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Seaweed draws a lot of attention for its vital role in aquaculture as it contains

beneficial biological compounds that undoubtedly might help in the

development of this field. The current study sheds light on the potential

efficiency of dietary supplements of Grateloupia acuminata and G. doryphore

(Halymeniaceae) nanoparticles (GNS) at different levels with bionanocomposite

cellulose acetate membranes (CA/bio-AgNps) on improved growth

performance, digestive enzyme activity, immunity, antioxidative, resistance

against infectious pathogens, and characterization of water quality treated

with CA/bio-AgNps that is used in rearing Nile tilapia (Oreochromis niloticus).

Four concentrations (0.1, 0.25, 0.5, and 1.0 ml/L) of GNS extract were tested as

potential anti-bacterial and for the efficacy of being parasitic. Fish with an

average weight (24.46 ± 0. 50 g) were apportioned into six experimental

groups (T0, T1, T2, T3, T4, and T5) represented as 0.0%, 0.0%, 0.1%, 0.25%,

0.5%, and 1.0% GNS in diets with CA/bio-AgNps, respectively. Injection of fish
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with Aeromonas hydrophila was performed at the end of the trial. Chemical

and bacteriological water indices significantly showed improvement after

being treated with CA/bio-AgNps than the control group. Growth, carcass

composition, digestive enzyme, and hematological and biochemical indices

were significantly noticed positive (p< 0.05), especially T4 and T5, than the

control group. In parallel, a significant improvement was noticed in serum

lysozyme, total immunoglobulin, complement C3, antioxidative enzyme, and

the relative expression of hepatic and inflammatory genes with an increased

level of GNS (p< 0.05) are upregulated than the control group. Remarkably,

GNS-supplemented diets and extracts provided positive efficacy against A.

hydrophila with a decreased percentage of fish mortality, besides efficacy on

antibacterial strains and Cichlidogyrus tilapiae, respectively. To sum up, the

seaweed extract with CA/bio-AgNps resulted in better growth performance of

fish, antipathogenic effect, and health status. Furthermore, CA/bio-AgNps were

vital in improving water characteristics. They should be studied and applied

more in the future.
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Introduction

In response to the increasing world population, aquaculture

activities have increased rapidly and grown into a significant

supply of low-cost protein across the world (Dawood et al.,

2021). Effective aquaculture methods are preferable in order to

reduce any potential production loss in volatile ecological

settings (Yukgehnaish et al., 2020). Aquaculture in Egypt

suffers from several issues, including the integrity of the

freshwater setting, prevalent fish diseases, feed, seed resources,

and genetic supplies, which are negatively affecting financial

profits (Nasr-Allah et al., 2020 and Radwan et al., 2022b).

Researchers endeavored to advance several strategies quickly

in order to control fish diseases, including using antimicrobial

agents and immunizations during production stages (Ashour

et al., 2021). Still, synthetic antimicrobial substances are

continually used. As a result of the evolution and

accumulation of multiresistance bacteria in edible tissues,

recent unfavorable impacts on people and the environment

have emerged (Dawood and Koshio, 2016). An active strategy

to foster sustainable aquaculture is using phytobiotic substances/

extracts in the aquaculture field in order to promote an immune

response to environmental materials (Abdelhamid et al., 2021).

As a highly significant component of aquatic environments,

the environmental importance of seaweed for its bioactive

substances is growing, and the commercial uses of seaweed

substances are expanding worldwide (Yang et al., 2015). Many

studies have been conducted on the impact of algal cells and/or
02
extracts on marine animals as they involve improving growth

performance, feed efficacy, modulating gut microbiota,

increasing resistance to diseases, and stimulating immunity

(Cantelli et al., 2019; Zaki et al., 2021). On the other hand,

seaweeds are considered immunostimulators that play a major

part in the improved growth performance of marine organisms

by enhancing feed efficacy, digestion, and use (Ringø et al.,

2012). Additionally, marine algae were used to synthesize

nanoparticles, which are safer than chemical methods (Ingale

and Chaudhari, 2013). Nowadays, marine algae-based biogenic

synthesis of nanoparticles has great potential for environmental

solutions. It is also a cost-effective and eco-friendly method for

producing stable metallic nanoparticles (Kanchana and

Zantye, 2018).

Likewise, seaweeds are widespread, readily available, much

safer to handle, and act as a source of several metabolites.

Nanoparticle synthesis using marine algae extracts is a widely

accepted method to produce green, cheap, eco-friendly

nanoparticles (Mondal et al., 2011). Extracts of marine algae

are rich in secondary metabolites such as alkaloids, flavonoids,

proteins, phenolic acids, and terpenoids, which are capable of

reducing ionic metals and help in the formation of metallic

nanoparticles (Aromal and Philip, 2012).

Nanoparticles display a wide variety of applications in water

desalination, aquaculture, and the environment, which can be

synthesized by chemical, physical, and biological methods but

were fabricated using biological methods because of their high

efficiency in controlling diseases with fewer side effects
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(Kuppusamy et al., 2016). Applying nanotechnology in the

aquaculture field entails the preparation of several nanosized

beneficial substances to be used as feed additives, medicinal

agents, and vaccine preparations (Dar et al., 2020). Because of

their small-sized particles and massive surface area, the

nanoform of trace minerals has an effective impact, which

increases its permeability and functionality on aquatic animal

performances (Dawit Moges et al., 2020). The extensive studies

on these materials demonstrated the important impacts of the

nanosized feeding supplies on promoting the flesh quality,

immunity, health, and growth rates of Nile tilapia (Korni and

Khalil, 2017; Abdel-Razek et al., 2019). Moreover, they improve

aquaculture production, disease control, feeding formulation,

fish nutrient absorption, and biofouling control (Fajardo

et al., 2022).

Metal nanoparticles have gained attention as powerful

antibacterial agents due to their durability, resistance, selectivity,

and specificity (Swain et al., 2014). Biogenic silver nanoparticles

(bio-AgNps) have provided disease control in aquaculture due to

their antipathogen properties (Camacho-Jiménez et al., 2020).

Sadrzadeh and Mohammadi (2019) dec lared that

bionanocomposite membranes were synthesized by the

incorporation of bionanomaterials into the polymeric membrane

matrix and offer superior performance in terms of both water flux

and salt rejection percentage and increase the permeability,

selectivity, and stability of the membrane, which are the key

factors for water treatment. Furthermore, these particles have

antibacterial properties on the surface due to their catalytic

behavior, as well as electrical and magnetic properties and

antibiofouling behavior, and are considered an addition of

metallic nanoparticles to polymers that improves mechanical

strength, thermal stability, hydrophilicity, and membrane

performance. The newly developed bionanocomposite membranes

are being studied deeply for major separation processes, such as

microfiltration (MF), ultrafiltration (UF), and reverse osmosis (RO),

which have the capability of removing the dissolved solids, bacteria,

viruses, and other germs contained in the raw water (Tewari, 2015).

In the family of halymeniaceae, Grateloupia is considered to

be a considerable source of food and lambda carrageenan, having

many commercial uses (Kim et al., 2013). Grateloupia sp.

showed antibacterial (Garcıá-Bueno et al., 2015), antifungal

(Plouguerné et al., 2008), antiviral (Hudson et al., 1999),

anticoagulant (Shanmugam and Mody, 2000), and antioxidant

(Liu and Pang, 2010) activities. Capacity makes this alga an

excellent candidate for integration into the animal culture to

hinder the proliferation of possible pathogenic bacteria (Pang

et al., 2006). Also, researchers reported that seaweeds could

cause specific health benefits other than basic nutrition;

seaweeds have prospective as well as functional feed (Holdt

and Kraan, 2011; Mendis and Kim, 2011).

A few studies investigated the feeding strategies of dietary

supplements of Grateloupia acuminata and G. doryphore

(Halymeniaceae) nanoparticles (GNS) to Nile tilapia.
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Therefore, this paper evaluates the potential feeding strategies

of GNS nanoparticles with biogenic nanocomposite cellulose

acetate membranes (CA/bio-AgNps) on the antioxidative status,

hematobiochemical parameters, growth rate, and immune-

related genes, as well as resistance against bacteria and

parasitic pathogens of O. niloticus.
Materials and methods

Collection and preparation of
algal powder

Seaweeds were picked manually during the spring season

from the eastern harbor along the Mediterranean coastline

between 31° 20′ N latitude and 29° 88′ E longitude,

Alexandria, Egypt. They were washed several times with

distilled water and air dried. The seaweed mixture of species

was equal (1:10), and the algae were extracted by adding 20 ml of

double-distilled water to 2 g of powdered algae and mixing for 1

h on a rotary shaker, then boiling for 15 min. The obtained

extract was filtered using Whatman filter paper and used as a

reducing agent (Negm et al., 2018; Ashour et al., 2020).
GC-MS of aqueous algal extract

The bioactive constituents present in the aqueous extract of

marine algae were analyzed by gas chromatography-mass

spectrometry (Agilent 7890A Series GC system interfaced to

5975C inert MSD with Triple-Axis detector with 7697A an

autosampler (Agilent Technologies, Inc., Stevens Creek Blvd,

Santa Clara, CA, United States)) and an HP-5MS 5% phenyl

methyl Silox-bonded phase column (30 m long × 250 mm
diameter × 0.25 mm film thickness) (Agilent Technologies, USA).

The total GC run time was 62 min, with helium as the carrier gas at

1.22 ml/min flow rate and 22.231 psi constant pressure. After

setting the initial oven temperature to 90°C for 1 min, it was

increased to 205°C for 1 min at a rate of 8 ml/min. It was then

increased to 240°C for 1 min at a rate of 5 ml/min. Finally, it was set

to 300°C for 30 min at a rate of 8 ml/min. The injection volume was

set at 1 ml. The authors conducted compound identification by

comparing them to chromatographic retention features, a mass

spectral library of the GC-MS data system (Sigma-Aldrich), and

quantifying them using the total ion peak area and external criteria

calibration curves.
Biosynthesis of silver nanoparticles using
aqueous algal extract

The authors synthesized colloidal AgNps through these

procedures. They added 10 ml of algae crude extract dropwise
frontiersin.org
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into a 90-ml Ag NO3 aqueous solution of 1 mM that was

constantly stirred. After 48 h of vigorous stirring, the color of

biosilver nanoparticles changed from yellow to dark brown

(Negm et al., 2018).
Characterization of silver nanoparticles

The typical characterization techniques of nanoparticles include

UV–visible spectrophotometry and Fourier transform infrared

spectroscopy (FTIR). The authors obtained the optical absorption

spectra of the biosilver nanoparticle suspension using a Jenway 6800

UV/VIS scanning spectrometer in the wavelength range of 300–700

nm. Utilizing quartz cuvettes with an optical path length of 10 m,

the presence of different components was confirmed using the FTIR

spectrophotometer Vertex 70 by Bruker (Germany).
Synthesis of pure and modified cellulose
acetate membranes

The pure cellulose acetate (CA) membrane was prepared

according to Ebrahim et al. (2016). First, the authors cast the

solution with a 6-s evaporation time. They then immersed the

CA membrane cast onto the glass plate for 15 min in a bath of

deionized water ice. After that, they placed the formed CA

membrane in a water bath at about 4°C for 2 h to eliminate

the effect of capillary pressure and washed it using distilled water

to obliterate the residual solvents. The formed CA-RO

membranes were annealed for 10 min at 80°C. They soaked

these membranes in deionized water for 24 h and dried them in

the air for 24 h before characterization (Morsy et al., 2016). The

authors dispersed 2.5 mg of biosilver nanoparticles in solvents

and sonicated the solutions of bio-AgNps for 5 min. After that,

CA (8.45 g) was added gradually to the silver nanoparticle

solution and stirred for 24 h at room temperature until the
Frontiers in Marine Science 04
complete solution of the CA and the CA/bio-Ag Np

nanocomposite polymer dope was formed (Morsy et al., 2016).
Water analysis

The water parameter was measured before and after entering

the concert ponds through the membrane (CA/bio-AgNps)

throughout the experimental period. The oxygen thermometer

apparatus, YSI model 58 (Yellow Spring Instrument Co. Yellow

Springs, OH, USA), was used to measure the dissolved oxygen

(DO). The pH value was estimated using a digital pH meter.

Colorimetric methods were adopted to estimate the total levels of

ammonia, nitrite (NO2), nitrate (NO3), and phosphate (PO4). The

total alkalinity and hardness were determined using titration

methods. Water samples were chemically analyzed and

microbiologically examined in accordance with APHA (1998).
Diet preparation and fish husbandry

A control diet was prepared with 30% crude protein. Table 1

shows the feeding elements and proximate chemical structure.

Using GNS, the enrichment of the control diet was done at 0.0%

(control), 0.1%, 0.25%, 0.5%, and 1.0%/kg diet levels.

Nevertheless, we suspended GNS in 100 ml of distilled water

and mixed it with the compounds based on uniform spraying.

We then mixed them well for 30 min and pelleted them (1 ml

diameter). After that, we stored the formed experimental diets in

plastic bags at 4°C until use. They analyzed the formed diets

chemically following the methods of AOAC (2012).

O. niloticus fry were obtained from a private fish farm in

Abbassa, Sharkia Governorate, Egypt. The authors transported the

specimens in polyethylene bags filled with dechlorinated water and

provided with aeration to an experimental unit of a private fish farm

in the same area. When the specimens arrived at the experimental
TABLE 1 Basal diet and proximate chemical structure (on a dry matter basis).

Ingredient % Chemical composition %

Fish meal (72.0% CP) 9.80 Moisture 7.70

Soybean meal (48% CP) 42.20 Dry matter 92.30

Yellow corn 20.50 Crude protein 30.64

Wheat flour 5.70 Ether extract 5.37

Wheat bran 15.20 Ash 7.82

Vegetable oil 3.50 Crude fibers 4.92

Cod liver oil 2.00 Gross energy (kcal/kg)b 1,768.90

Dicalcium phosphate 0.87

Vitamin and mineral mixturea 0.20

Vitamin C 0.03

Total 100.00
frontie
aVitamin and mineral mixtures detailed by com Dawood et al., 2020.
bGross energy was calculated based on the values for protein, lipid, and carbohydrates as 23.6, 39.5, and 17.2 kJ/g, respectively.
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unit, they were placed in 1 × 1 × 1 m3
fiberglass tanks for 14 days of

acclimatization and fed a basal control diet twice daily. They

replenished water in ponds at a 10% weekly rate and provided

new freshwater. All specimens were examined visually and found to

be healthy, with no lesions or injuries (Schmitt et al., 2004).

After acclimatization, fish with an average weight of 24.46 ± 0.50

g were equally and arbitrarily allocated into six experimental groups

(three replicates per group). Each group comprised 60 specimens and

was evenly quadrupled (20 specimens/replicate). After that,

specimens were put in 1.50 × 1.50 × 1.10 m3 experimental

concrete ponds. They were fed the prepared diet two times a day,

at 9:00 and 14:00, for 60 days in May and June 2022.
Growth indices and whole body analysis

After 60 days of the feed experiment, the weight of the fish of

each concrete pond was estimated, calculated, and bulk-weighed.

Growth performance was estimated, and feeding utilization was

determined according to Doan et al. (2020). At the end of the

experiment, the final whole-body proximate composition of fish

underwent analysis in triplicate following AOAC (2003).
Sample collection

Blood sampling was performed after fasting the fish for 24 h at

the end of the trial. Blood sampling was collected from the caudal

vein in a 3-ml syringe from three fish per pond. Half of the collected

blood containing EDTA was used for counting RBCs, WBCs,

hematocrit (Hct) value, and hemoglobin (Hb) level, and the other

half was without anticoagulant for separating serum. The collected

serum was kept at −20°C for biochemical and antioxidant analysis,

including ALAT, ASAT, total protein, albumin, globulin, catalase

(CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx),

and malondialdehyde (MDA) measurement.
Hematobiochemical analysis

Brown’s methods were used for estimating the red blood

cells (RBCs) and white blood cells (WBCs) by the Neubauer

slide using a light microscope (Brown and Keith, 1993). The

hemoglobin (Hb; g/dl) concentrations were estimated by

colorimetric methods by Van Kampen and Zijlstra (1983).

The hematocrit (Hct; %) value was measured based on

Brown and Keith (1993) methods. Blood smears were

formed using fresh blood, dried in the air, fixed with

methanol for 3 min, and stained with Giemsa. The slides

were explored using a light microscope, and at least 200

leucocytes were estimated and distinguished as monocytes,

lymphocytes, and neutrophils. After that, the percentages of

the cell types were estimated.
Frontiers in Marine Science 05
Specific commercial kits were used to analyze total protein

(TP) and albumin (ALB) (Biodiagnostic Co., Giza, Egypt),

following those introduced by Gornall et al. (1949) and

Doumas et al., 1971). The globulin (GLO) value was calculated

mathematically by the subtraction of ALB levels from TP values.

The techniques of Reitman and Frankel (1975) were determined

to describe the serum alanine (ALAT) and aspartate

aminotransferase (ASAT) activities.
Digestive enzyme activity

As illustrated by Abdel-Tawwab et al. (2018), enzyme

actions were analyzed by the diagnostic reagent kits following

the manufacturer’s instructions (Cusabio Biotech Co. Ltd.,

Wuhan, Hubei, China).
Serum antioxidant and innate
immunity assay

Enzymatic antioxidants including GPx, CAT, and SOD were

analyzed in fish serum by the diagnostic kits (Biodiagnostic Co.,

Egypt) according to Paglia and Valentine (1967); Aebi (1984),

and Kakkar et al. (1984). The concentration of serum MDA as a

lipid peroxidation biomarker was determined, according to

Yoshioka et al. (1979).

Innate immunity indices in serum samples were calculated.

Micrococcus luteus was used as a substrate to estimate lysozyme

(LYZ) actions turbidimetrically (Ellis, 1990). A unit of LYZ

actions as the number of enzymes that cause the decline of

0.001OD/min in absorbing 1 ml of serum is determined. The

total immunoglobulin (total Ig) concentrations were estimated

following Siwicki and Anderson (1993). Moreover, they used

commercial immune-turbidimetry to estimate complement C3

activity (Tang et al., 2008).
Western blot analysis

Forty micrograms of protein extracted from O. niloticus,

liver or spleen, was dissolved over 8%–12% polyacrylamide gels

and transferred to a nitrocellulose membrane. The authors

blocked each blot in a blocking buffer (7% nonfat dry milk/1%

Tween 20; in 20 mmol/L TBS (pH 7.6)) for 1 h at room

temperature before incubating it with primary antibodies

Hsp70 (Abcam, USA), CAT (Biorbyt, USA), SOD (Sigma-

Aldrich, USA), TNF-a (Thermo Fisher Scientific, USA), IL-10

(Santa Cruz Biotechnology, USA), IL-9 (Abcam, USA), GAPDH,

b-actin, and vinculin (Santa Cruz Biotechnology, USA) in

blocking buffer for 2 h at room temperature or overnight at 4°

C, followed by incubation with anti-rabbit IRDye 800CW-

labeled secondary antibody (Abcam, USA). Blots were
frontiersin.org
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subjected to improved chemiluminescence (Thermo Scientific

Pierce, USA) and autoradiography using the BioRad imaging

system (Hercules, CA). Quantity One (BioRad) was used by the

authors to perform a densitometric measurement of the bands in

the Western blot analysis. The treatment protocol was carried

out at least three times, and the analysis of individual protein

expressions was carried three times and with similar results

(Chen et al., 2017).
Bacterium challenge test

Aeromonas hydrophila was isolated and prepared according

to Abdel-Razek et al. (2019). At the end of the feed trial, fish

representing each subgroup had 10 fish in 100-L tanks in

replicas. The first subgroup was challenged with pathogenic A.

hydrophila by a sublethal dose illustrated by Schäperclaus

(1992), in which they intraperitoneally (IP) injected a dose of

0.1 ml of 24 h broth from virulent A. hydrophila (5 × 105 CFU/

ml). They IP injected the second subgroup with 0.1 ml of saline

solution as the control group. They fed fish on matching diets

throughout the challenge test in each treatment. Mortality data

were utilized to estimate the relative live percentage (RLP)

following Amend (1981) equation:

RLP  ¼ 1 - ½ðregistered mortality percent in the treated groups 

ð%ÞÞ=ðregistered mortality percent in the control group ð%Þ� ñ 100
In vitro antibacterial activity of GNS

Four GNS levels (0.1%, 0.2%, 0.5%, and 1.0% ml/L) were

investigated to identify the antibacterial ability of three chosen

bacteria. The three bacterial strains tested were Aeromonas

sobria, Pseudomonas fluorescens, and Streptococcus agalactiae

from the Department of Microbiology, Faculty of Science, Al-

Azhar University, Egypt.
In vitro antiparasitic activity of GNS

Cichlidogyrus tilapiae was isolated, identified, and prepared

as shown in Radwan (2022a); Radwan et al., (2022c). Four GNS

extract concentrations (0.1, 0.25, 0.50, and 1 ml/L for 60 min,

four duplicates each) were utilized against C. tilapiae in the case

of setting the timing to zero. There were control wells with

distilled water in each treatment without adding GNS. The

parasites were observed every 10 min by a dissecting

microscope with recording rates. Considering the parasites

dead depends on their lack of response to touch or showing a

reaction when moving them to clean wells with distilled water.

Zhang et al. (2014) concluded that treatment would be effective
Frontiers in Marine Science 06
when achieving 100% parasite mortality in 24 h. In the end, the

antiparasitic efficacy was calculated based on the formula of

Wang et al. (2009):

AP  ¼  ½T1-T2�x100%=T1
where AP denotes the antiparasitic efficacy, T1 represents the

mean survival in the control group, and T2 denotes the

treatment group’s mean survival.
Statistical analysis

The means with their standard error (SE) represented the

data that were analyzed using one-way ANOVA via SPSS 22.0

(SPSS V.22, SPSS Inc., IL, USA). After that, we used Duncan’s

multiple range test in order to identify differences in the

treatments with a significance value of p< 0.05.
Results

Identified components by GC-MS of
aqueous algal extract

Analysis of aqueous algal extract by GC-MS illustrates 20

phytochemical extracts from 10 biochemical groups. Four of the

extracts were of fatty acid nature (pentatonic acid, 4-oxo-, ethyl

ester; oleic acid; pentadecanoic acid, ethyl ester; ethyl 9-

hexadecenoate), found compounds individually whose nature

was polysacchar ide (a-D-g lucopyranos ide , O-a-D-
glucopyranosyl (1.fwdarw.3)-b-D-fructofuranosyl), ester

(androstan-17-one,3-ethyl-3-hydroxy-, (5à)-), alkaloid (1H-

pyrrole, 1-pentyl-), phenols (caffeic acid), amino acid

(undecanoic acid, 11-amino-), and vitamin (retinol). Also,

there were two of each of these compounds, and their nature

was alcohols (ethyl iso-allocholate; phytol), steroids (cholest-5-

En-3-Ol (3á)-, acetate; cholest-5-en-3-ol (3b)-, tetradecanoate),
and carotenoides (9-octadecenoic acid,1,2,3-propanetriyl ester,

(E,E,E)-; rhodopin). In the context, three compounds were

aldehydes (5-acetoxymethyl-2-furaldehyde; 5-octadecenal; 1-

butanamine, 2-methyl-N-(2-methylbutylidene)-, and

milbemycin-oxime as antibiotics (Table 2; Figure 1A).
UV and FTIR characterization

Data showed UV–vis absorption spectra monitored forming

silver nanoparticles at 300 to 700 nm, where an intense band was

clearly detected at 430 nm, confirming the formation of silver

nanoparticles (Figure 1B). On the same line, FTIR is used in

order to determine the potential biomolecules accountable for

the stabilization, reducing Ag+ ions and limiting the synthesized
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bioreduced AgNps. Chromatograms are presented in Figure 1C.

The IR chromatogram of the SGDW showed an absorption band

at 3,361 cm−1 matching N–H stretching vibrations of (NH2)

peptide linkages and hydroxyl (OH) stretch vibrations of

carboxylic acid groups, demonstrating polyphenols. In

contrast, the absorption bands were observed at 1,740 and

1,628 cm−1.
Synthesis and performance of pure and
modified cellulose acetate membranes

As shown in Table 3, the pure cellulose acetate membrane

had the highest contact angle of 66° and the addition of CA/bio-

AgNps increased surface hydrophilicity of the cellulose acetate

membrane at a contact angle of 52° and reduced the surface

roughness, leading to significantly improved antifouling

performance. In parallel, the addition of a small number of

biogenic silver nanoparticles (2.5 mg) decreased pore size,

increased salt rejection, and increased water flux of the CA

membranes from 3.1 to 7.78 L/m2 h at 10 bar and effectively

improved the water flux.
Water investigation

Physicochemical and microbial analyses displayed a

statistically significant improvement (p< 0.05) among all
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parameters in the water after being treated with CA/bio-

AgNps. Data from water analysis and microbial analyses are

summarized in Table 4.
Growth performance and carcass
structure activity

According to Table 5, the final body weight (FBW), weight

gain (WG), and specific growth rate (SGR) of Nile tilapia fed

with GNS for 60 days were significantly increased compared to

those of the fish fed base diet (p< 0.05), especially at 0.5% and

1.0% feed rates. In contrast, there was a significant reduction in

the feed conversion ratio (FCR) in the T5 group, unlike in the

control fish. The survival rate registered a significant peak,

especially in T4 and T5 (p< 0.05) compared to the control

group. Furthermore, all fish dietary GNS supplements with CA/

bio-AgNps had more CP (%) and EE (%) and less ash (%). The

noticeable improvement was recorded in the T5 and the lowest

in T0.
Digestive enzyme activities and serum
immunity

The activity of protease, amylase, and lipase in Figure 2

shows a significant improvement of Nile tilapia feed GNS
TABLE 2 Elements determined by GC-MS of Grateloupia sp. compound.

No Compound M.Wt Formula RT (min) Area (%)

1 Pentatonic acid, 4-oxo-, ethyl ester 144.00 C7H12O3 5.98 97.70

2 Pentadecanoic acid, ethyl ester 270.00 C17H34O2 20.30 64.91

3 Oleic acid 308.00 C20H36O2 34.47 1.22

4 Ethyl 9-hexadecenoate 282.00 C18H34O2 22.03 44.92

5 a-D-Glucopyranoside, O-a-D-glucopyranosyl (1.fwdarw.3)-b-D-fructofuranosyl 504.00 C18H32O16 12.67 16.71

6 Ethyl iso-allocholate 436.00 C26H44O5 8.51 15.91

7 Cholest-5-en-3-ol (3b)-, tetradecanoate 596.00 C41H72O2 44.80 19.42

8 Cholest-5-en-3-Ol (3á)-,acetate 428.00 C29H48O2 36.58 56.77

9 Androstan-17-one,3-ethyl-3-hydroxy-, (5à)- 318.00 C21H34O2 32.22 10.72

10 5-Acetoxymethyl-2-furaldehyde 168.00 C8H8O4 10.42 95.52

11 5-Octadecenal 266.00 C18H34O 15.09 8.33

12 1-Butanamine,2-methyl-N-(2-methylbutylidene)- 155.00 C10H21N 15.83 45.82

13 1H-Pyrrole, 1-pentyl- 137.00 C9H15N 6.43 65.49

14 Undecanoic acid, 11-amino- 201.00 C11H23NO2 9.18 34.71

15 Rhodopin 554.00 C40H58O 39.76 36.17

16 9-Octadecenoic acid,1,2,3-propanetriyl ester, (E,E,E)- 884.00 C57H104O6 36.84 27.52

17 Retinol 286.00 C20H30O 32.00 67.18

18 Phytol 296.50 C20H40O 25.00 11.32

19 Milbemycin-oxime 555.70 C32H45NO7 27.77 87.77

20 Caffeic acid 180.16 C9H8O4 33.67 86.34
fro
M.wt., molecular weight; RT, retention time.
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TABLE 3 The contact angle with the performance of pure and nanocomposite membranes (CA/bio-AgNps).

Parameter Pure CA membrane Nanocomposite membrane CA/bio AgNPs

Contact Angle degree 52o 66o

Water Flux (L.m-2.h-1) 3.11 7.78

Salt Rejection % 89.51 93.42
Frontiers in Marine Scienc
e 08
TABLE 4 Chemical and bacteriological water characteristics measured during the experiment.

Parameter T0 TS

pH 8.89 ± 0.67a 7.41 ± 0.71b

Ammonia as NH3 2.21 ± 0.15a 1.08 ± 0.08b

Nitrate as NO3 0.58 ± 0.06a 0.28 ± 0.02b

Nitrite as NO2 0.24 ± 0.04 a 0.13 ± 0.02b

Total alkalinity as CaCO3 239.00 ± 6.44a 212.00 ± 4.58b

Total hardness as CaCO3 268.00 ± 7.89a 219.00 ± 2.88b

Total phosphate (PO4; mg/L) 1.11 ± 0.05a 0.36 ± 0.02b

Dissolved oxygen O2 6.70 ± 1.21b 8.39 ± 1.05a

Total bacterial counts TBC (Unit/ml) 2,040 ± 114.22a 1,174.00 ± 93.58b

Total coliform 514.00 ± 69.21 MPN/100 ml 242.00 ± 19.91MPN/100 ml

Fecal coliform 198.00 ± 19.71 MPN/100 ml 49.00 ± 14.07MPN/100 ml
T0, control group includes direct water contact with fishes; Ts, water after filtering through bionanocomposite cellulose acetate membranes (CA/bio-AgNps) before contact with different
groups; MPN, most probable number.
Different lowercase letters in each row indicate significant differences (p ≤ 0.05).
A B C

FIGURE 1

(A) GC-MS analysis of the observed components. (B, C) UV–visible and FTIR spectra of AgNps synthesized from the Grateloupia sp. alga-distilled
water extract.
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after a 60-day experiment period; maximum values were

recorded in T5. On the contrary, the fish fed basal diet (T0)

had the lowest performance compared to its analogs (p<

0.05). Remarkably, applying the diet gave substantially

greater serum LYZ, Ig, and complement C3 activities than

the other groups (p ≤ 0.05), especially T4 and T5 (Figure 3).
Hematobiochemical parameters

The hematological profile of O. niloticus fed with various

GNS-enhanced diets throughout 60 days with CA/bio-AgNps

showed tangible improvement in RBCs, Hb, and Hct than the

control group, particularly at T4 and T5, which showed the

greatest values. The WBC number experienced a significant (p<

0.05) increase with graded GNS levels. Concerning differential

leukocyte numbers, neutrophils demonstrated higher percentages,

but lymphocytes had lower percentages at T4 and T5. In the

meantime, monocyte cells showed more significant changes (p<

0.05), especially in T4- and T5-treated groups, than in the control

group. Serum TP, ALB, and GLO values had a significant (p<

0.05) increase in GNS-fed fish with CA/bio-AgNps, unlike the

control group. In contrast, the dietary supplement of GNS to O.

niloticus decreased considerably (p< 0.05) in the activity of ASAT

and ALAT, especially at T4 and T5 (Table 6).
Stress biomarkers, lipid peroxidation, and
stress-related genes

Figure 4 illustrates that in all groups, SOD, CAT, and GPx had

a significant increase when adding GNS, but the levels of MDA

decreased (p< 0.05) particularly in T4 and T5. Interestingly, the

levels of hepatic and splenic HSP70, SOD, and CAT antioxidative

and stress-related genes were upregulated in fish diet GNS with

CA/bio-AgNps gradually compared to the control group,
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especially T4 and T5 (Figure 5). Similarly, the levels of hepatic

and splenic IL-8, IL-10, and TNF-a inflammatory-related genes

were increased in fish diet GNS with CA/bio-AgNps gradually

compared to the control group (Figure 6).
A. hydrophila challenge

The findings showed that after 10 days of the bacterial

injection, the best RPS value was noticed at T5 (91%), followed

by T4 (80%), T3 (76%), T2 (71%), T2 (61%), and T1 (61%). The

lowest RPS was in the control group (11% (see, Figure 7).
In vitro antibacterial and antiparasitic
activity of GNS

Figure 8 shows the results of the antibacterial examination,

demonstrating the higher efficiency of the GNS against

bacterial strains. With more GNS concentration, a higher

antibacterial action was demonstrated in the gram-positive

and gram-negative bacteria. In a parallel trend, GNS extract

has a positive impact on a reduced number of C. tilapiae

parasites. The effect on parasites differed from the GNS and

control groups because the dead parasite count increased with

higher GNS concentrations. In the control group, the dead

parasite count shifted from 12% after 30 min to 42% after 60

min. At 1.0 ml/L GNS concentration, 43% of dead parasites

were reported after 10 min. After 40 min, complete parasite

death took place (Table 7).
Discussion

The characterization of UV–vis illustrated the association of

this range’s band with bio-AgNps, suggesting that the spherical
TABLE 5 Survival, feed utilization, growth performance, and carcass structure (on a wet weight basis) of Nile tilapia fed diets with various levels
of GNS with CA/bio-AgNps for 60 days.

Parameter T0 T1 T2 T3 T4 T5

Final weight (g) 56.32 ± 1.89f 63.50 ± 0.81e 71.11 ± 0.97d 75.14 ± 1.18 c 80.60 ± 1.09b 87.00 ± 0.96a

Weight gain (g) 31.86 ± 1.46f 39.04 ± 1.04e 46.64 ± 0.89d 50.68 ± 1.44c 56.14 ± 1.02b 62.54 ± 1.10a

Specific growth rate (%g/day) 1.39 ± 0.03f 1.59 ± 0.40e 1.78 ± 0.30d 1.87 ± 0.50c 1.99 ± 0.30b 2.11 ± 0.40a

Feed intake g/fish 55.87 ± 1.72c 61.36 ± 1.06b 63.68 ± 0.83b 67.77 ± 1.33a 67.77 ± 1.29a 67.77 ± 1.11a

Feed conversion ratio 1.76 ± 0.12e 1.57 ± 0.30d 1.37 ± 0.30c 1.34 ± 0.40c 1.21 ± 0.30b 1.08 ± 0.30a

Survival rate (%) 83.00 ± 1.14e 88.00 ± 1.60d 90.54 ± 1.71c 95.01 ± 1.40b 100.00 ± 0.00a 100.00 ± 0.00a

Dry matter (%) 26.92 ± 0.32b 27.27 ± 0.57ab 27.48 ± 0.28ab 27.76 ± 0.32ab 27.92 ± 0.39a 28.02 ± 0.50a

Crude protein (%) 17.57 ± 0.17c 18.04 ± 0.18ab 18.86 ± 0.14ab 19.14 ± 0.14b 19.77 ± 0.45b 21.23 ± 0.40a

Ether extract (%) 3.37 ± 0.21f 3.73 ± 0.09e 3.92 ± 0.04d 4.00 ± 0.04c 4.23 ± 0.10b 4.44 ± 0.21a

Ash (%) 5.29 ± 0.10a 4.88 ± 0.17b 4.44 ± 0.10c 4.06 ± 0.08d 3.97 ± 0.08d 3.73 ± 0.04e
f

Data were expressed as mean ± SEM. Different lowercase letters in the same row are significantly different (ANOVA, p< 0.05).
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or roughly spherical CA/bio-AgNps were unchanged during the

reaction period. In other words, particles diffused in the water

solution with a lack of aggregation evidence (Saifuddin et al.,

2009). Moreover, FTIR characterization of biosilver

nanoparticles declared that a peak at 1,055 cm−1 showed an

alcoholic group, suggesting the phenolic elements in seaweed

compounds reduced the metallic salt silver nanoparticles

(Sunitha et al., 2015). In parallel, chemical and microbial water

analysis were conducted, which was treated through (CA/bio-

AgNps) effective improvement of water quality. It was explained

that the presence of the multiple high-polar groups (–COO-, –

NH2, and –OH) on the modified membrane surface would make

it easy to transport aqueous molecules through the membrane,

decrease pore size, and effectively enhance the water flux (Morsy

et al., 2016). Moreover, microorganisms are relatively

hydrophobic and usually negatively charged. They are easily

attached to a hydrophobic surface but prefer rough surfaces

(Ebrahim et al., 2016). In this study, CA/bio-AgNps have

moderate hydrophilicity, which increased slightly with low

content addition of biogenic silver nanoparticles (2.5 mg), and
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more negative surface charge, which increases with biogenic

silver nanoparticle concentration. Therefore, the antibiofouling

behavior could be explained by the presence of biogenic silver

nanoparticles (Gzara et al., 2016). Recently, Fayed et al. (2019)

explored the impact of plant compounds as aqueous additives on

enhancing water quality indices, growth performance, and

health status in Nile tilapia.

Lately, the utilization of algal compounds as an aquaculture

feeding additive improved the growth performance, feeding

utilization, and immune response of marine animals (Sharawy

et al., 2020). According to the obtained data, using GNS,

especially 0.5% and 1.0% concentrations, caused positive

impacts on the growth performances, carcass composition,

and digestive enzyme actions of O. niloticus fry. The

obtained results could be explained by the fact that GNS had

several bioactive elements, including carotenoids, fatty acids,

polysaccharides, and amino acids, which improved the feeding

palatability to consume more diets (Sattanathan et al., 2020).

Those bioactive elements can enhance the secretion of digestive

enzymes that improve feeding digestibility and nutrient
FIGURE 2

Intestinal digestive enzymes of Nile tilapia fed on diets containing different levels of GNS with CA/bio-AgNps for 60 days. Data were expressed
as mean ± SE. Different superscripts refer to differences between all groups for each parameter (p< 0.05).
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assimilation (Abdelhamid et al., 2021). Furthermore, steroidal

and saponins help in increasing nutrient absorption by

enhancing intestinal barriers’ permeability (Dawood et al.,

2021). Increases in the enzymatic amylase, lipase, and
Frontiers in Marine Science 11
protease can be achieved because the algal cells improved the

secretion of digestive enzymes after rupture and/or increase

feeding consumption (Abdel-Tawwab et al., 2022a). Moreover,

Silva et al. (2015) and Ashour et al. (2021) reported that using
FIGURE 3

Serum immune indices of Nile tilapia fed on diets containing many GNS levels with CA/bio-AgNps for 60days. Data were expressed as mean ±
SE. Different superscripts refer to differences between all groups for each parameter (p< 0.05).
TABLE 6 Hematobiochemical determinants of Nile tilapia fed diets having many GNS levels with CA/bio-AgNps for 60 days.

Parameter T0 T1 T2 T3 T4 T5

RBCS (×106 cell/mm3) 1.70 ± 0.13f 1.94 ± 0.15e 2.13 ± 0.24d 2.44 ± 0.08c 2.67 ± 0.23b 2.83 ± 0.06a

WBCS(×103 cell/mm3) 17.47 ± 0.63f 18.77 ± 0.15e 21.91 ± 1.43d 22.73 ± 0.49c 23.05 ± 0.08b 24.51 ± 0.47a

Hb (g/dl) 8.01 ± 1.69f 9.42 ± 0.64e 10.36 ± 0.65d 11.37 ± 0.66c 12.84 ± 0.24b 14.04 ± 0.32a

Hct (%) 20.83 ± 1.49f 21.94 ± 0.5e 22.61 ± 0.49d 24.02 ± 0.72c 24.98 ± 0.12b 26.01 ± 0.76a

Neutrophils (%) 21.2 ± 1.87f 23.36 ± 1.44e 25.56 ± 1.93d 27.69 ± 1.18c 29.17 ± 1.77b 30.85 ± 0.94a

Lymphocytes (%) 75.11 ± 1.82a 71.98 ± 1.25b 69.11 ± 1.73c 67.18 ± 1.48d 65.28 ± 0.99e 62.87 ± 0.74f

Monocytes (%) 4.20 ± 0.68a 4.76 ± 0.54b 5.21 ± 0.39c 5.04 ± 0.28d 5.26 ± 0.32e 5.32 ± 0.19f

Total protein (g/dl) 2.97 ± 0.86f 3.37 ± 0.72e 3.88 ± 0.42d 4.11 ± 0.71c 4.65 ± 0.52b 4.89 ± 0.31a

ASAT (U/ml) 42.14 ± 1.29a 34.81 ± 1.37b 26.31 ± 1.08c 23.14 ± 1.22d 21.67 ± 1.88e 19.54 ± 0.91f

ALAT (U/ml) 38.14 ± 1.63a 35.61 ± 1.81b 32.14 ± 1.57c 27.33 ± 1.66d 24.13 ± 1.47e 21.94 ± 0.97f

Albumin (g/dl) 1.47 ± 0.23f 1.69 ± 0.54e 1.84 ± 0.28d 2.13 ± 0.27c 2.46 ± 0.18b 2.58 ± 0.41a

Globulin (g/dl) 1.39 ± 0.24f 1.58 ± 0.12e 1.71 ± 0.34d 1.98 ± 0.29c 2.21 ± 0.17b 2.31 ± 0.25a
fro
Data were represented as means ± SD. Different lowercase letters in each row indicate significant differences (p ≤ 0.05).
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diets in the feed of t i lapia s ignificantly enhanced

growth performance.

The present paper showed that hematobiochemical,

especially with 0.5% and 1.0% GNS diets, significantly

increased Hct, Hb, and RBC values. This finding was

concluded because of better erythropoietin production and

erythrocytic stability. Moreover, increasing RBC counts

suggested the blood’s high oxygen-carrying capacity. This

finding agreed with results obtained for gilthead sea bream

(Vizcaıńo et al., 2016; Guerreiro et al., 2019; Ashour et al.,

2021). WBCs showed greater numbers with graded GNS levels.

Moreover, while neutrophil counts increased at different levels of

GNS diets, lymphocyte counts decreased. The concluded

findings could be attributed to enhanced T-cell maturation,

stimulated lymphoid tissues, and regenerated lymphoid

follicles in the spleen and thymus (Shoemaker et al., 2015;

Khalafalla and El-Hais, 2015).

GLO, ALB, and TP values are considerably improved in

GNS-fed fish and decreased in ALAT and ASAT activities

compared with the control group. The findings highlight the
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positive impact of GNS on having improved the immune

response of O. niloticus. GNS can exert good influences on

the mobilization of energy in protein synthesis, illustrating

in part the higher serum protein, ALB, and GLO and

decreased ALAT and ASAT activities. It acted as a

hepatoprotective agent (Heneash et al., 2015; Akbary and

Aminikhoei, 2018; Ashour et al., 2020). In previous studies

with other microalgae, Mahmoud et al. (2020) and Abdel-

Tawwab et al. (2022b) argued that the serum ALAT and

ASAT levels declined significantly in the fish because of

dietary Chlorella.

In this paper, GNS dietary supplements efficiently decreased

the hepatic MDA level, the final output of lipid peroxidation. It

significantly increased hepatic GPx, CAT, and SOD actions

compared with the control group. GNS is positively affected

because of its bioactive phytochemical components, including

polysaccharides and fatty acids, especially the polyphenol

compound, with antioxidant features (Abdelhamid et al.,

2021). Chen and Zhang (2019) stated that the antioxidant

enzyme action was enhanced by the polysaccharide taken from
FIGURE 4

Antioxidants of Nile tilapia fed on diets having different GNS levels with CA/bio-AgNps for 60 days. Data were expressed as mean ± SE. Different
superscripts refer to differences between all groups for each parameter (p< 0.05).
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Porphyra yezoensis in diets for grass carp in comparison with the

control fish. According to Hu et al. (2008), the algal carotenoid

compound demonstrated a considerable antioxidant action.

Moreover, diets with the red algae (Laurencia caspica)
Frontiers in Marine Science 13
hydroalcoholic compound enhanced the rainbow trout’s

antioxidant performance (Kiadaliri et al., 2020).

Data illustrated the immune-stimulating and antioxidant

impacts of dietary GNS because it contains high levels of
FIGURE 5

Relative transcription of heat shock protein 70, antioxidative (SOD and CAT), and b-actin: housekeeping genes in the liver and spleen of Nile
tilapia fed on diets having many GNS levels with CA/bio-AgNps for 60 days. The observed immunoblots represent three independent trials with
similar findings. Bars show the means ± SD. Different letters indicate significant differences (p< 0.05).
FIGURE 6

The relative transcription of (A) interleukin 8 (IL-8), (B) interleukin 10 (IL-10), tumor necrosis factor-alpha (TNF-a), and b-actin: housekeeping
gene in liver and spleen of Nile tilapia fed on diets having different GNS levels with CA/bio-AgNps for 60 days. The observed immunoblots
represent three independent trials with similar findings. Bars illustrate the means ± SD. Different letters indicate significant differences (p< 0.05).
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flavonoids and phenolic compounds, such as caffeic acid. This

finding is in line with Ahmadifar et al. (2021) that these

components have immune-stimulating and antioxidant

impacts in several marine animals. Also, Arguelles (2018)

stated that these components in algae had effective antioxidant

features. According to del Rocıó Quezada-Rodrıǵuez and Fajer-

Ávila (2017), polysaccharides in algae may improve immune

responses. Moreover, Vazirzadeh et al. (2020) reported

enhanced immune action in juvenile rainbow trout because

fish diets include seaweed. However, Yilmaz (2019) concluded

that the dietary supplement of caffeic acid appreciably improved

the immune response, enhanced the expression of immune as

well as antioxidant-associated genes and caused higher

resistance of Nile tilapia against A. veronii infection. In sum,
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the GNS diet-enhanced antioxidative condition is attributable to

more phenols and polyphenols with natural antioxidative

actions by causing over-ROS degeneration (Ahmadifar et al.,

2021). In parallel, polyphenols inhibited ROS formulation, ROS

scavenging, and induction of Nrf2 activation (Kumar and

Pandey, 2013). Moreover, polyphenol bioactive components

demonstrating better antioxidant characteristics influence fish

immunity by enhancing the protection of immune cells

(Mohammadi et al., 2020).

The positive impact of GNS on fish health is interpreted by

the anti-inflammatory and antioxidative properties. It reduced

the inflammatory effects by mediating the hepatic enzymes and

antioxidative reaction and regulating anti-inflammatory,

proinflammatory, and stress-related genes. This finding
FIGURE 7

The relative percentage of the survival of tilapia, O. niloticus, fed diets containing various levels of GNS with CA/bio-AgNps for 60 days, during
the 10 days of postchallenge with A. hydrophila. Data were expressed as mean ± SE.
FIGURE 8

The antibacterial action (safe zone, mm) of the GNS compound against three chosen bacterial strains. Mean ± SD showed data representation.
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matches the finding of Saleh et al. (2020); Abdel-Tawwab et al.

(2021), and Dawood et al. (2021). However, Thépot et al. (2021)

declared that red seaweed is known as a natural antioxidative

agent and immunostimulant. In previous studies, the dietary

supplementation with other algal species, such as C. vulgaris and

spirulina, caused a significant modulation of the antioxidant

capacity and improved innate immunity in Nile tilapia

(Abdelghany et al., 2020; Abdel-Tawwab et al., 2021).

O. niloticus confronted with A. hydrophila showed lower

mortality rates when a diet was fed, especially T4 and T5. In

parallel, in vitro GNS extract has a positive effect against the

tested strains, especially with increased concentration. These

results may be due to having more natural bioactive substances

with evident antimicrobial actions and useful features against

fish pathogens (Vatsos and Rebours, 2015; Abdelhamid et al.,

2021). Otherwise, Ashour et al. (2020) showed that Nile tilapia

confronted with A. hydrophila illustrated a lower mortality rate

in the case of using a diet supplemented with seaweed extract.

According to Abdel-Tawwab and Ahmad (2009), dietary

supplements with live spirulina caused a lower mortality rate

in challenged Nile tilapia with A. hydrophila. Moreover, several

studies showed that the carotenoid compound, phytol,

demonstrated antimicrobial properties (Santos et al., 2013;

Pinto et al., 2017).

Concerning the findings of in vitro antiparasitic trials,

GNS extract illustrated an antiparasitic efficiency against C.

ti lapiae . Higher GNS concentrations al lowed more

antiparasitic efficacy, indicating an optimum concentration

of 0.5% and 1.0% for the ultimate antiparasitic action. This

study’s general antiparasitic GNS actions were ascribed to the

immunost imula t ion features of pept idoglycans or

lipopolysaccharides in seaweed substances that enhance fish

resistance against some parasitic diseases (Thanigaivel et al.,

2016). Indeed, the general extracts of many seaweeds have

pronounced antiparasitic properties; however, in the current

study, they may be attributed to polysaccharides present in red

algae (Besednova et al., 2021). Moreover, the inhibition is

attributable to the milbemycin-oxime in GNS with high

insecticidal, anthelminthic, and antiparasitic actions (Kumar

et al., 2015). The study results match those of Prichard et al.
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(2012) regarding the extensive use of milbemycins for resisting

parasite infection in aquatic animals.
Conclusion

According to the study results, supplementing GNS diets,

especially 0.5% and 1.0%/kg diets with bionanocomposite

cellulose acetate membranes (CA/bio-AgNps), improved the

growth performance, digestive enzyme actions, and overall health

status remarkably. It also enhanced Nile tilapia fingerlings’

resistance against common bacterial fish pathogens. CA/bio-

AgNps played a role in improving water quality. Additionally,

GNS feeding resulted in regulating proinflammatory and stress-

related genes. In vitro, the extract showed a significant positive effect

as an antiparasitic. Nevertheless, further research can amplify the

benefits of using phytochemical compounds of seaweed extracts as

natural phytobiotics in aquaculture for other fish types in the farm

with a wider trail to improved water entry into ponds.
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