrition and feed research and

development has been achieved (Ko et al., 2020; Bai et al.,

2021; Kuo et al., 2021; Yang et al., 2021). However, there is

still a lack of nutritional regulation research on the prevention of

SBMIE in fish species. Our latest study also showed that a high

SBM diet caused inflammatory reactions and reduced the

growth performance of orange-spotted grouper (Epinephelus

coioides) (Wang et al., 2017a; Zhao et al., 2021b). So far, the

intervention effect of dietary SB on grouper SBMIE has not been

reported yet. Therefore, the present study aimed to investigate

the effects of SB supplementation (0.1%, 0.2%, and 0.3%) in high

SBM diets on the growth performance, plasma components, and

intestinal health of orange-spotted grouper. This study provided

the basis for the prevention and control of SBMIE in the

fish species.
Materials and methods

Experimental diets and rearing
management

The ingredients and proximate composition of experimental

diets are presented in Table 1. A basal diet (FM diet) was

formulated to contain 48% crude protein and 11% crude lipid

using fish meal (FM), gelatin and casein as the main protein

sources and soybean and fish oil, and soy lecithin as the lipid

sources. Soybean meal (SBM) was used to replace 60% FM

protein in the FM diets to prepare a high SBM diet (HSBM diet).

Sodium butyrate (SB) were added to the HSBM diet at 0.1%,

0.2%, and 0.3% to prepare three experimental diets (SB0.1 diet,

SB0.2 diet, SB0.3 diet, respectively). Coarse dry feed ingredients

were ground from a hammer mill (GH-20B, Jiangyin Kejia

Machinery Manufacturing Co., Ltd., Jiangyin, Jiangsu, China),

sieved through a 60-mesh sieve, then weighed and homogenized.

Liquid ingredients (fish and soybean oil, soy lecithin and

freshwater) were then incorporated into the dry feed

ingredients and a mash was prepared. The dough was

extruded into strands and made into 2.5 mm and 4 mm

pellets through dies using the cold press extrusion method
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(CD4XITS, South China University of Technology, Guangzhou,

Guangdong, China). The pellets were dried in a ventilated oven

at 55°C for 24 h until the moisture was reduced to 10%, and then

placed at room temperature for 24 h, before being sealed in

plastic bags and stored at -20°C.

The juvenile groupers obtained from a commercial fish farm

were transported to Dabeinong experimental station

(Zhangzhou City, Fujian Province, China). Fish were stocked

in a concrete pond and fed a commercial feed for 3-week

acclimatization. At the beginning of the experiment, the fish

(initial mean weight of 33.0 ± 0.3 g) were allocated to five groups

each with triplicate tanks (500 L/tank), at a stocking density of

30 fish/tank in a water temperature-controlled recirculating

culture system. Fish were fed one of the experimental diets

twice daily (8:00, 17:00) to apparent satiety each meal under a

natural photoperiod across a feeding period of 56-day. Excess

feed was collected by siphoning 30 min after each meal, then

dried at 65°C, and weighed to calculate feed intake (FI). Because

daily sewage discharge will cause water loss in the aquaculture
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system, fresh seawater was refilled until the original water level

of tanks was reached. During the feeding period, water

temperature was kept at 28.5°C, the dissolved oxygen level was

> 5.7 to 8.0 mg/L, and the ammonia nitrogen content was < 0.22

mg/L.
Sample collection

At the end of the growth trial, fish in each tank were caught

and anesthetized with a dose of 100 mg/L solutions of MS-222

(tricaine methane sulphonate, Sigma-Aldrich Shanghai Trading

Co., Ltd, Shanghai, China). Fish weight and number were then

recorded for each tank to measure weight gain (WG), feed

efficiency (FE), specific growth rate (SGR), and survival. Three

fish from each tank were randomly sampled and pooled in

plastic bags, and stored at -20°C for whole-body proximate

composition determination. Nine fish per tank (27 fish each

group) were weighed individually after an aesthesia with MS-222
TABLE 1 Formulations and nutrient level on experimental diets of grouper (on an as-fed basis, %).

Ingredients Diets1

FM HSBM SB0.1 SB0.2 SB0.3

Fish meal 52 22 22 22 22

Casein 11.98 11.27 11.27 11.27 11.27

Gelatin 3 2.82 2.82 2.82 2.82

Soybean meal – 47 47 47 47

Soybean oil 3.5 3.5 3.5 3.5 3.5

Fish oil 0.82 3.52 3.52 3.52 3.52

Soybean lecithin 2 2 2 2 2

Sodium butyrate – – 0.1 0.2 0.3

Corn starch 17.72 3.26 3.16 3.06 2.96

Sodium alginate 1 1 1 1 1

Ca(H2PO4)2 1.5 1.5 1.5 1.5 1.5

Choline chloride 0.4 0.4 0.4 0.4 0.4

Vitamin C 0.03 0.03 0.03 0.03 0.03

Vitamin mix 0.4 0.4 0.4 0.4 0.4

Mineral mix 0.5 0.5 0.5 0.5 0.5

Taurine 0.5 0.8 0.8 0.8 0.8

Microcrystalline cellulose 4.65 – – – –

Total 100 100 100 100 100

Nutrient level (analyzed values)

Dry matter (%) 95.06 95.78 95.11 95.19 95.57

Crude protein (%) 49.85 50.34 49.00 50.48 50.25

Crude lipid (%) 11.56 11.42 11.63 11.37 11.60

Energy MJ/kg 18.7 18.7 18.6 18.6 18.6
frontie
1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3 were added with 0.1%, 0.2%, and 0.3% SB in HSBM diets,
respectively.
Fish meal (crude protein 70.34%, crude lipid 9.06%) and soybean (crude protein 46.60%, crude lipid 0.72%), and other feed ingredients except sodium butyrate and premix were provided by
Jiakang Feed Co., Ltd., Xiamen, China.
Sodium butyrate (99% purity) was provided by Xinao Biotechnology Co., Ltd., China.
Vitamin and Mineral premix were obtained from Guangzhou Feixite Aquatic Technology Co., Ltd.
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(100 mg/L) to calculate the hepatosomatic index (HSI) and

condition factor (CF). Blood was drawn from the caudal vein,

using a 1-mL heparinized syringe, and centrifuged at 1027 × g, 4°

C, 10 min. Plasma was then collected, pooled by tank and stored

in 1.5-mL Eppendorf tubes at -80°C for the subsequent

biochemical analysis. The intestine of nine fish per tank were

aseptically removed and pooled into one tube by tank, stored at

-80°C for the analysis of biochemical components, microbiota

analysis, and gene expression.
Proximate composition analysis

Prior to component analysis, whole-fish samples were

prepared according to the method described by Ye et al. (Ye

et al., 2011). The proximate composition of diet and whole-body

fish samples were determined according to standard methods

(AOAC, 1995). Dry matter was determined by drying the

samples in an oven at 105°C to a constant weight. Crude

protein was determined by the Kjeldahl method (N × 6.25)

using Kjeltec TM 8400 Auto Sample Systems (Foss Teacher AB).

The crude lipid content was determined by the Soxtec extraction

method by using Soxtec Avanti 2050 (Foss Teacher AB). Ash

was measured in the residues of samples burned in a muffle

furnace at 550°C for 6 h.
Plasma component determination

The plasma contents of triglycerides (TG), total cholesterol

(TC), high-density lipoprotein cholesterol (HDL-C), and low-

density lipoprotein cholesterol (LDL-C) were determined using

respective kits (Nanjing Jiancheng Bioengineering Institute,

Nanjing, China).
Gut digestive enzyme activity and
mucosal function analysis

The intestinal activity for lipase and amylase was assayed

us ing commerc ia l a s say k i t s (Nan j ing J i ancheng

Bioengineering Institute, Nanjing, Jiangsu, China) according

to the protocols of the manufacturer. The activities of intestinal

protease and trypsin were determined according to the

method described by Hu et al. (2014). The contents of

diamine oxidase (DAO), D-lactic acid (D-Lac), Endotoxin

(ET) and Endothelin-1 (ET-1) in the intestine were

determined us ing ELISA ki t s (Nanj ing J iancheng

Bioengineering Institute, Nanjing, Jiangsu, China) according

to the manufacturer’s instructions.
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Intestinal histological observation

To perform histological analysis, one fish was caught from

each tank and dissected to obtain the whole gut, then divided

into proximal, middle, and distal intestines (i. e. PI, MI, and DI,

respectively), according to the method (Anguiano et al., 2013).

All the segments were washed with normal saline, fixed in

Bouin’s solution for 24 h, rinsed with 70% (v/v) ethanol

solution, and finally immersed in 70% (v/v) ethanol until

histological processing was performed (Niu et al., 2021). The

fixed gut segments were embedded in paraffin and 5-µm sections

were cut by using a rotary microtome (KD-2258S, China). The

serial histological sections were then mounted on glass slides,

and stained with hematoxylin and eosin for morphometric

analysis. Pictures were examined under a light microscope

(Leica DM5500B, Germany), and digital images were taken

and processed with a digital camera (Leica DFC450) equipped

with the image program LAS AF (Version 4.3.0 Leica). Five

slides were prepared for each gut segment sample and 30

measurements were made to determine the number of

mucosal folds, muscle layer thickness, and length of the

complete mucosal fold.
Intestinal microbiota analysis

Total DNA of the distal intestine (DI) of the fish was extracted

using a DNA extraction kit (Omega Bio-teK, Norcross, GA, USA)

according to the manufacturer’s instructions. The integrity and

quality, purity and quantity of DNA samples were assessed by

electrophoresis on a 1% (w/v) agarose gel and spectrophotometer

method (NanoDrop 2000, Wilmington, DE, U.S. 260nm/280nm

optical density ratio), respectively. The V3-V4 region of the 16S

rDNA gene of DI bacteria was amplified by polymerase chain

reaction (PCR) using the forward primer 338F (5 ’-

ACTCCTACGGGAGGCAGCAG-3’) and the reverse primer

806R (5’-GGACTACNNGGGTATCTAAT-3’). The PCR

reaction system included pre-denaturation at 95°C for 5 min;

denaturation at 95°C for 45 s, annealing at 55°C for 50 s, and

extension at 72°C for 45 s, 32 cycles; extension at 72°C for 10 min.

Subsequently, high-throughput sequencing was performed using

Illumina Miseq PE300 at Beijing Allwegene Technology Co., Ltd

(Beijing, China). The sequencing data of all samples were

deposited into Sequence Read Archive (SRA) (Accession

number: PRJNA875282). A library of small fragments was

constructed using a paired-end for sequencing, and the data was

passed through QIIME (v1.8.0) for removal of low-quality

sequences and chimeras. Based on 97% sequence similarity,

similar sequences were assigned to the same operational

taxonomic units (OTU). Species classification information
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corresponding to each OTU was obtained by comparing with the

sliva database, and alpha diversity analysis (Shannon, Ace, and

Chao1) was performed using Mothur software (version 1.31.2).

Based on the weighted unifrac distance, the pheatmap of the R

(v3.1.1) software package was used for clustering analysis. After

the UniFrac algorithm, the information on system evolution was

used to compare the difference in species communities among

samples and beta diversity analysis was performed.
RNA extraction and gene expression
analysis

The total RNA was extracted from the intestinal samples

using TRIzol® reagent (Takara Co., Ltd, Japan) according to the

manufacturer’s instructions. Isolated RNA was quantified using

the NanoDrop ND-2000 Spectrophotometer, and its integrity

was confirmed by agarose gel electrophoresis. The cDNA was

generated from 1 mg DNase-treated RNA and synthesized by a

PrimeScript™ RT Reagent Kit with gDNA Eraser (Perfect Real

Time) (Takara Co., Ltd, Japan). Real-time PCR was employed to

determine mRNA levels based on the TB Green™ Premix Ex

Taq™ II (Tli RNaseH Plus) (Takara Co., Ltd, Japan) using a

QuantStudio™ Real-Time PCR System (ABI) quantitative

thermal cycler. The fluorescent quantitative PCR solution

consisted of 10 mL TB Green Premix Ex Taq™ II (Tli RNaseH

Plus) (2×), 0.8 mL PCR forward primer (10 mM), 0.8 mL PCR

reverse primer (10 mM), 2.0 mL RT reaction (cDNA solution),

and 6 mL dH2O. The thermal program included 30 s at 95°C, 40

cycles at 95°C for 5 s, and 60°C for 30 s. The sequences of

primers are shown in Table 2. All amplicons were initially

separated by agarose gel electrophoresis to ensure that they

were of the correct size. b-actin served as the internal reference

gene to normalize cDNA loading. The gene expression levels of

the target genes were analyzed by the 2-DDCt method (Schmittgen

and Livak, 2008) after verifying that the primers were amplified

with an efficiency of approximately 100% (Hanaki et al., 2014),

and the data for all treatment groups were compared with the

data for the control group.
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Statistical analysis

All data were presented as mean and standard error of the

mean (SEM). The data were analyzed using a one-way analysis of

variance (ANOVA) to test for differences between treatments

and then the Student-Neuman-Keuls multiple comparison test

was performed after confirming the normality and homogeneity

of variance using the Kolmogorov-Smirnov test and Levene’s

test in SPSS Statistics 25.0 (SPSS, Michigan Avenue, Chicago, IL,

USA). The data expressed as percentages or ratios were subjected

to data conversion prior to statistical analysis. P-values <.05 was

deemed as significant difference.
Results

Growth performance and proximate
composition

The results of growth performance and proximate

composition of groupers are presented in Table 3. The fish fed

HSBM diet had significantly lower WG and SGR compared with

those fed FM diet (P < 0.05). The WG and SGR in fish fed diets

SB0.1-SB0.3 were higher than that in fish fed diet HSBM, and

reached the level of diet FM (P > 0.05). TheWG and FE were in a

dose-dependent manner with the dietary SB inclusion levels

(Figure 1). The maximum values for WG and FE were observed

for diet SB0.2 and diet SB0.3 respectively. The FE, HSI, CF and

whole-body proximate composition were not affected by dietary

treatments (P > 0.05).
Plasma components

As shown in Table 4, plasma LDL-C concentration in HSBM

group was significantly lower (P < 0.05). However, plasma LDL-

C concentration in dietary SB-treated groups was not different

from those of SB0.1 group and SB0.2 groups (P > 0.05), and

lower than that in SB0.3 group (P < 0.05). The plasma HDL-C,
TABLE 2 Primer sequences for real-time PCR assay.

Genes Forward (5’-3’) Reverse (5’-3’) Efficiency (%) Accession number

IL-8 AAGTTTGCCTTGACCCCGAA TGAAGCAGATCTCTCCCGGT 94 FJ913064.1

IL-1b GCAACTCCACCGACTGATGA ACCAGGCTGTTATTGACCCG 116 EF582837.1

IL-10 GTCCACCAGCATGACTCCTC AGGGAAACCCTCCACGAATC 99 KJ741852.1

TGF-b1 GCTTACGTGGGTGCAAACAG ACCATCTCTAGGTCCAGCGT 102 GQ503351.1

IL-12 CCAGATTGCACAGCTCAGGA CCGGACACAGATGGCCTTAG 115 KC662465.1

TNF-a GGATCTGGCGCTACTCAGAC CGCCCAGATAAATGGCGTTG 91 FJ009049.1

b-actin TGCTGTCCCTGTATGCCTCT CCTTGATGTCACGCACGAT 104 AY510710.2
IL, interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor.
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TC and TG concentrations were not affected by dietary

treatments (P>0.05).
Gut digestive enzymes activity

There was a general reduction in lipase, trypsin, and protease

activity for HSBM diet vs for FM diet (Table 5). A general

enhancement in lipase, trypsin, and protease activity by dietary

SB addition, and showed positive quadratic (P < 0.05) responses
Frontiers in Marine Science 06
to increasing dietary SB inclusion levels, and the maximum value

both were observed for diet SB0.1 (Figure 2). Dietary treatment

did not affect intestinal amylase activity (P >0.05).
Intestinal permeability

As shown in Table 6, intestinal D-Lac and ET concentrations

were higher in HSBM group than that in FM group (P < 0.05).

However, dietary SB addition lowered intestinal DAO activity,
FIGURE 1

The relationship between weight gain (WG) or feed efficiency (FE) of groupers and sodium butyrate (SB) inclusion levels in HSBM diets in a 56-d
feeding period. Data are presented as the means of per dietary treatment (n = 3 tanks). HSBM, 60% FM protein replacement with soybean meal
(SBM) in FM diet and without sodium butyrate (SB) addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in HSBM diets,respectively.
TABLE 3 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on growth performance and proximate composition of
groupers in a 56-d feeding period.

Item Diets1

FM HSBM SB0.1 SB0.2 SB0.3

Growth performance

IBW2 (g/fish) 33.82 ± 0.10 33.76 ± 0.06 33.80 ± 0.07 33.78 ± 0.06 33.83 ± 0.02

FBW2 (g/fish) 113.24 ± 0.66b 95.47 ± 2.59a 101.32 ± 4.45ab 115.43 ± 7.32b 111.83 ± 1.22b

WG2 (%) 234.81 ± 2.53ab 182.81 ± 7.24a 199.83 ± 13.74ab 241.80 ± 22.18b 230.53 ± 3.72ab

SGR2 (%/d) 2.16 ± 0.01b 1.86 ± 0.04a 1.96 ± 0.09ab 2.18 ± 0.11b 2.14 ± 0.02b

FE2 0.93 ± 0.02 0.72 ± 0.03 0.89 ± 0.01 1.01 ± 0.10 1.03 ± 0.03

HSI3 (%) 1.31 ± 0.09 1.24 ± 0.04 1.22 ± 0.03 1.15 ± 0.05 1.11 ± 0.01

CF3 3.16 ± 0.08 3.05 ± 0.11 3.17 ± 0.04 3.19 ± 0.04 3.08 ± 0.08

Whole-body composition (%)

Moisture2 67.05 ± 0.21 67.27 ± 0.22 67.67 ± 0.33 67.54 ± 0.36 67.13 ± 0.17

Crude protein2 18.01 ± 0.49 17.95 ± 0.27 17.34 ± 0.33 18.92 ± 1.26 18.53 ± 0.26

Crude lipid2 8.25 ± 0.17 7.90 ± 0.29 8.04 ± 0.16 8.19 ± 0.26 8.10 ± 0.23

Ash2 5.00 ± 0.15 4.96 ± 0.07 4.82 ± 0.08 4.75 ± 0.01 5.05 ± 0.06
1FM, fish meal; HSBM, 60% FM protein replacement by SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets, respectively.
2Data are presented as the means of per dietary treatment (n = 3 tanks).3 Data are presented as the means of per dietary treatment (n = 27 fish). Values in the same row with different
superscripts indicate significant differences (P < 0.05), while that with the same letter or no letter superscripts indicate no significant difference (P > 0.05).
WG (weight gain, %) = 100×(FBW - IBW)/IBW; SGR (specific growth rate, %/d) = 100×(ln FBW - ln IBW)/d; FE (feed efficiency) = (FBW - IBW)/FI; HSI (hepatosomatic index, %) =
100×(liver weight (g)/body weight (g)); CF (condition factor) = 100×body weight (g)/(body length (cm))3. IBW, initial body weight (g); FBW, final body weight (g); FI, feed intake (g).
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D-Lac and ET concentrations, and intestinal D-Lac

concentration showed a declining trend with dietary SB

inclusion levels. Furthermore, intestinal D-Lac and ET

concentrations were reduced to the level of FM group (P

>0.05). The intestinal ET-1 content was not affected by dietary

treatments (P >0.05).
Intestinal morphology

As shown in Figure 3, the sizes of intestinal lumen and MFN

were ordered as PI >MI >DI. The thickness of lamina propria

and submucosa of MI in the HSBM group was increased

compared to others. There was a reduction in the number of

goblet cells with lymphocyte infiltration of DI for HSBM diet vs

for FM diet, but an increase with increasing SB inclusion levels.

Table 7 shows the results of intestinal morphometrical

parameters (MFH, mucosal fold height; MT, muscular

thickness; MFN, mucosal fold number) in three intestinal

segments (PI, MI, and DI) of groupers. There was a significant

reduction (P < 0.05) in MT of MI and DI in fish fed the HSBM

diet compared with those fed with FM diet. The MT of MI was

increased with increasing SB inclusion levels in HSBM diets, the

maximum value was observed for SB0.3 diet (P < 0.05), and MT

value for SB0.2 diet returned to that of FM diet (P > 0.05). The

MT of DI was also promoted by dietary SB inclusion levels, but
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the values in SB diets were lower than that in the FM diet (P <

0.05). The MFH of PI, MI, and DI, the MT of PI, as well as MFN

of PI, MI, and DI remained unaffected across dietary treatments

(P > 0.05).
Intestinal microbial abundance

The species abundance and diversity of DI samples are

shown in Table 8. Although OTU and Ace showed a declining

trend and Simpson and Shannon showed an upward trend with

increasing dietary SB levels, the species abundance and diversity

remained unaffected across dietary treatments (P > 0.05). At the

phylum level, the average bacteria in the DI flora map of grouper

were dominated by Firmicutes (relative abundance of 43.13%),

Bacteroidetes (26.82%) and Proteobacteria (22.53%).

Spirochaetae (1.53%) and Fusobacteria (1.08%) were

subdominants (Figure 4A). However, these phyla bacterial

abundance among all groups did not show significant

differences (Figure 4B, P > 0.05). At the genus level, the

bacteria in the DI flora map of grouper mainly included

Photobacterium (FM: 18.9%; HSBM: 11.25%; SB0.1: 5.43%;

SB0.2: 25.47%; SB0.3: 0.42%), Selenomonas_1 (FM: 13.70%;

HSBM: 13.04%; SB0.1: 11.76%; SB0.2: 7.90%; SB0.3: 12.64%),

Prevotella_1 (FM: 8.34%; HSBM: 7.88%; SB0.1: 7.61%; SB0.2:

6.08%; SB0.3: 9.16%), Rikenellaceae_RC9_gut_group (FM:
TABLE 5 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on activities of gut digestive enzymes of groupers in a 56-d
feed period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

Lipase (U/mg prot) 0.80 ± 0.02a 0.74 ± 0.06ab 0.88 ± 0.01b 0.77 ± 0.65ab 0.73 ± 0.03ab

Amylase (U/mg prot) 0.76 ± 0.06 0.73 ± 0.11 0.88 ± 0.06 0.91 ± 0.10 0.85 ± 0.09

Trypsin (U/g prot) 256.07 ± 17.23b 175.55 ± 17.55a 288.35 ± 10.66b 282.25 ± 21.29b 265.65 ± 5.36b

Protease (U/mg prot) 20.54 ± 0.87b 15.91 ± 2.04a 24.03 ± 1.40b 22.25 ± 1.75b 22.15 ± 0.79b
1 FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05).
TABLE 4 Effect of sodium butyrate (SB) addition in high soybean meal (SBM) diets on plasma components of groupers in a 56-d feed period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

HDL-C (mmol/L) 1.06 ± 0.05 1.00 ± 0.03 0.98 ± 0.11 0.85 ± 0.11 1.05 ± 0.07

LDL-C (mmol/L) 0.28 ± 0.01c 0.19 ± 0.01b 0.18 ± 0.01ab 0.18 ± 0.02ab 0.14 ± 0.01a

TC (mmol/L) 3.77 ± 0.21 3.49 ± 0.23 3.38 ± 0.35 3.20 ± 0.29 2.76 ± 0.14

TG (mmol/L) 1.61 ± 0.17 1.36 ± 0.08 1.40 ± 0.08 1.43 ± 0.18 1.43 ± 0.12
fro
1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05). HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG,
triglyceride; TC, total cholesterol.
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3.24%; HSBM: 3.81%; SB0.1: 4.88%; SB0.2: 5.75%; SB0.3: 6.37%)

and Curvibacter (FM: 2.97%; HSBM: 2.81%; SB0.1: 2.76%; SB0.2:

1.50%; SB0.3: 2.08%) (Figure 5A) and marked difference in the

abundance of these genus bacteria between groups was not

observed (Figure 5B, P > 0.05). There was no variation in the

relative abundance of Anaerovibrio among dietary treatments

except for the SB0.3 diet, whose value was significantly higher

than in FM and SB0.2 diets (P < 0.05). The relative abundance of

Vibrio in SB diets was generally lower (P > 0.05) than that in

HSBM diet and was similar to that of FM diet.
Expression of intestinal inflammatory
factor genes

The relative mRNA levels of intestinal inflammatory factor

genes are presented in Figure 6. HSBM group had higher mRNA

levels for IL-8, IL-1b, IL-12 and TNF-a genes vs FM group (P <

0.05), but the opposite was true for IL-10 gene. The mRNA level

of TGF-b1 for HSBM diet was not different from that for FM diet

(P > 0.05). The mRNA levels of IL-8, IL-1b, IL-12 and TNF-a
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showed a decreasing trend with increasing SB inclusion levels in

HSBM diets, and the values of these parameters reduced to the

similar level of FM diet, or even lower (P > 0.05). The mRNA

level of TGF-b1 in SB0.3 group was the highest among dietary

treatments and higher than any other group (P < 0.05). The

mRNA level of IL-10 was not affected by dietary treatments

(P > 0.05).
Discussion

Growth performance and proximate
composition

Results of the present study showed that in HSBM diet

decreased significantly WG and SGR vs FM diet, which was

observed in previous studies on FM replacement with high SBM

(Wang et al., 2017b; Zhu et al., 2021; Zhang et al., 2022). The

growth-limiting effect is attributed to the presence of

antinutritional factors (ANFs), poor palatability, and lack of

some nutrients (Gatlin et al., 2007), of which the most typical
FIGURE 2

The relationship between intestinal activities of trypsin or protease of groupers and sodium butyrate (SB) inclusion levels in HSBM diets in a 56-d
feeding period. Data are presented as the means of per dietary treatment. (n = 3 tanks). HSBM, 60% FM protein replacement with soybean meal
(SBM) in FM diet and without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in HSBM diets, respectively.
TABLE 6 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on intestinal permeability of groupers in a 56-d feeding period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

DAO (U/L) 19.75 ± 1.39 20.59 ± 1.05 15.27 ± 1.72 16.24 ± 2.10 15.18 ± 1.89

D-Lac (nmol/mL) 2.03 ± 0.20a 4.05 ± 0.23b 2.25 ± 0.15a 2.03 ± 0.12a 1.90 ± 0.04a

ET-1 (ng/L) 1.91 ± 0.07 2.12 ± 0.09 2.24 ± 0.17 1.93 ± 0.12 1.90 ± 0.12

ET (EU/L) 1.51 ± 0.03a 1.70 ± 0.10b 1.46 ± 0.01a 1.38 ± 0.03a 1.46 ± 0.02a
f

1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05). DAO, Diamine oxidase; D-lac, D-lactic acid; ET, Endotoxin; ET-1, Endothelin-1.
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FIGURE 3

Intestinal histological examinations of sodium butyrate (SB) addition in high soybean meal (SBM) diets on the proximal intestine (PI), mid
intestine (MI), and distal intestine (DI) in groupers in a 56-d feeding period (magnification 200 X, scale bar = 100 mm). FM, fish meal; HSBM, 60%
FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM
diets, respectively. MFH, mucosal fold height; MT, muscular thickness; a, goblet cell; b, lamina propria; c, submucosa.
TABLE 7 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on the intestinal morphology of groupers in a 56-d feeding period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

PI MFH (mm) 577.30 ± 87.68 489.10 ± 54.31 559.30 ± 35.39 495.92 ± 50.19 572.25 ± 40.22

MT (mm) 63.24 ± 6.74 64.56 ± 8.11 56.70 ± 8.72 65.78 ± 10.6 78.59 ± 3.02

MFN (unit) 42.50 ± 4.25 45.83 ± 3.09 40.67 ± 2.20 45.67 ± 4.15 54.33 ± 3.94

MI MFH (mm) 465.12 ± 50.20 356.66 ± 9.37 403.74 ± 26.77 425.36 ± 36.05 516.26 ± 81.26

MT (mm) 53.53 ± 2.44ab 44.96 ± 4.06a 55.06 ± 1.54ab 57.65 ± 5.30ab 72.29 ± 9.48b

MFN (unit) 34.33 ± 2.20 31.67 ± 1.01 33.00 ± 3.62 41.50 ± 1.04 42.50 ± 5.41

DI MFH (mm) 417.87 ± 63.72 337.13 ± 44.48 373.43 ± 25.76 361.66 ± 49.92 458.86 ± 91.13

MT (mm) 87.58 ± 7.61c 51.53 ± 1.48a 69.02 ± 5.05ab 63.72 ± 7.81ab 68.32 ± 9.18ab

MFN (unit) 32.00 ± 5.20 37.00 ± 4.00 35.83 ± 0.17 34.67 ± 0.88 39.67 ± 6.69
Frontiers in Marine Science
 09
1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05). PI, proximal intestine; MI, middle intestine; DI, distal intestine; MFH, mucosal fold height; MT,
muscular thickness; MFN, mucosal fold number.
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A
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FIGURE 4

Relative abundance of the dominant bacterial phylum in different samples in the distal intestine of E. coioides (A) Intestine microbial
composition at phylum level, (B) Differential analysis at phylum level. Bars bearing the different letters indicate significant differences (P < 0.05),
while that with the same letters indicate no significant difference (P > 0.05). Data are presented as means ± SEM (n = 3 tanks). Statistical analysis
was performed by one-way ANOVA, followed by S-N-K test. FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without
SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets, respectively. MRA, mean relative abundance.
TABLE 8 Richness and diversity index of bacterial community for different samples in distal intestine of groupers.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

OTU 343.27 ± 38.99 415.33 ± 8.19 423.33 ± 12.14 409.33 ± 9.94 384.63 ± 13.89

Ace 578.20 ± 66.61 719.44 ± 31.36 701.05 ± 57.57 693.61 ± 9.90 619.92 ± 1.56

Chao1 533.97 ± 56.09 619.46 ± 5.32 671.71 ± 2.65 632.32 ± 21.86 631.90 ± 45.21

Simpson 0.93 ± 0.02 0.65 ± 0.22 0.91 ± 0.06 0.96 ± 0.01 0.98 ± 0.00

Shannon 5.31 ± 0.29 3.68 ± 1.44 5.54 ± 0.57 5.85 ± 0.15 6.12 ± 0.04
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1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). OTU, operational taxonomic units; Ace, abundance-based coverage estimator.
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side effect is considered as SBMIE (Sahlmann et al., 2013). The

SB supplementation in HSBM diets significantly promoted

growth performance in a dose-dependent manner and had

results comparable to the FM diet in this study. Our current

study supported what has been reported in sea bream (Robles

et al., 2013), and common carp (Liu et al., 2014a), turbot (Liu

et al., 2019), yellow drum (Wu et al., 2020), and Nile tilapia

(Abdel-Tawwab et al., 2021).

The whole-body composition was not affected by dietary

treatments in this study. This finding was supported by the

results observed in similar experiments on grass carp (Liu et al.,

2017), black seabream (Ullah et al., 2020), and yellow drum (Wu

et al., 2020). In contrast, several studies reported an inconsistent

result that dietary supplementation of SB significantly promoted

whole-body crude protein contents of Nile tilapia (Ahmed and

Sadek, 2015) and European seabass (Abdel-Mohsen et al., 2018),
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as a result of the promotion of proliferation and differentiation

of intestinal epithelial cells (Canani et al., 2012) and upregulated

expression of the intestinal small peptide transporter PepT1 (Liu

et al., 2014b) in the case of dietary SB administration.
Plasma components

Plasma biochemical indicators reflect the metabolic function

and nutritional status of fish (Ren et al., 2021). Plasma HDL-C

and LDL-C are a family of lipoproteins involved in cholesterol

transport. HDL-C is mainly responsible for TG clearance and

TC removal from peripheral tissues, while LDL-C transports

cholesterol from the liver to peripheral tissues (Eisenberg, 1984;

Jiang et al., 2015). In the current study, except for LDL-C,

plasma HDL-C, TC and TG contents were not affected by
A

B

FIGURE 5

Relative abundance of the dominant bacterial genus in different samples in distal intestine of E. coioides. (A) Intestine microbial composition at
genus level, (B) Differential analysis at genus level. Bars bearing the different letters indicate significant differences (P < 0.05), while that with the
same letters indicate no significant difference (P > 0.05). Data are presented as the means of per dietary treatment (n = 3 tanks). FM, fish meal;
HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in
the HSBM diets, respectively.
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dietary treatments. The decreased plasma LDL-C content caused

by dietary high SBM was also observed in previous studies on

FM replacement with SBM in groupers (Ye et al., 2019; Zhao

et al., 2021b). As observed in our current study, high SBM diets

could decrease plasma TC, TG, LDL-C, and/or HDL-C contents

in several previous studies with other fishes (Yamamoto et al.,

2010; Dossou et al., 2018; Rahimnejad et al., 2021). However, the

values of the index were not improved after dietary SB

administration in HSBM diets in this study. Therefore, it

seems that groupers were still in a certain degree of

malnutrition caused by HSBM diets, though growth

improvement by the dietary intervention of SB.
Gut digestive enzymes activity

The activity of digestive enzymes is directly associated with

the digestion of nutrients (Jesus et al., 2019). In this study, the

high SBM diet resulted in reduced trypsin and protease activities

vs FM diet, which was consistent with other studies with other
Frontiers in Marine Science 12
fishes such as hybrid tilapia (Lin and Luo, 2011), Japanese

seabass (Zhang et al., 2018), Totoaba macdonaldi (Fuentes-

Quesada et al., 2018). The reduction of intestinal trypsin and

the protease activities were attributed to the presence of trypsin

inhibitors or other ANFs in SBM, resulting in poor growth and

feed utilization in fish (Dias et al., 2005; Santigosa et al., 2008;

Lin and Luo, 2011; Yaghoubi et al., 2016). After dietary SB

intervention, the intestinal activities of trypsin and protease were

enhanced in comparison with HSBM group and showed an

increasing trend with increasing dietary SB inclusion levels. As

evidenced by previous studies of SB intervention on poor growth

caused by high SBM feeding, on account of the ability of SB to

activate digestive enzyme activity (Tian et al., 2017; Fang et al.,

2021; Xie et al., 2021).
Intestinal mucosal barrier

The intestine is not only the site of nutrient digestion and

absorption, but also provides an important barrier against
FIGURE 6

Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on mRNA levels of intestinal inflammatory factor genes of groupers in
a 56-d feeding period. Bars bearing the different letters indicate significant differences (P < 0.05), while that with the same letters indicate no
significant difference (P > 0.05). Data are presented as means ± SEM (n = 3 tanks). Statistical analysis was performed by one-way ANOVA,
followed by S-N-K test. FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3,
0.1%, 0.2%, and 0.3% SB were added in the HSBM diets, respectively. IL-8, interleukin-8; IL-1b, interleukin-1b; TNF-a, tumor necrosis factor-
alpha; IL-12, interleukin-12; TGF-b1, transforming growth factor-beta 1; IL-10, interleukin-10.
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exogenous pathogens (Tang et al., 2022). Butyric acid is

generally considered as an important substance for the energy

supply and proliferation of intestinal epithelial cells (Biagi et al.,

2007). Many studies showed that the increased intestinal DAO

activity, D-Lac and ET concentrations reflect impaired mucosal

permeability, indicating the intestinal mucosal capillary

endothelial damage and intestinal flora disorder (Fukudome

et al., 2014; Long et al., 2022). Feeding high-SBM diets

resulted in increased intestinal D-Lac and ET concentrations

vs feeding low-SBM diets or FM diets without SBM (Zhang et al.,

2018; Rahimnejad et al., 2021) and in our current study. In the

present study, we observed reduced intestinal DAO activity, D-

Lac and ET concentrations in fish administrated with dietary SB

vs those of fish fed HSBM diets, and reduced to the level of FM

diets. Similar results were observed in broilers (Zou et al., 2019)

and weaning piglets (Lin et al., 2020) with dietary SB

administration. This indicated that dietary SB administration

could reduce the intestinal mucosal permeability of farmed

animals including fish.

The intestinal histomorphology also acts as a physical barrier

to intestinal mucosa (Escaffre et al., 2007). It is clear that the

typical signs of SBMIE can cause thickening of the lamina

propria and submucosa, and disappearance of supranuclear

vacuoles in the enterocytes of DI, accompanied by an

infiltration of inflammatory cells (Baeverfjord and Krogdahl,

1996; Urán et al., 2009). Consistent with the previously reported

results, we observed a reduction in the number of goblet cells

with lymphocyte infiltration, and an increase in the thickness of

lamina propria and submucosa caused by high SBM in this

study. Higher intestinal MT means a larger surface area for

absorbing nutrients (Caspary, 1992). The intestinal MT of fish

fed high-SBM diets was lower than that of fish fed FM diets in

this study and previous studies with Japanese seabass (Zhang

et al., 2018), hybrid grouper (Zhou et al., 2020), and spotted

seabass (Rahimnejad et al., 2021). After dietary SB intervention,

the intestinal MT was increased with increasing SB inclusion

levels, which supported the similar results on European Seabass

(Abdel-Mohsen et al., 2018), yellow drum (Wu et al., 2020), and

yellow catfish (Zhao et al., 2021a). The number of goblet cells of

DI was increased with increasing SB inclusion levels in this

study, facilitating the expulsion of pathogens and maintaining

the integrity of mucus protective layers (Kim and Ho, 2010). As

a result, the intervention effect of dietary SB administration on

the SBMIE of groupers can a l so be achieved by

improving histomorphology.
Intestinal microbiota

Dysbacteriosis of the intestinal flora increases the

susceptibility to intestinal pathogens, and in severe cases, it

will further develop into intestinal infection and reduce

immune function (Fu et al., 2021; Vargas-Albores et al., 2021).
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In the current study, no alterations in intestinal microbial

abundance and diversity were observed at both phylum and

genus levels among dietary treatments. Previous research reveals

that Proteobacteria, Firmicutes, and Bacteroidetes are the

dominant phyla of intestine of marine carnivorous fish

(Nayak, 2010; Wang et al., 2018), which was consistent with

our current results. The change of intestinal bacterial abundance

of fish fed high-SBM diets vs FM diets conflicted with what has

been reported in phyla and genus abundance of turbot (Li et al.,

2020), and in genus abundance of large yellow croaker (Wang

et al., 2019) when fed a fermented SBM diet. This inconsistency

may be that the latter used fermented SBM instead of SBM as an

alternative protein source for FM. Although the changes in

phylum and genus intestinal bacterial abundance in fish fed

the diets administrated with SB were consistent with a study with

common carp (Liu et al., 2014a), our results still deviated from

many other experimental results on gilthead sea bream (Piazzon

et al., 2017) and turbot (Liu et al., 2019), and in genus abundance

changes of young grass carp (Tian et al., 2017) and European

seabass (Abdel-Mohsen et al., 2018). The inconsistency

regarding the effect of dietary SB on the intestinal flora of fish

may be due to complex rearing environmental factors such as

fish species, growth stage, and feed composition. Further study is

required in this regard.
Expression of intestinal inflammatory
factor genes

The presence of an inflammatory response is a complex

pathophysiological process, which is mediated by the activation of

a variety of cytokines and complement factors secreted by

macrophages and leukocytes (Ruhee et al., 2019). Previous studies

showed that the SBMIE mediated the expression of up-regulated

pro-inflammatory cytokine genes (IL-8, IL-1b, TNF-a and IL-12)

and the expression of down-regulated anti-inflammatory factor

genes (TGF-b1 and IL-10) in fish (Urán et al., 2008; Wang and

Secombes, 2013). Similarly, we observed an up-regulation

expression of intestinal IL-8, IL-1b, TNF-a and IL-12 and the

down-regulation of intestinal IL-10 in SBM-fed fish, which was in

accordance with previous observations (Wang et al., 2017a; Li et al.,

2020; Zhao et al., 2021b). Intestinal TGF-b1 is involved in the

inactivation of the NF-kB signaling pathway, playing a role in the

regulation of the inflammatory response and controlling the

expression of genes encoding pro-inflammatory cytokines (Inan

et al., 2000; Pedersen et al., 2022). Butyrate and SB are shown to

function as an energy source for intestinal epithelial cells to exhibit

anti-inflammatory as well as immune modulatory effects on

mammals (Nancey et al., 2002; Weber and Kerr, 2006; Meijer

et al., 2010; Ali et al., 2022). In this study, the SB intervention

achieved a reduction in the expression of intestinal IL-8, IL-1b, TNF-
a and IL-12 and an increase in the expression of intestinal TGF-b1.
This finding indicates dietary SB intervention could attenuate
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SBMIE of fish by promoting the production of anti-inflammatory

factors and preventing the production of pro-inflammatory factors

(Tian et al., 2017; Liu et al., 2019; Yu et al., 2021).
Conclusions

The present study shows that supplementation of SB in high-

SBM diets not only improves growth and feed utilization, but

also reduces the permeability of intestinal mucosal cells and

attenuates the intestinal inflammatory response in juvenile

orange-spotted groupers. The optimal inclusion level was 0.2%

SB in a high-SBM diet according to the regression analysis of

percent weight gain against dietary SB inclusion levels. This is

the first report on the intervention effect of dietary SB on

grouper enteritis induced by high-SBM diet feeding. Our

current study will provide a basis for dietary SB use as a

functional feed additive to alleviate SBMIE of fish.
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