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Université de Perpignan
Via Domitia, France

REVIEWED BY

Dakota McCoy,
Stanford University, United States
Netanel Kramer,
Tel Aviv University, Israel

*CORRESPONDENCE

Claudia Tatiana Galindo-Martı́nez

cgalindomartinez@ucsd.edu

Roberto Iglesias-Prieto

rzi3@psu.edu

†
PRESENT ADDRESS

Claudia Tatiana Galindo-Martı́nez,
Scripps Institution of Oceanography,
University of San Diego, La Jolla, CA,
United States

SPECIALTY SECTION

This article was submitted to
Coral Reef Research,
a section of the journal
Frontiers in Marine Science

RECEIVED 26 August 2022
ACCEPTED 05 December 2022

PUBLISHED 22 December 2022

CITATION

Galindo-Martı́nez CT, Chaparro A,
Enrı́quez S and Iglesias-Prieto R (2022)
Modulation of the symbionts
light environment in hospite
in scleractinian corals.
Front. Mar. Sci. 9:1029201.
doi: 10.3389/fmars.2022.1029201

COPYRIGHT

© 2022 Galindo-Martı́nez, Chaparro,
Enrı́quez and Iglesias-Prieto. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 22 December 2022

DOI 10.3389/fmars.2022.1029201
Modulation of the symbionts
light environment in hospite
in scleractinian corals

Claudia Tatiana Galindo-Martı́nez1*†, Arelys Chaparro2,
Susana Enrı́quez3 and Roberto Iglesias-Prieto1*

1Mueller Lab, Department of Biology, The Pennsylvania State University, University Park, State
College, PA, United States, 2Center for Marine and Environmental Studies, University of the Virgin
Islands, St. Thomas, VI, United States, 3Laboratory of Photobiology, Unidad Académica de Sistemas
Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnologı́a, Universidad Nacional
Autónoma de Mexico (UNAM), Puerto Morelos, Cancún, QR, Mexico
The upregulation of animal chromoproteins (CPs) during thermal stress

produces “colorful” bleached corals that facilitate coral recovery after

bleaching. In situ measurements indicate that animal CPs present in coral

tissues reduce the elevated internal light environment of the remaining

symbionts in bleached or low-pigmented stressed corals. However, there is

still a lack of understanding regarding the extent to which animal CPs

contribute to modifying the internal light environment of the symbionts in

hospite. In this study, we evaluate the effect of three animal CPs on the optical

properties of the coral tissue and their internal light environment using a

numerical model. The model allows estimations of the absorbance spectra of

corals as a function of changes in symbiont and animal pigmentation, as well as

descriptions of the light environment in hospite of the symbionts. These

descriptions were derived from the quantification of the contribution of each

pigment component to light absorption, together with the contribution of the

coral skeleton’s reflectance. Simulations indicate that animal CPs upregulation

modifies the spectral distribution and the intensity of the internal light field.

Animal CPs can reduce up to 11% of the light intensity in hospite when present

individually, and up to 24% when present in combination. Such reduction may

play a critical role in preventing the full development of the bleached

phenotype when irradiance rises to excessive levels at low coral

pigmentation, facilitating coral recovery and symbiont tissue re-colonization

after bleaching. Accordingly, coral’s CPs components need to also be

considered when selecting coral species for future restoration efforts.

KEYWORDS

coral bleaching, coral recovery, animal chromoproteins, light environment in
hospite, a*CP
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1 Introduction

The light environment inside the tissue of scleractinian

corals is mainly determined by the incident irradiance on the

coral surface and the optical properties of the tissue (Salih et al.,

2000; Enrı ́quez et al., 2005; Wangpraseurt et al., 2014;

Wangpraseurt et al., 2016) and the skeleton (Enrıq́uez et al.,

2005; Terán et al., 2010; Marcelino et al., 2013; Swain et al., 2016;

Enrıq́uez et al., 2017). In the tissue, the presence of animal

chromoproteins (CPs) (Salih et al., 2000; Smith et al., 2013) and

photosynthetic pigments from the symbiotic dinoflagellates

(Enrıq́uez et al., 2005; Scheufen et al., 2017b) increases the

absorption capacity of the coral pigments. Meanwhile, multiple

light scattering by the white skeleton produces diffuse light,

reducing pigments’ self-shading while enlarging the optical path,

increasing the probability of light absorption by the pigments

(Enrıq́uez et al., 2005). However, the reduction of coral skeleton

reflectivity due to the presence of endolithic organisms such as

the chlorophyte Ostreobium spp. near the skeletal surface

strongly affects pigment absorption and modifies the light

environment of the symbionts inside the tissue, i.e., in hospite

(Galindo-Martıńez et al., 2022).

During thermal stress, reductions in the symbiotic

dinoflagellate population within the coral tissue result in

progressive increases in the light environment in hospite

(Wangpraseurt et al., 2017). The remaining symbionts respond

to these internal increases in the local illumination by reducing

photosynthetic pigment content to photoacclimate to the new

light environment (Iglesias-Prieto and Trench, 1994; Enrıq́uez

et al., 2005; Gómez-Campo et al., 2022). However, such typical

algal response, which is intended to regulate the light dose

absorbed by the symbionts, is not an appropriate response for

organisms living inside one of the most efficient light collectors

in nature (Enrıq́uez et al., 2005; Scheufen et al., 2017b), as it

exposes the symbionts in hospite to further increases in local

irradiance, activating a positive feedback loop. Under these

circumstances, dinoflagellates experience dramatic increases in

photodamage that can compromise the symbiotic relationship

when all other photoprotective mechanisms are overwhelmed,

and the bleached phenotype is finally induced (Scheufen et al.,

2017a; Scheufen et al., 2017b; Gómez-Campo et al., 2022). Hence

the dramatic increases in the light environment of the symbionts

in hospite due to the loss of coral pigmentation (i.e., loss of

symbionts and reduction in symbiont pigmentation) is critical

for understanding the limits of tolerance of this symbiotic

association coral-Symbiodinacea. An important implication of

this process is that coral recovery from bleaching remains a

challenging task for the symbionts when the external stress is

removed because internal light levels are still too high, even

when the external irradiance remains constant (Swain et al.,

2016; Wangpraseurt et al., 2017). However, corals can recover

after bleaching, and populations have the capacity to restore

their pigmentation and functionality, surviving the heat stress
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event (Rodrıǵuez-Román et al., 2006; Bollati et al., 2020;

Galindo-Martıńez et al., 2022).

The upregulation of animal chromoproteins (CPs) in the

animal tissue, which is responsible for creating “colorful”

bleached corals (Bollati et al., 2020; Bollati et al., 2022), has

been proposed as one of the mechanisms for coral bleaching

recovery. The most common group of animal CPs found in

corals are the Green Fluorescent Proteins (GFP) (Matz et al.,

1999; Salih et al., 2000; Alieva et al., 2008; Smith et al., 2013).

They are primarily found in populations of shallow areas,

exposed to high-light environments, and their upregulation

can be promoted by blue light (Salih et al., 2000; D’Angelo

et al., 2008), nutrient stress (Bollati et al., 2022), and exposure to

mild heat stress (Bollati et al., 2020). Animal CPs generally

accumulate in parts of the coral colony with low symbiont

density composition, such as the areas with the highest growth

rate, or parts that are particularly damaged (Smith et al., 2013;

Bollati et al., 2020). Animal CPs’ function in corals is not clear;

however, it has been suggested that animal CPs can help in coral

photoprotection to high levels of UVR or PAR (Salih et al., 2000;

Smith et al., 2013; Gittins et al., 2015; Quick et al., 2018),

antioxidant activity (Bou-Abdallah et al., 2006), and

camouflage (Matz et al., 2006). They have also been proposed

to amplify light scattering and increase the temperature within

coral tissue (Lyndby et al., 2016). It also has been suggested that

animal CPs could help corals attract symbionts (Aihara et al.,

2019) and prey such as plankton (Ben-Zvi et al., 2022).

Due to their chemical composition, animal CPs can absorb

light in the visible and UV range. Based on their optical

properties, animal CPs can be classified as fluorescent proteins

(FPs) and non-fluorescent chromoproteins (CPs) (Alieva et al.,

2008). FPs can reemit light at particular wavelengths, a process

known as photoconversion (Dove et al., 2001; D’Angelo et al.,

2008; Smith et al., 2013; Bollati et al., 2022). Hence, it has been

suggested that animal CPs could enhance algal photosynthesis in

low light environments by modifying the light spectrum and

intensity (Schlichter et al., 1994; Salih et al., 2000; Bollati et al.,

2022). Nevertheless, considering that the number of photons

generated through photoconversion is minimal compared to

ambient light, its contribution to photosynthesis may be

negligible (Ben-Zvi et al., 2021; Bollati et al., 2022). In situ

spectral scalar irradiance in corals indicate that the presence of

animal CPs reduces the light environment in hospite at

particular wavelengths (Bollati et al., 2022) due to the CPs’

light absorption capacity. However, there is still a limited

understanding of the animal CPs’ contribution to the

modification of the light environment in the PAR range of the

coral symbionts in hospite.

In this study, we analyzed the damping effect of three non-

fluorescent animal CPs (asulCP562, amilCP580, and

amilCP604) in the internal light environment of coral tissues

using a numerical model for light transmission in corals. The

model assumes light attenuation in the coral tissue due to light
frontiersin.org
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absorption by symbiotic photosynthetic pigments and animal

CPs, and the additional effect of skeleton light scattering. The

portion of light reaching the skeleton is scattered back to the

tissue in different ratios depending on the optical properties of

the skeleton. Simulations indicate that upregulation of animal

CPs in the coral tissue can reduce internal irradiance up to 24%

when present in combination.
2 Materials and methods

2.1 Numerical model

The numerical model for light transmission in corals

previously reported (Galindo-Martı ́nez et al., 2022) was

modified to further explore the effects of animal CPs in the

internal light environment of coral tissue. Briefly, the model

assumes a flat coral where polyps are retracted, and the

transparent coral tissue, containing the spherical photosynthetic
Frontiers in Marine Science 03
symbionts, sits on top of the calcium carbonate skeleton. In the

model, the skeleton reflectance can be modified due to the

presence of the endolithic algae Ostreobium near the skeletal

surface (Galindo-Martıńez et al., 2022) (Figure 1A).

The model considers that 1) the incident light on the coral

surface is attenuated inside the tissue by the photosynthetic

pigments of the symbiotic dinoflagellates and by the animal CPs

when present, and 2) that the light that is not attenuated and

reaches the skeletal surface is scattered back to the coral tissue as

a function of coral skeleton reflectance (R) (Figure 1A). By doing

so, the model can predict the coral absorbance spectra and the

light environment in hospite for the symbionts with 0.2 nm

resolution in the PAR range (400 to 700 nm) as a function of the

Chla density due to the presence of the symbiotic dinoflagellates,

the animal CP density when upregulated in the animal tissue,

and the skeleton reflectance (Figures 1B, C). See detailed

equations in supplementary materials.

To predict the light environment for the symbionts inside

the coral tissue, the numerical model was designed in the
A B

D

C

FIGURE 1

Description of the numerical model for light absorption in corals. (A) Schematic representation of the coral model. Arrows indicate the
parameters used to determine the light environment in hospite for the symbionts. (B) Equations used in the numerical model for the calculation
of (1) the incident irradiance on the coral, (2) the coral tissue absorbance, (3) the incident irradiance in the skeleton, and (5) and the light
environment in hospite for the symbionts. (C) Description of the variables used in the model. (D) Different scenarios of light absorption in corals:
a clean coral with a white skeleton (no chromoproteins, no Ostreobium spp.), clean coral with an Ostreobium spp. bloom near the skeletal
surface, a colorful coral with one of the three chromoproteins upregulated in the tissue: asulCP562, amilCP580, or amilCP604 (0.09 mg cm-2),
and a colorful coral with an Ostreobium spp. bloom near the skeletal surface.
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software Excel version 16.66.1 based on data previously

reported: 1) the vertical spectral diffuse attenuation coefficient

(KdL) for downwelling irradiance in the ocean reported by

López-Londoño et al. (2021), 2) the light absorption spectra of

a coral measured in transmittance mode (Enrıq́uez et al., 2005),

3) the in vitro absorption spectra of three animal CPs isolated

from the coral tissue (asulCP562, amilCP580, and amilCP604)

(Smith et al., 2013), 4) the light transmission properties of coral

skeletons (Vásquez-Elizondo et al., 2017), and 5) the in vivo

absorption spectra of Ostreobium spp. in coral skeletons

(Galindo-Martıńez et al., 2022). Transmission absorption

spectra of coral tissues (Enrıq́uez et al., 2005) and animal CPs

(Smith et al., 2013) were digitized using the software

PlotDigitizer (Version 2.6.9). Each animal CP considered for

the model presents a particular absorption peak at 562, 580, and

604 nm for asulCP562, amilCP580, and amilCP604, respectively

(Figure 2) (Smith et al., 2013).

For the model’s components, equations were designed to

predict absorption with 0.2 nm resolution in the PAR range (400

to 700 nm) (Figures 1B, C) (See Supplementary materials). The

first component, KdL (López-Londoño et al., 2021), allows

quantification of the incident irradiance in the coral (Einc) as a

function of depth (z). Where E0 is the sub-superficial irradiance

in the ocean

Einc = E0e
−Kdl  �   zð Þ (1)

The second and third components enable the prediction of

light absorption in the coral tissue (Dt) by adding the absorbance

of the dinoflagellates (Dsym) and the animal chromoproteins

(DCP). These absorbance spectra were predicted using equations

based on an exponential attenuation as a function of algal and
Frontiers in Marine Science 04
animal pigment densities. Dt was later used for the calculation of

the incident irradiance in the skeleton (Esk).

Dt = Dsym + DCP (2)

Esk = Einc − Einc*Dtð Þ (3)

The fourth and fifth components, coral skeleton

transmittance (Tsk) and Ostreobium spp. absorption (Dost),

allow us to calculate the skeleton’s reflectance (Rskos)

considering the effects of the endolithic algae Ostreobium spp.

when present in the skeleton. The absorbance spectrum of

Ostreobium spp. was calculated using equations based on an

exponential attenuation as a function of Ostreobium spp. density

and its position in the skeleton (Galindo-Martıńez et al., 2022).

Rskos  =  1 − (1 − 10−Tsk�Dost ) (4)

Finally, using the previous parameters, the light

environment in hospite for the symbionts (Esym) was calculated

as

Esym  =  Einc  + (Af � Rskos)Esk (5)

In this expression, Einc is the incident irradiance on the coral

surface, Af is the amplification factor for a flat surface as Chla

density changes (Enrıq́uez et al., 2005), Rskos is the coral skeleton

reflectance, and Esk is the incident downwelling irradiance on the

coral skeleton (Figure 1B). The amplification factor indicates the

enhancement of the light absorption by the symbionts in hospite

due to the presence of the coral skeleton in comparison with

symbionts in suspension with the same amount of pigmentation

(Enrıq́uez et al., 2005).
2.2 Numerical model simulations

To quantify the damping effect of animal CPs in the light

environment in hospite, simulations were run in the numerical

model assuming different coral scenarios with different Chla

densities (100, 75, 50, 25, 12, and 6 mg Chla m-2) that

correspond to variations in coral pigmentation from a well-

pigmented coral (100 mg Chla m-2), to a bleached coral (less

than 6 mg Chla m-2). The scenarios proposed represent corals

with variations in the optical properties of the coral tissue and/or

the coral skeleton, such as 1) a “clean” coral, representing a coral

with no animal CPs in the tissue and with a white skeleton, 2) a

“clean” coral with an Ostreobium spp. bloom located near the

skeletal surface (less than 0.1 mm from the skeletal surface), 3-5)

a “colorful” coral, representing a coral with one of the three

animal CPs (asulCP562 (3), amilCP580 (4), and amilCP604 (5)

(Smith et al., 2013)) upregulated in its tissue, assuming an

animal CPs density of 0.09 mg cm-2 as reported by Smith

et al., 2013, and with a white coral skeleton, and lastly, 6) a

“colorful” coral with the three animal CP’s (asulCP562,

amilCP580 and, amilCP604) upregulated in its tissue and with
FIGURE 2

In vitro light absorption spectra for the three coral
chromoproteins used in the numerical model: asulCP562 (pink
solid line), amilCP580 (purple dashed line), and amilCP604 (blue
dotted line) extracted from coral tissue (after Smith et al., 2013).
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an Ostreobium spp. bloom located near the skeletal surface

(Figures 1B–D). Simulations were run in the software Excel

version 16.66.1. For each scenario, coral absorption spectra,

percentage of light absorbed by each model component, and

variation in the light environment in hospite were predicted.
2.3 Estimations of ACPs specific
absorption coefficient

For the calculation of the specific absorption coefficient

(Morel and Bricaud, 1981) of each animal CP (a*CP562, a*CP580,
and a*CP604 for asulCP562, amilCP580, and amilCP604,

respectively; m2 Chla-1), we used the predicted coral

absorbance from the simulations run in the scenarios

previously mentioned. In the simulations, the CPs’ density was

maintained constant (0.09 mg cm-2) and only the Chla density in

the coral was modified (100, 75, 50, 25, 12, and 6 mg Chla m-2).

For the calculation of the a*CP we used the equation:

a∗CP = D
r

�� �
ln 10 (6)

Where r is the Chla content per projected area in the coral

(mg Chlam-2) (Enrıq́uez and Sand‐Jensen, 2003; Enrıq́uez et al.,

2005) and D is the absorbance value predicted for the coral by

the numerical model at 562 nm, 580 nm, and 604 nm, for

a*CP562, a*CP580, and a*CP604 respectively. This parameter, a*CPs,

was calculated only for the absorbance value at the peak of

absorption of each animal CPs. It can be considered a descriptor

of the pigment light absorption efficiency of the animal CPs in

hospite. An ANCOVA test was used to identify significant

differences among animal chromoproteins. The statistical

analysis was conducted using the software SPSS Statistics

(Version 28).
3 Results

3.1 Light absorption

The numerical model indicates that the coral tissue of

bleached/pale corals is able to absorb three times less incident

light in the PAR range than pigmented corals (Figures 3A, G),

allowing more incident light to reach the coral skeleton. The

accumulation of chromoproteins in the coral tissue increases

light absorption (Figures 3B-D). However, each chromoprotein

contributes in a different proportion; asulCP562, amilCP604,

and amilCP580 can absorb up to 13%, 15%, and 24%,

respectively, of the incident light in a bleached/pale coral (3.3

mg Chla m-2) (Figures 3B-D). On the contrary, a pigmented

coral (100 mg Chla m-2) can only absorb up to 5%, 6%, and 7%,

respectively (Figures 3H-J). When Ostreobium spp. bloom in the

skeletal surface, they can absorb up to 54% of the incident light
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in a bleached/pale coral (Figure 3E, F), and only up to 10% in a

pigmented organism (Figure 3K, L). However, if Ostreobium

spp. is located near the skeletal surface of a “colorful” bleached

coral, it can absorb only 14% of the incident light because the

three animal CPs absorb up to 52% of the incident

light (Figure 3F).

To quantify the variability in animal CPs’ light absorption

efficiency, differences in the specific absorption coefficient were

estimated for each chromoprotein (a*CP), as well as its variability

as a function of Chla density for corals of different pigmentation.

Model simulations indicate that a*CP increases with reductions

in pigment density in the coral. However, they did not show

significant differences between chromoproteins (ANCOVA, f(15)
=0.015, p>0.05) (Figure 4). The a*CP varied from a minimum of

0.029 m2 mg Chla -1 for a pigmented coral (100 mg Chlam-2) to

a maximum of 0.284 m2 mg Chla -1 for a bleached coral (6 mg

Chla m-2) (Figure 4).
3.2 Light environment in hospite

Our simulations indicate that reductions in Chla density in

the coral allow more incident light to reach the skeleton,

producing dramatic increases in the light environment in

hospite of the symbionts due to the extraordinary skeleton’s

capacity to scatter light (Figure 5). Under the “clean” coral

scenario, the model estimated a 2.8-fold increase in light levels in

hospite for bleached corals compared to a pigmented coral

(Figures 5A, G). However, when chromoproteins were present

in the tissue of “colorful” bleached corals, the in hospite light

environment was amplified between 2.3 to 2.6 times (Figures 5B-

D), relative to the amplification estimated for “colorful”

pigmented corals (Figures 5H-J). Combining the presence of

the three chromoproteins in the same bleached coral, a 2.1-fold

increase in the light levels in hospite was estimated. Finally,

for the last scenario, the combined presence of Ostreobium spp.

and the three chromoproteins resulted in only a 1.3-fold increase

in the light environment in hospite of the symbionts for

“colorful” bleached corals (Figure 5F).

These simulations showed that the presence of optical

dampers, such as animal CPs in coral tissues or Ostreobium

spp. in the skeleton, reduces the light levels in hospite for the

symbionts regardless of the variation in coral pigmentation (i.e.,

Chla density) (Figure 6). Nevertheless, corals with less Chla

density showed more considerable reductions of the light

environment in hospite for the symbionts when dampers were

present, relative to regular pigmented corals. In bleached corals,

the presence of animal CPs reduces between 11 to 24% of the

light environment in hospite of the symbionts (Figures 5B-D;

Figure 6) relative to tissues of “clean” bleached corals (Figure 5A;

Figure 6). Meanwhile, in pigmented corals, the presence of

animal CPs in the tissue leads to reductions of 2-6%

(Figures 5H-J; Figure 6) in comparison to “clean” pigmented
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corals (Figure 5G; Figure 6). In contrast, the presence of

Ostreobium spp. near the skeletal surface can reduce up to

53% of the light environment in hospite of the symbionts

(Figure 5E; Figure 6).
4 Discussion

The use of numerical models allows us to predict light

absorbance spectra in corals (Figure 3) under different

scenarios of pigment composition in their tissue and/or

skeleton (Figure 1). Models determine the percentage of

incident light absorbed by each component and variations

in coral skeleton’s reflectance, allowing estimation of

potential changes in the light environment in hospite of the

symbiotic dinoflagellates (Figures 5, 6). Our simulations

indicated that reductions in light absorption in bleached

corals, due to decreases in Chla density, may increase up to

three times the internal light field of bleached corals, and that

the main determinant is the presence of a highly reflective

coral skeleton (Figures 5A, G). However, the presence of

optical dampers in the tissue and/or the coral skeleton

allows for significant reductions in the light environment in

hospite (Figure 5). When corals upregulate the production of

CPs in their tissue, the light environment in hospite of the

symbionts reduces between 11- 24% in colorful bleached

corals relative to “clean” bleached corals. (Figures 5B-D).

Interestingly, when Ostreobium spp. increase in abundance

near the skeletal surface, “colorful” bleached corals can reduce
Frontiers in Marine Science 07
up to 53% of the light environment in hospite of the

symbionts (Figure 5F).

Measurements of in vivo scalar irradiances within tissues of

bleached corals have documented 20% reductions in irradiances

at the animal CP absorption peaks when they are present (Bollati

et al., 2022). Our model predicts similar reductions for the CPs

reported by Bollati et al. (2022). It also supports the critical

contribution of animal CPs to the regulation of the spectral

distribution and intensity of the light environment of the

symbionts in hospite (Figure 6), according to their light

absorption characteristics (Salih et al., 2000; Dove et al., 2001).

Photoconversion has been suggested as another possible role of

animal CPs (Wiedenmann et al., 2004; Bollati et al., 2022). This

phenomenon denotes the capacity of a particular group of green

fluorescent pigments (GFP), known as photoconvertibles RFPs

(pcRFPs), to absorb light in the blue-green range and reemit it in

the orange-red range (Wiedenmann et al., 2004; Bollati et al.,

2022). However, considering that dinoflagellates have poor light

absorption in the orange range, animal CPs photoconversion

may not be as relevant in enhancing their photosynthetic activity

(Ben-Zvi et al., 2021). Indeed, the number of photons generated

through photoconversion is insignificant compared to those

provided by ambient light (Bollati et al., 2022).

The effect of animal CPs on the light environment within

coral tissues varies depending on the type and density of the CPs

and symbiont pigment density (Figure 6). A combination of CPs

has a more substantial effect damping the light environment

within bleached corals than the presence of a single type of CPs

(Figure 6). In this sense, the combination of animal CPs in

addition with a bloom of the endolithic algae Ostreobium spp.

near the skeletal surface, produce the largest light attenuation in

our simulations (Figure 5; Figure 6) due to the synergistic effect

of the increases in light absorption and reductions in skeleton

light scattering. Moreover, model predictions indicate that the

combination of the three animal CPs used in our simulations

and coral pigmentation values above 50 mg Chla m-2 allow the

coral to absorb most of the light available in the tissue

(Figure 3L). This condition minimizes the amount of incident

light reaching the skeleton, with the consequent control of

Ostreobium spp. blooms. Therefore, the last scenario simulated

in the model could only occur in low-pigmented corals (<40 mg

Chla m-2).

Multiple light scattering on coral skeleton together with

reductions in Chla density during stressful conditions could

affect both the animal CPs upregulation as well their efficiency

of light absorption. As the upregulation of CPs in corals can be

stimulated with light around 450 nm (D’Angelo et al., 2008;

Bollati et al., 2020), the amplification of the light environment

due to reductions in coral Chla density also involves higher levels

of blue light within the coral tissue (Figure 5), and in consequence,

facilitates animal CPs upregulation before the bleached phenotype
FIGURE 4

Comparison of changes in animal CP specific absorption
coefficient (a*CP) as a function of Chla density of “colorful” corals
for the three animal CPs used in the numerical model asulCP562
(pink dotted line), amilCP580 (purple solid line), and amilCP604
(clear blue dashed line).
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is expressed (Gómez-Campo et al., 2022). Accordingly, bleaching

may not be necessary for inducing animal CPs upregulation

(Bollati et al., 2020) as a small reduction in pigment density

could be enough to enhance blue light levels within coral tissues.

In addition, the amplification of the light environment enhances

light availability in all wavelengths in the PAR range, increasing

the probability of light absorption by both pigment types,

symbiotic and animal. This effect can be quantified by each

pigment’s specific absorption coefficients (a*). Significant

enhancement in light absorption efficiency of Chla (a*Chla) at

low pigmentation has already been documented (Enrıq́uez et al.,

2005; Scheufen et al., 2017a; Scheufen et al., 2017b), and our

analysis estimated similar enhancements for animal CPs pigments

(a*CP) in bleached/paled coral tissue (Figure 4). This finding

supports the capacity of animal CPs to act as optical dampers,

even at small concentrations.

The presence of animal CPs in the coral tissue could simply be

considered as a mechanism that facilitates coral recovery after
Frontiers in Marine Science 08
bleaching (Bollati et al., 2020; Bollati et al., 2022). However, our

results also support their utility in preventing the induction of the

optical feedback loop that leads to the development of the bleached

coral phenotype (Gómez-Campo et al., 2022). Contrary to CPs

upregulation, Ostreobium spp. require a substantial reduction in

Chla density to bloom near the skeletal surface. Once Ostreobium

spp. blooms, its presence near the skeletal surface can also modify

the light environment in hospite of the symbionts (Galindo-

Martıńez et al., 2022). This coral condition facilitates coral

recovery after bleaching and may help in future bleaching

events. Consequently, the effect of the combination of both

mechanisms (CPs upregulation and Ostreobium spp. blooms) on

the optical properties of coral tissue and skeleton creates less

efficient corals for light absorption but more robust under heat

stress and with a higher capacity of recovery after bleaching.

Finally, the light absorption properties of each CP determine

its specific characteristics as a light-damper. Consequently,

differences in coral vulnerability to bleach under thermal stress
A B
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K L
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FIGURE 5

Predicted light environment in hospite for a bleached coral (A-F, 3.3 mg Chla m-2) and a pigmented coral (G-L, 100 mg Chla m-2) under
different scenarios: a coral with a white skeleton (yellow solid line, A, G), a coral with the chromoprotein asulCP562 upregulated in its tissue
(pink dotted line, B, H), a coral with the chromoprotein amilCP580 upregulated in its tissue (purple dashed line, C, I), a coral with the
chromoprotein amilCP604 upregulated in its tissue (clear blue dotted line, D, J), a coral with an Ostreobium bloom in the skeletal surface (green
dotted line, E, K), and, a coral with the three chromoproteins upregulated in its tissue and an Ostreobium bloom in the skeletal surface (navy
blue solid line, F, L).
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or the coral’s ability for recovery after bleaching may also be

regulated by the coral’s ability to maintain/enhance animal CPs

production and/or the type of animal pigment upregulated.

More research is still needed to understand further possible

trade-offs in coral physiology associated with animal CPs

production. However, their presence and variability in coral

tissues could be an excellent criterion when considering species

for coral restoration efforts.
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