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This study investigated the relationship of the catch rates (CRs) of Spanish mackerel
(Scomberomorus commerson) with oceanographic factors in the waters around Taiwan
by using high-resolution fishery and environmental data for the period 2011–2016. The
investigation results revealed that trammel nets accounted for 69.79% of the total catch
of S. commerson and were operated mostly in the Taiwan Strait (TS). We noted seasonal
variations in the distribution of high CRs. These CRs were observed in the southwestern
TS, including the waters along the southwestern coast of Taiwan and around the
Penghu Islands, and extended to the Taiwan Bank during autumn; they increased in
winter. To predict the spatial and temporal patterns of Spanish mackerel density and
their relationship with oceanographic and spatiotemporal variables, generalized additive
models were used. These models explained 48.4% of the total deviance, which was
consistent with the assumed Gaussian distribution. Moreover, all variables examined
were significant CR predictors (p < 0.05). Latitude and longitude were the key factors
influencing the spatiotemporal distribution of S. commerson, and sea surface chlorophyll
a concentration was a key oceanographic factor. Observing projected changes in El
Niño/Southern Oscillation events for S. commerson revealed that CRs were higher
and distributed further southward during La Niña events than during other events. We
inferred that the S. commerson distribution gradually moved toward the southwest with
the northeast monsoon, which was enhanced during La Niña in winter.

Keywords: catch rate, Spanish mackerel, generalized additive model, fishing dynamic, environmental factor,
climatic variability, waters around Taiwan
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INTRODUCTION

The waters around Taiwan (hereafter abbreviated as WT) are
affected by several currents, including the China Coastal Current,
Kuroshio Current, Kuroshio Branch Current, and South China
Sea Surface Current (Jan et al., 2002, 2006). Moreover, the
fluctuation of these currents is strongly influenced by the seasonal
monsoons and varied topography; consequently, the currents
change the oceanographic conditions in the WT in different
seasons (Lan et al., 2020b; Tseng et al., 2020). Biogeographically,
the Taiwan Strait (TS) and waters off eastern Taiwan are
migration routes for numerous pelagic fish species; therefore,
their ecosystem dynamics and biogeochemical and physical
processes vary substantially in space and time (Liao et al., 2018;
Ju et al., 2020; Lin et al., 2020). The WT constitute excellent
spawning, feeding, and overwintering habitats (Hsu et al., 2007;
Madigan et al., 2016; Hsiao et al., 2021). Overall, these unique
features contribute to the abundant and multiple living fishery
resources in the coastal waters off Taiwan, rendering these waters
a valuable fishing ground (Wang et al., 2013; Lan et al., 2014).

Scomberomorus species, which include the narrow-barred
Spanish mackerel (Scomberomorus commerson), Japanese
Spanish mackerel (Scomberomorus niphonus), and spotted
Spanish mackerel (Scomberomorus koreanus), are crucial
commercial species in the WT (Lin et al., 2020; Weng et al.,
2020). According to the life-history features of Scomberomorus
spp., the swimming dispersal of larvae and adults of these
species is extensive, ensuring connectivity among stocks and
causing genetic homogenization across distant populations
(Shoji and Tanaka, 2005; Shui et al., 2009; Weng et al.,
2020). Among these species, S. commerson is the most
commonly caught, which accounts for 80% of the total
production of Scomberomorus species in Taiwan (Figure 1;

Fisheries Agency, 2019). S. commerson is a high-migration
species and epipelagic predator that is extensively distributed in
the Indo-Pacific region, from shallow coastal waters to the edge
of the continental shelf at depths of 10–70 m (McPherson, 1985;
Randall, 1995; Collette, 2001).

Trammel nets, longlines, and trolling lines are primarily used
for catching S. commerson in the WT (Fisheries Agency, 2019).
In recent years, numerous challenges have been countered in
the production of Scomberomorus species, and the catch of
S. commerson decreased from 6600 metric tons in 2002 to 508
metric tons in 2018 (Figure 1). This dramatic decline might
be due to the high demand, unregulated fishing practices, or
overexploitation of these species. Ju et al. (2020) evaluated the
stock status of S. commerson under fishing pressure in the
WT and found that three stocks had collapsed. S. commerson
species were classified as highly susceptible to the high levels of
exploitation in the waters off eastern Taiwan (Lin et al., 2020).
Furthermore, climate-driven environmental variability has long
been recognized as another factor affecting fishery resources and
continues to be critical in the WT (Lan et al., 2017; Ho et al., 2018;
Ju et al., 2020).

The catch of S. commerson is significantly related to sea
surface temperature (SST) changes; the recommended SST and
salinity for achieving optimal S. commerson catch rates (CRs)
are 14–31◦C and 23–35 psu, respectively (Niamaimandi et al.,
2015; Nguyen and Nguyena, 2017). Several studies have suggested
that chlorophyll-a concentrations and sea surface height (SSH)
influence the distribution patterns of pelagic fish species and the
variability of pelagic fish species abundance (Hazen et al., 2013;
Liao et al., 2018; Lan et al., 2020a). Furthermore, changes in
marine environments affect fishery resources at different spatial
and temporal scales (Bell et al., 2013; Hazen et al., 2013; Liao et al.,
2018). The most extensively studied climatic events affecting

FIGURE 1 | Annual trends of total catch of Scomberomorus species in the WT from 1993 to 2019. (Data source: Fisheries Agency, Council of Agriculture in Taiwan).
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fish include those on interannual and decadal scales, such as
the El Niño/Southern Oscillation (ENSO) and Pacific Decadal
Oscillation, which can cause SST changes on different time scales
in the western Pacific Ocean (Bell et al., 2013; Lan et al., 2014,
2017; Wu et al., 2020). ENSO events also exert a major influence
on the wind stress of monsoons in the WT, and they engender
changes in SST and upwelling intensity on an interannual scale
(Kuo and Ho, 2004; Hong et al., 2011). Moreover, habitat changes
may exert multiple economic effects on coastal communities
through reduced availability of ecosystem services, such as fishery
landings and ecotourism (Hazen et al., 2013).

Species distribution models (SDMs) have been extensively
used to predict the distribution of a species under climate
change; they have also been used to assess the past distribution
of a species by analyzing evolutionary relationships and the
management of the species’ habitat (Su et al., 2011; Asch
et al., 2018). In addition, computer algorithms based on such
models have been applied to predict the spatiotemporal habitat
distribution of a species by using environmental data and to
explore spatiotemporal variations in species and environments.
Generalized additive models (GAMs) are among the most
commonly used SDMs (Hastie and Tibshirani, 1990), which are
nonparametric extensions of generalized linear models (Nelder
and Wedderburn, 1972). GAMs enable the incorporation of
smoothing functions to model the nonlinear effect of continuous
explanatory variables. They can be used to effectively determine
the multiple nonlinear relationships between covariates and
response variables in a semiparametric manner (Hastie and
Tibshirani, 1990). Moreover, GAMs can determine highly
nonlinear and nonmonotonic relationships between responses
and sets of explanatory variables (Wood, 2006); accordingly,
such models are ideal for expressing underlying relationships
in ecological systems. Numerous studies have applied GAMs to
predict the spatial distribution of fishing grounds for a single
species or the distribution of fisheries’ resources (Su et al., 2011;
Solanki et al., 2017; Liao et al., 2018; Wang et al., 2020).

In the literature, data on the relationship between the
distribution of S. commerson and environmental variations are
limited because high-resolution fishery data are insufficient. To
address this gap in the literature, the present study collected high-
spatial-resolution catch and effort data to investigate the temporal
and spatial variations in fishing grounds and CRs of S. commerson
in relation to oceanographic conditions. The study also explored
the mechanisms underlying the ENSO events that influence the
interannual CRs and spatiotemporal distribution of this species.
Estimating the preferred environmental conditions of crucial
commercial species is critical for determining their migratory
patterns, and it is an essential step toward the ecosystem-based
management of fisheries.

MATERIALS AND METHODS

Spanish Mackerel Fishery Data
Daily high-resolution fishery data for S. commerson were
collected from the voyage data recorders and logbooks of
fishing vessels operating in the WT from 2011 to 2016. The

fishery data comprised daily operating positions for 0.1◦ spatial
grids, including latitude and longitude information, fishing
dates, fishing methods, working hours, and total catch (kg) of
S. commerson.

To determine the fishery dynamics and spatiotemporal
variation of S. commerson in the WT, this study calculated the
annual catch percentage of each fishing method. According to
the data, S. commerson are mainly caught using trammel nets;
therefore, the monthly observed CRs of trammel nets were
calculated for individual 0.1◦ spatial grids across the study region
by using the following equation:

Observed catch rateij =

∑
Catch for all vessels (kg)ij∑
Operating time (hour) ij

where i represents the latitude and j represents the longitude of
each 0.1◦ spatial grid.

The spatial distributions of catch percentages associated with
the various fishing methods and seasonal CRs were mapped using
Quantum GIS version 3.6 (QGIS Development Team, 2019).
Moreover, the longitudinal and latitudinal gravitational centers of
the observed CRs (G) were estimated using monthly longitudinal
and latitudinal locations of the fishing vessels (L) and monthly
observed CRs (Lehodey et al., 1997) as follows:

Gij =

∑
Lij × observed catch rateij∑

observed catch rateij

where i and j denote the latitude and longitude, respectively.

Environmental Data
Remote sensing data of SST, sea surface chlorophyll-a (CHL), sea
surface salinity (SSS), and SSH in the WT were collected. Satellite-
derived SST data were extracted from National Oceanic and
Atmospheric Administration (NOAA) Advanced Very-High-
Resolution Radiometer (AVHRR) SST images with a spatial
resolution of 1.1 km. The NOAA High-Resolution Picture
Transmission data, including the AVHRR scenes, were received
at the ground station of National Taiwan Ocean University. Daily
CHL data were downloaded with a spatial resolution of 1.1 km
from the National Aeronautics and Space Administration’s Ocean
Color Web (National Aeronautics and Space Administration
[NASA], 2017). The SSS and SSH data were downloaded
with a 0.08◦ spatial resolution from the Asia Pacific Data
Research Center.1 Both types of data were obtained from the
HYbrid Coordinate Ocean Model (HYCOM). To compensate
for missing data due to cloud coverage, this study constructed
monthly averaged composite maps of the remotely sensed
environmental data to fit the fishery data by using Interactive
Data Language (version 7.0).

Statistical Models for Spatial and
Temporal Predictions of Catch Rates
To analyze the relationships between environmental
variation and CR, statistical models were used to predict

1apdrc.soest.hawaii.edu
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the spatiotemporal pattern of Spanish mackerel density. SDMs
were developed, and on the basis of these models, GAMs were
developed to examine potential seasonal fishing grounds. The
GAMs were constructed through R (version 3.6; R Core Team,
2018) by using the GAM function of the “mgcv” package.
The observed CRs constituted the response variable, and
spatiotemporal factors (year, month, longitude, and latitude) and
environmental factors (SST, SSH, SSS, and CHL) constituted the
predictor variables. The GAMs can be expressed as follows:

Log
(
observed catch rate+ c

)
= a0+ s(x1)+ s(x2)+ s(x3)+ . . . s(xn)

where a0 is a constant and s(xi) is a spline smoothing function
for each model covariate xn or the interaction between two
covariates. All covariates were considered to be continuous,
and the effective degrees of freedom were estimated for each
main factor. Because the log-link function cannot handle zeros,
we added a constant value of 0.1 (c) to all CRs; this value is
commonly used in CR standardization processes (e.g., Manuder
and Punt, 2004; Lan et al., 2018, 2021). Time and location
were treated as interaction terms to account for the possible
interannual variability engendered by environmental spatial
distribution variations.

The model with the optimal conformation was selected using a
stepwise procedure that was based on the lowest value of Akaike’s
information criterion (AIC), and the p-value for the final set of
variables was lower than 0.05. The selected GAMs were used to
predict the relative abundance of S. commerson in the WT from
2011 to 2016. Furthermore, this study applied the Oceanic Niño
Index (ONI) as the primary indicator for monitoring El Niño
and La Niña alternating phases and examined how the climate
variability in ENSO events affects the variation of S. commerson.
The ONI was downloaded from the Climate Prediction Center of
the National Weather Service (National Oceanic and Atmosphere
Administration).

RESULTS

Spatiotemporal Distribution of
Scomberomorus commerson in the
Waters Around Taiwan
The spatial distribution of catch percentages of S. commerson
caught using different fishing methods revealed that
trammel nets and longlines accounted for a wider
distribution among all fisheries (Figure 2). Longlines were
mostly operated off eastern Taiwan, whereas trammel

FIGURE 2 | Spatial distribution of S. commerson caught using various fishing methods in the WT during 2011–2016.
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nets were mostly operated in the TS. Of the annual
total catch of S. commerson, trammel nets accounted
for 69.79 ± 11.98% and longlines accounted for only
12.71± 4.48% (Figure 3).

Accordingly, this study analyzed the influence of trammel
nets on the distributions of and relationship between CR and

environmental factors. Concerning the seasonal mean spatial
distributions of CRs associated with trammel nets, the results
indicated that higher CRs were mainly distributed around
the southwestern waters of the TS during autumn; these CRs
increased during winter but decreased gradually during spring
and summer (Figure 4).

FIGURE 3 | Annual catch trends of S. commerson caught using different fishing methods in the WT during 2011–2016. (Data source: Taiwan Ocean Conservation
and Fisheries Sustainability Foundation).

FIGURE 4 | Seasonal mean observed catch rates of S. commerson caught using trammel nets in the WT during 2011–2016.
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Time-Series Variation of Catch Rates
and Fishing Locations of Trammel Nets
The time series of the monthly catches and trammel net CRs for
S. commerson during 2011–2016 revealed that the most catches
and highest CRs occurred in autumn and winter (Figure 5).
The highest catch and CR occurred in January 2013 (nearly
130 metric tons and 28.64 kg/h, respectively). The lowest catch
and CR occurred in July 2011 (0.43 metric tons) and May 2011
(0.91 kg/h), respectively. These results indicate that the major
fishing season for S. commerson in the WT begins in early autumn
and ends in winter. Trammel fisheries are distributed around the
WT and are used year round, with some seasonal variation.

The monthly latitudinal and longitudinal G of the CRs
revealed seasonal variations, and the latitudinal and longitudinal
G gradually moved from northern and western areas (23.7◦N,
119.81◦E) in summer to southern and eastern areas (23.35◦N,
119.66◦E) in winter (Figure 6). By contrast, the latitudinal
and longitudinal G of the CRs exhibited no obvious variations
from 2014 to 2015.

Environmental Effect on the Catch Rates
of Scomberomorus commerson
Our analyses included a total of 8,859 data points regarding S.
commerson catch. Concerning the environmental variables

FIGURE 5 | Monthly catch, effort (A), and observed CRs (B) of S. commerson caught using trammel nets in the WT during 2011–2016.
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FIGURE 6 | Monthly mean trends of longitudinal (◦N) and latitudinal (◦E) gravitational centers of observed CRs (G) of S. commerson in the WT.

FIGURE 7 | Quantile–quantile plots (A) and effects of environmental factors on the CRs of S. commerson (B–E) in the WT. The black dotted and solid lines denote
the fitted GAM function and 95% confidence interval, respectively. The relative density of data points is indicated by the rug plot on the x-axis, and the y-axis
represents the results obtained after smoothing the fitted values; furthermore, s(xn) represents a spline smoothing function for each model covariate xn. [Relationship
between environmental factors and the CRs (logarithmic scale, log10) of S. commerson].

affecting the CR of S. commerson, the selected GAMs
explained 48.4% of the deviance. Normal quantile–quantile
plots (Figure 7A) indicated that the distributions of the residuals
for the selected GAMs adequately conformed to the assumed
Gaussian distribution.

The addition of predictor variables at different levels increased
the explained deviance, which was attributed to the decreased
AIC value (Table 1). The results revealed that the oceanographic
and spatiotemporal variables significantly affected the CRs of
S. commerson (p < 0.01). The interaction of year and month
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TABLE 1 | Individual and total deviance explained and Akaike’s information
criterion value in the model with the optimal conformation, as determined using a
stepwise procedure.

One variable model
explained (%)

AIC p-Value

Log (CR+c) = s(SST) 5.82 16,944.38 <0.01

+s(SSH) 2.58 16,729.14 <0.01

+s(SSS) 2.32 16,541.91 <0.01

+s(CHL) 6.01 16,112.57 <0.01

+s(YY, LAT) 24.2 14,211.19 <0.01

+s(MM, LAT) 26.2 13,505.94 <0.01

+s(LAT, LON) 29.8 12,609.22 <0.01

Total deviance explained 43.6

with latitude (24.2 and 26.2%, respectively) and that of longitude
with latitude (29.8%) explained a large proportion of the
variance in CR. High CRs were observed in the southwest
part of the TS (Figure 8C; 22◦–25◦N, 118–120◦E) during the
major fishing season: early autumn to winter (Figure 8B).
Analyzing annual variation data indicated that the high CRs
in the south of the TS (Figure 8A; 22◦N–25◦N) decreased
from 2013 to 2015.

Regarding the oceanographic variables, CHL explained the
largest proportion of the variance in CR, followed by SST, SSH,
and SSS (Table 1). The results also revealed that high CRs were
positively associated with SSTs of approximately 20–25◦C, CHL
concentrations of 1–2 mg/m3, SSHs of approximately 0.6–0.7 m,
and SSSs of >34.0 psu (Figures 7B–E). SST and CHL were the
main variables determining the distribution of S. commerson;
specifically, the abundance of S. commerson decreased as the SST
and CHL concentration increased.

Projected Changes in El Niño/Southern
Oscillation Events on the Fishing
Grounds
The GAM results regarding annual variations revealed that the
high CRs in the south of the TS (Figure 8A) decreased from
2013 to 2015 during El Niño events (Figure 9B). A box plot
of the CRs in winter during various ENSO events indicated
the same pattern (Figure 9A). The CR was observed to be
27.01 ± 37.6 kg/h during La Niña events (2011 and 2012), and
it decreased to 17.61 ± 30.08 kg/h during El Niño events (2015
and 2016). Therefore, the CRs differed significantly between
the various ENSO events (p < 0.05). To examine the effect of
ENSO events on the CRs and distribution of S. commerson,
this study used the optimal model to predict CRs during winter
for the 2011–2016 period. This study also compared the spatial
distributions of the predicted CRs for S. commerson during
the El Niño events in January and February 2016 with those
during the La Niña events in January and February 2012,
and the results are presented in Figure 10. During the La
Niña events, high CRs (>7 kg/h) were distributed southward,
which extended south of 22◦N. By contrast, during the El Niño
events, high CRs were distributed mostly toward the north
of 22◦N.

DISCUSSION

Using daily catch data for S. commerson along with vessel
data recorder data, this study investigated the spatiotemporal
variations of fishing grounds in relation to oceanographic
conditions in the WT. Trammel nets are operated mostly in the
TS, whereas longlines are operated off eastern Taiwan. Moreover,
Weng et al. (2020) revealed that S. commerson are caught using
drift gill nets and trolling lines in the Taiwan Bank. Trammel
nets are composed of single, double, or triple layers of netting
kept vertical by floats on the headrope and weights on the
groundrope (Karakulak and Erk, 2008). According to the results
of a bathymetric survey in the WT, the average water depths in
eastern areas exceed 2,000 m, but those in western areas are less
than 50 m that is, the water depth off eastern Taiwan is obviously
more than that of western Taiwan (Liu et al., 1998). Therefore,
the use of trammel nets in the waters off western Taiwan is
highly efficient. Through the analysis of vessel operational data
and bathymetric data, this study demonstrated that various
fishing methods are used to effectively catch S. commerson in
the WT. Although the data on trammel nets were only used to
determine the relationship between the CRs of S. commerson
and the oceanographic factors, the commercial catch data for
S. commerson included data on various fishing methods (gears).
The differences in effort among the considered fishing methods
may explain the variations of the calculated CRs; however, it
may incorrectly attributed varying catchability to differences in
the abundance of fishery resources (Punt et al., 2000; Manuder
and Punt, 2004). Bishop (2006) described an estimation model
that accounts for variations in catchability and can thus aid in
identifying unidimensional indices to represent variables that
reflect aspects of an underlying domain. The effort data (working
hours) used in this study were collected from voyage data
recorders. Thus, subsequent studies should eliminate bias due to
confounding among the various methods (gears).

This study revealed seasonal variations in the spatial
distribution of S. commerson, which was distributed from
northern and western areas in summer to southern and eastern
areas in winter. Tseng et al. (1971) speculated that S. commerson
may move southeast from the north in the TS in winter. The
present study also indicated that the distribution patterns of
S. commerson changed with seasonal progression. The WT are
strongly influenced by the East Asian monsoon; therefore, wind
stress explains a majority of the transport reversals (Kuo and Ho,
2004; Hong et al., 2011). The mixed China coastal water, with its
low temperature and low salinity, is conveyed by the northeast
monsoon–driven flow to the northern TS in winter (Jan et al.,
2002; Hong et al., 2011). In this study, the GAM results reveal
relatively high CRs at SSTs of 20–25◦C during autumn and winter
(the major fishing season). Thus, we suggest that S. commerson
migrate abundantly into the TS from early winter to late spring
by following the mixed China coastal water; subsequently, they
migrate northward and southward as the SST gradually increases.

During autumn, high CRs were distributed widely across the
southwestern TS, including in the waters along the southwestern
coast of Taiwan and between the Penghu Islands and the Taiwan
Bank, and concentrated gradually in winter. Previous studies
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FIGURE 8 | Effects of spatiotemporal interactive factors (A–C) on the CRs of S. commerson in the WT. The solid black contour line indicates the spatiotemporal
effects on CRs; a positive value indicates a increasing CR, and a negative value indicates a decreasing CR in the corresponding time–space information. The green
and red dotted contour lines indicate the ±1 standard error of the solid black contour line. The black dot indicated the intersect location for corresponding to
spatial–temporal raw data.

on upwelling in the TS have reported that upwelling is a year-
round phenomenon, with the degree of upwelling varying in
the water around the Penghu Islands and Taiwan Bank (Lan
et al., 2009; Hong et al., 2011; Hsiao et al., 2021). Fronts and
mesoscale eddies are formed in the Taiwan Bank through the
interaction of different water masses and monsoons, which all
influence larval species due to the dispersion and convergence
of nutrients (Zhang et al., 2014; Hsiao et al., 2021). Hsiao et al.
(2021) revealed that the fishery resource structures in the frontal
habitat of the Taiwan Bank are supported by both warm- and
cold-water species, including S. commerson. Weng et al. (2020)
reported the presence of hydrated and postovulatory oocytes for
S. commerson in the central TS, implying that this area could

be a spawning ground for this species. Thus, the aggregative
response of biological interactions links primary productivity
(PP) and top predators could be feeding and spawning grounds
for S. commerson among different seasons in the upwelling of
southwestern TS.

The GAM results revealed that CHL and SST were the
dominant environmental factors affecting the CRs. The spawning
season of S. commerson was estimated to be from March through
August in the TS, and the SST might influence the species’
gametogenesis, gonad atresia, and spawning behavior (Lam,
1983; Weng et al., 2020). The area between the Taiwan Bank
and the Penghu Islands is a major upwelling region and key
fishing ground for S. commerson. The thermal fronts in the
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FIGURE 9 | (A) Box plot of observed CRs during La Niña years (2011 and 2012), normal years (2013 and 2014), and El Niño years (2015 and 2016). (B) Bar chart of
ONI from 2011 to 2016.

FIGURE 10 | Spatial distributions of predicted CRs of S. commerson in the winters of 2012 (La Niña) and 2016 (El Niño).
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FIGURE 11 | Contours of 20◦C isotherms in the TS during the winters of 2012 (La Niña) and 2016 (El Niño).

Taiwan Bank are characterized by two frontal belts on the
northern and southern edges. A previous study indicated that
the formation of the thermal front along the southern edge
is linked to the interaction between topography and upwelling
phenomena and that the thermal front along the northern edge
may be tidally generated (Chang et al., 2006). In the present
study, we determined that physical oceanographic elements such
as SSH can influence the degree of productivity of S. commerson
habitats. SSH reflects oceanic features such as current dynamics,
fronts, eddies, and convergences (Lan et al., 2017). Our study
demonstrated that the highest CRs corresponded to the areas
with SSTs of 20–25◦C, CHL concentrations of 1–2 mg/m3, SSHs
of 0.6–0.7 m, and SSSs of 34.0–34.5 psu. These areas are potential
habitats for S. commerson and their prey because of their physical
oceanographic structure. Nutrients are supplied by the year-
round upwelling of the southwestern TS, and the CHL pattern in
the frontal region varies with the supply of nutrient-rich water
from subsurface upwelling (Lan et al., 2009). Our findings are
similar to those of a study on S. commerson in the northern
Persian Gulf and Java Sea, which observed that S. commerson is
sensitive to SSTs ranging from 13 to 29◦C, SSSs ranging from 23
to 35 psu, and low CHL concentrations (Collette and Russo, 1979;
Niamaimandi et al., 2015; Harahap et al., 2020).

Numerous studies have identified a positive correlation
between the abundance of marine species and CHL. However,
we found that the abundance of S. commerson decreased as
the CHL concentration increased. Previous studies have also
identified a negative correlation between abundance and CHL.
Lan et al. (2012) revealed that the catch per unit effort of yellowfin
tuna (Thunnus albacares) increased as the CHL concentration
decreased. Su et al. (2011) reported that the likelihood of a
nonzero blue marlin (Makaira nigricans) catch increased with
the CHL concentration but that the CRs decreased. Lee et al.
(2019) found that Bull sharks (Carcharhinus leucas) were present
when CHL with low level. CHL concentrations in early stage
prior to the present abundance index possibly influenced the CRs,
and this time-lag phenomenon could be related to differences

in trophic level species transformation (Lan et al., 2012). In
addition, PP is an essential measure of an ocean’s capacity to
transform carbon dioxide into particulate organic carbon at the
base of the food web and is an effective predictor of the potential
yield of the world’s oceans. Studies (Chassot et al., 2007, 2010)
have suggested that PP is a key factor in the variation in biological
resources at each trophic level. We used CHL as a phytoplankton
biomass index rather than PP. Although CHL exhibited similar
features to PP in the study area, CHL data derived from satellites
should be analyzed by reparametrizing the original relationships
on the basis of in situ data (Lan et al., 2020b). Therefore, PP could
be incorporated into models to explore the relationship between
the CRs of S. commerson and oceanographic factors.

Generalized additive models could aid in exploring the
possible responses of a highly migratory species such as
S. commerson to oceanographic variables. Spatial and temporal
variables are essential to GAMs because they can be used to
determine whether changes in the CRs of a species are related to
environmental variables, spatiotemporal variables, or interactive
variables. Our results suggest that CR assessment models that
incorporate spatiotemporal and environmental variables can be
used to identify the possible effects of such variables on the
distribution of S. commerson. In addition, climate variability may
lead to variations in the distribution of S. commerson. Climate-
driven environmental variabilities of ENSO are pivotal factors
affecting the intensity of upwelling regions in the southwestern
TS (Wu et al., 2020; Hsiao et al., 2021). Variations in fishery
resource structures and the spatial distribution of pelagic species
are also influenced by ENSO events in the Taiwan Bank and
change the upwelling size during summer (Hsiao et al., 2021).
Moreover, the northeast monsoons in the TS are stronger
during La Niña winters than during other seasons, increasing
the intensity of variations in hydrographic features relative to
those observed during El Niño events (Lan et al., 2014; Wu
et al., 2020). The monthly spatial and temporal predictions for
S. commerson during winter revealed that the CRs were higher
and distributed further south during La Niña events. This study
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compared the 20◦C isotherms obtained for the winters of 2012
(La Niña) and 2016 (El Niño). As displayed in Figure 11, the
20◦C isotherms were located further north during the El Niño
winter and extended south of the TS during the La Niña winter.
We inferred that S. commerson was concentrated in the southwest
when the northeast monsoon intensified during the La Niña
winter and that the S. commerson population dispersed toward
the northeast when the northeast monsoon weakened.

The Gulf Cooperation Council, a regional intergovernmental
union, developed several regulations for S. commerson fisheries,
such as license requirements, bans on fishing during certain
periods, mesh size limitations, landing size requirements, and
restrictions on time at sea. Numerous studies have investigated
S. commerson in this region and proposed suggestions for the
management of resources (Dudley et al., 1992; Meriem et al.,
2006; Roa-Ureta et al., 2019). However, information regarding
the population dynamics, age, growth, and reproduction of the
fish in our study area is required to formulate regulations for
individual or regional management. In addition, approaches
to managing fishery resources must account for factors that
influence the spatial distribution of the fish. Oceanographic
variations associated with regional and global phenomena,
such as ENSO events, result in large-scale shifts in the
dynamics and distribution of highly migratory species. Therefore,
comprehensively reviewing the results of related studies and
investigating unexplored topics are crucial for the formulation of
effective management strategies.

CONCLUSION

This study combined daily high-resolution fishery data with
environmental data by using GAMs to preliminarily analyze the
relationship between the CRs of S. commerson and environmental
factors. Using these data, we applied the models to effectively
predict the distribution of S. commerson in the WT under the
effects of ENSO events. Analyzing fishery dynamics indicated that
trammel nets accounted for most of the catch of S. commerson in
the WT. Trammel nets are operated mostly in the TS, whereas
longlines are operated off eastern Taiwan. The overall CRs of
S. commerson in the WT increased from early autumn to the
end of winter relative to those in the other seasons. Relatively
high CRs were concentrated in the waters off southwestern
Taiwan, including the waters along the southwestern coast of
Taiwan and between the Penghu Islands and the Taiwan Bank.
All environmental factors significantly influenced the CRs of
S. commerson and exhibited seasonal variations. CHL and SST
were the most influential environmental factors in the WT and
could be related to the spawning behavior of this species.

Examining the projected changes in ENSO events for
S. commerson in our study revealed that the fishing conditions
and fishing grounds were affected during different phases.
However, comprehensively determining the fishery dynamics
would require long-term and systematically recorded catch
data, which can further reveal the degree of influence of

variations in environmental characteristics under climate change
on specific species. Moreover, interspecific relationships must
be considered because such relationships may affect the fishing
conditions of single species. The movements and distributions
of top predators are governed by bottom-up processes and
direct environmental effects (e.g., physiological tolerance to
anoxia and thermal preferences; Lan et al., 2021). Top marine
predators can have high phenotypic plasticity and adaptive
capabilities that mitigate the effects of climate change on
them; however, climate change may still affect these predators
through their prey (Hazen et al., 2013). Hence, understanding
how low-trophic marine ecosystems are related to each life
stage of S. commerson can help researchers clearly understand
the mechanism through which climate change influences the
distribution and abundance of S. commerson. Future research
should thus apply additional long-term oceanographic variables
and prey species in different prediction models, considering the
influence of interspecific relationships.
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