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A two-dimensional multichannel seismic reflection profile acquired in the Madeira
Abyssal Plain during June 2016 was used in a modeling workflow comprising seismic
oceanography processing, geostatistical inversion and Bayesian classification to predict
the probability of occurrence of distinct water masses. The seismic section was
processed to image in detail the fine scale structure of the water column using seismic
oceanography. The processing sequence was developed to preserve, as much as
possible, the relative seismic amplitudes of the data and enhance the shallow structure
of the water column by effectively suppressing the direct arrival. The migrated seismic
oceanography section shows an eddy at the expected Mediterranean Outflow Water
depths, steeply dipping reflectors, which indicate the possible presence of frontal
activity or secondary dipping eddy structures, and strong horizontal reflections between
intermediate water masses suggestive of double diffuse processes. We then developed
and applied an iterative geostatistical seismic oceanography inversion methodology
to predict the spatial distribution of temperature and salinity. Due to the lack of
contemporaneous direct measurements of temperature and salinity we used a global
ocean model as spatial constraint during the inversion and nearby contemporaneous
ARGO data to infer the expected statistical properties of both model parameters.
After the inversion, Bayesian classification was applied to all temperature and salinity
models inverted during the last iteration to predict the spatial distribution of three distinct
water masses. A preliminary interpretation of these probabilistic models agrees with the
expected ocean dynamics of the region.

Keywords: seismic oceanography, geostatistical inversion, temperature prediction, salinity prediction, ocean
modeling, Madeira Abyssal Plain

INTRODUCTION

Fine-scale ocean processes happening on ranges from a few meters to a few kilometers have a
profound impact on turbulent dynamics, on the ocean energy budget, on primary production
and ecosystems, on gas and tracer exchange, and ultimately on the global ocean circulation
and climate (e.g., Wunsch and Ferrari, 2004; Mahadevan, 2016). Yet, ocean measurements at
high resolutions are limited to fixed point probes or profiling devices. Therefore, quasi-synoptic
measurements of simultaneously vertical and lateral high resolutions require detailed planning and

Frontiers in Marine Science | www.frontiersin.org 1 August 2021 | Volume 8 | Article 685007

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.685007
http://creativecommons.org/licenses/by/4.0/
mailto:Leonardo.azevedo@tecnico.ulisboa.pt
https://doi.org/10.3389/fmars.2021.685007
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.685007&domain=pdf&date_stamp=2021-08-12
https://www.frontiersin.org/articles/10.3389/fmars.2021.685007/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-685007 August 6, 2021 Time: 14:55 # 2

Azevedo et al. Geostatistical Seismic Oceanography Inversion

the combination of several probing devices, which are not
globally available to sample the ocean (Pascual et al., 2017).

Seismic oceanography (SO) is an interdisciplinary research
field that uses common marine multichannel seismic reflection
(MCS) data to capture high-resolution images of the ocean’s
thermohaline structure. This geophysical technique has proven
its value in imaging the oceanic structures with an unprecedent
detail both in the horizontal and vertical directions in different
basins worldwide (Holbrook et al., 2003; Hobbs et al., 2007;
Ruddick et al., 2009; Pinheiro et al., 2010). SO data are indirect
information of relevant oceanographic features and complement
the information provided by conventional oceanographic casts,
which are direct measurements of the ocean properties but
sparsely distributed. More recently, these data have been used to
estimate the oceanic turbulent dissipation (Holbrook et al., 2013;
Sallarès et al., 2016; Dickinson et al., 2017; Fortin et al., 2017)
and to estimate the spatial distribution of the ocean’s temperature
and salinity using amplitude-vs.-offset analysis (Páramo and
Holbrook, 2005), deterministic seismic oceanography inversion
methods (Wood et al., 2008; Sallarès et al., 2009; Papenberg
et al., 2010; Kormann et al., 2011; Song et al., 2012; Bornstein
et al., 2013; Biescas et al., 2014; Padhi et al., 2015; Blacic et al.,
2016; Dagnino et al., 2016, 2018; Minakov et al., 2017; Gunn
et al., 2018; Tang et al., 2018, 2019; Gunn et al., 2020), stochastic
seismic oceanography inversion (Tang et al., 2016; Azevedo
et al., 2018; Jun et al., 2019) and automatic velocity analysis
(Chhun and Tsuji, 2020).

In SO, multichannel seismic reflection data is processed
to boost the amplitudes corresponding to seismic reflections
occurring at interfaces between water layers of different
temperature and salinity, where water temperature is the most
important property and contributes on average 80% to the
reflection coefficient (Ruddick et al., 2009; Sallarès et al., 2009).
A challenge for SO data processing is the ability to image
reflections near the sea surface, as traditional seismic processing
sequences fail to successfully mitigate the effect of the direct wave
traveling from source to receivers on the very weak reflections in
the near-surface water layer (e.g., Ruddick et al., 2009; Pinheiro
et al., 2010). Several processing workflows have been proposed
to tackle this limitation. Huang et al. (2012) used an adaptive
subtraction scheme. Hardy et al. (2007) and Jones et al. (2008)
combined linear moveout with dip filtering. Ristow et al. (2017)
used a combination of a linear Radon transformation with
adaptive subtraction. Often, another source of coherent noise
originates from the echo of the previous shot, but this noise is
not addressed herein. The objective of the seismic oceanography
processing shown herein is twofold: (1) to effectively attenuate
the direct arrival effect using a combination of linear moveout,
horizontal median filtering and adaptive subtraction; and (2) to
preserve the relative seismic amplitudes of the seismic data. The
attenuation of the direct wave arrival ensures a good image of
the water structure in the first few hundred of meters, whereas
preservation of original amplitudes is required to invert the
seismic data for the ocean’s physical properties.

Seismic oceanography data represent an indirect
measurement of the physical properties of the water column
such as temperature and salinity. In fact, seismic reflections

present in SO data originate from the interfaces between
water masses with distinct properties. From an oceanographic
perspective, having the ability to predict the spatial distribution
of such properties from SO data would provide insights
about oceanographic processes not detected by conventional
oceanographic sampling techniques. The spatial prediction of
such properties from seismic oceanography data is an inverse
problem. Mathematically, seismic oceanography inversion can
be expressed as:

m = F−1 (dobs)+e (1)

where F is the forward operator through which the recorded
seismic amplitudes (dobs), with dobsεRd, are obtained from an
ocean’s model, m εRm, and e represents the error term associated
with the observations and modeling uncertainties errors present
in the seismic oceanography data. In the seismic oceanography
case, the ocean’s acoustic properties (P-wave propagation velocity
and density), m, can be computed from temperature and salinity
using the thermodynamic equation of seawater (IOC, SCOR, and
IAPSO, 2010).

Seismic inversion methods can be broadly divided in two
different classes: deterministic or statistical (Bosch et al., 2010).
Deterministic approaches are based on regression models of
optimization algorithms providing a single best-fit solution.
In deterministic seismic inversion the uncertainty assessment
is limited and defined as a linearization around the best-fit
inverse solution, which is normally retrieved by least squares,
and in this sense, the uncertainty is strictly represented by
a local multivariate Gaussian (Tarantola, 2005). In statistical
seismic inversion, the solution is expressed as a probability
density function in the model parameters space. Therefore, these
inversion methods provide a set of alternative models as solution
and allow the assessment of the uncertainty associated with
the inverted models (Tarantola, 2005). Assessing the uncertainty
about the predictions in seismic inversion is critical in any
modeling procedure. The uncertainty represents the lack of
knowledge about the system under investigation, measurement
errors and physical approximation during the data processing
(Tarantola, 2005). Also, accounting for uncertainty, and therefore
risk, leads to better-informed decisions.

There are different statistical-based seismic inversion
methods. These seismic inversion methodologies are iterative
procedures based on different stochastic optimization algorithms
such as simulated annealing, genetic algorithms, probability
perturbation method, gradual deformation, geostatistical
simulation and neighborhood algorithm (e.g., Sen and Stoffa,
1991; Bortoli et al., 1993; Sambridge, 1999; Le Ravalec-Dupin and
Noetinger, 2002; Soares et al., 2007; González et al., 2008; Grana
et al., 2012; Azevedo et al., 2015; Azevedo and Soares, 2017).

Iterative geostatistical seismic inversion methods allow
predicting models at higher resolution than the observed data
due to their ability to incorporate high-resolution information
provided by existing direct observations (e.g., Azevedo and
Soares, 2017). This is particularly of interest in oceanographic
studies as it might open a window to a reality not yet
known. Conventional ocean models built exclusively from the
interpolation of sparse direct measurements of ocean properties,
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FIGURE 1 | Schematic representation of the proposed geostatistical SO inversion including temperature and salinity background models. Green boxes represent the
steps related to the integration of background ocean models.

such as CTD and/or XBT, are always a smooth representation
of the true ocean variability and are unable to describe complex
features in detail due to the large distances between observations.
The inverted models of the ocean properties retrieved from SO
data are much richer from a spatial perspective as the SO data
constrains the model predictions far from the location of the
direct observations (e.g., Dagnino et al., 2016).

In a preliminary work, geostatistical inversion has been
successfully applied to predict the spatial distribution of ocean
temperature and salinity from seismic oceanography data
(Azevedo et al., 2018). These authors showed how geostatistical
SO inversion could retrieve a set of high-resolution temperature
and salinity models that generate synthetic SO data consistent
with observations. Each model represents an alternative scenario
that fits equally well the observed data SO data. However, in this
approach the model perturbation technique (i.e., geostatistical
simulation) (Deutsch and Journel, 1992) requires the existence
of contemporaneous and collocated direct measurements of
temperature and salinity (e.g., CTD/XBT casts) along the SO
section to be inverted. The simultaneous acquisition of CTD/XBT
data is difficult due to both operational challenges and costs,
and represents a major drawback in the practical use of
this technique.

The main objective of this work is to propose an alternative
geostatistical SO inversion method to overcome the need
for contemporaneous and collocated direct observations of
temperature and salinity, which might open the door to the
generalization of this type of inversion method in SO studies.
Low-resolution models of temperature and salinity are extracted
from large-scale ocean simulations and integrated as part of
the objective function within the geostatistical SO inversion
method. The low-resolution models represent a background
model with the expected spatial trend of temperature and salinity

(Pereira et al., 2019). In practice the background models act
as spatial constraints in the inversion procedure. These models
are not included as part of the model parameter space to
avoid limiting the exploration of the model parameter space
and therefore in a limited uncertainty assessment. The marginal
and joint distributions of temperature and salinity, necessary to
perform the geostatistical simulations, are borrowed from quasi-
contemporaneous and quasi-collocated ARGO floats profiles
(Argo, 2000) which were acquired approximately simultaneous
during the acquisition of the MCS profile.

As part of the proposed workflow, and to interpret the inverted
models obtained in the last iteration of the inversion procedure,
we classified the set of inverted models generated during the last
iteration of the geostatistical SO inversion into distinct water
masses using Bayesian classification (Avseth et al., 2005). From
the classified models we computed the probability of occurrence
of each water mass. The most likely depths of the different water
masses agree with the expected values for the area of interest as
proposed by other authors (Comas-Rodríguez et al., 2011).

The following section presents a detailed description of
the proposed geostatistical SO inversion methodology and the
Bayesian classifier used to predict the spatial distribution of
the expected water masses. The proposed inversion method
is then applied to a MCS profile acquired over the Madeira
abyssal plain (MAP) that was specifically reprocessed for this
purpose. The tailored seismic processing workflow is described
in the subsequent section. We then show a preliminary and
global interpretation of the oceanographic insights provided
by the inverted models. The workflow proposed in this
work can be applied to other locations worldwide where
no contemporaneous direct measurements of salinity and
temperatures and global ocean models exist in the vicinity of the
seismic profiles.
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FIGURE 2 | Location of the MAP. The red line shows the location of the SO profile inverted with the proposed method. White lines correspond to other MCS profiles
acquired under the same seismic acquisition survey.

GEOSTATISTICAL SEISMIC
OCEANOGRAPHY INVERSION

The proposed iterative geostatistical SO inversion method
inverts SO data directly for temperature and salinity when no
contemporaneous direct observations of the ocean are available.
It can be considered an extension of the method introduced
by Azevedo et al. (2018). It allows the simultaneous integration
of high-resolution direct measurements of temperature and
salinity, such as CTD and XBT data, and background models
from climatology, data products or numerical ocean simulations.
A relevant aspect of the proposed method is that the background
models do not constrain the model generation (e.g., used for
example as a local mean during the geostatistical simulation), but
are included as part of a two-term objective function where they
act as a spatial regularizer (Pereira et al., 2019).

The proposed iterative geostatistical SO inversion method can
be divided into four main steps: (i) generation of temperature
and salinity background models; (ii) generation of high-
resolution temperature and salinity models using stochastic
sequential simulation and co-simulations; (iii) multi-objective

TABLE 1 | Summary of the acquisition parameters of the MCS profiles acquired
in the MAP.

Recording length (s) 18

Sampling rate (ms) 2

Low-cut filter (Hz) 4.3 at 6 dB/oct

High-cut filter (Hz) 4.3 at 6 dB/oct

Streamer length (m) 7,950

Streamer depth (m) 9 (±1.5 m)

Near-offset distance (m) 190

Number of channels 636

Channel interval (m) 12.5

Source depth (m) 7 (±1.0 m)

mismatch evaluation; (iv) stochastic update and generation of a
new set of models.

In the application example shown herein, two-dimensional
large-scale temperature and salinity sections, describing the
expected background spatial distribution, were retrieved from
global numerical simulations of ocean dynamics provided
by the Copernicus Marine Environment Monitoring Service
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FIGURE 3 | Relative location of the SO seismic profile and the two ARGO floats used for the seismic oceanography inversion.

FIGURE 4 | (A) ARGO profiles showing the measured temperature and salinity vs. pressure. (B) Comparison between histograms inferred from the temperature and
salinity measured by the ARGO floats and the best-fit inverse models.
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FIGURE 5 | Joint distribution of temperature vs. salinity. Colored markers
represent direct measurements from two ARGO floats and were used as
training dataset for the Bayesian classification; pair of best-fit inverse models
retrieved at the end of the inversion procedure are colored in gray.

(CMEMS, 2016). These sections were extracted for the same
geographical location, acquisition date and time of the available
SO section. From a geophysical inversion point of view, these

simulated profiles can be thought as low-frequency models in
conventional seismic inversion methodologies (e.g., Sams and
Carter, 2017; Pereira et al., 2019).

Contemporaneous observed high-resolution temperature
and salinity vertical profiles acquired close to the seismic
oceanography profile were used to infer the marginal and joint
distributions of both ocean properties. This information was
used during the model generation and perturbation and not
as spatial constraining data. These data were used as target
marginal and joint distributions to be reproduced by the
geostatistical simulation algorithms. In this inversion method,
water temperature models are generated with direct sequential
simulation (DSS; Soares, 2001) and salinity models were co-
simulated with co-DSS with joint probability distributions
(Horta and Soares, 2010). The sequential generation of models
ensures that the observed relationship between temperature and
salinity is reproduced in any given pair of models generated
during the iterative procedure. This is essential to guarantee the
plausibility of the predicted location and extent of water masses
and for classification of distinct water masses as shown below.

The pairs of temperature and salinity models are used to
compute water density and P-wave propagation velocity using the
international thermodynamic equation of seawater (IOC, SCOR,
and IAPSO, 2010). Then, normal incidence reflection coefficients
are computed and convolved with a representative wavelet. In
cases where contemporaneous and collocated vertical profiles
of salinity and temperature are available, the wavelet can be

FIGURE 6 | Background models of (A) temperature and (B) salinity extracted from the large-scale dynamics ocean model.
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FIGURE 7 | Seismic processing flow applied to the SO profile to enhance the
reflections within the water column and in particular the shallow part of the
section.

estimated by comparing synthetic seismic traces with the real
data (i.e., as in conventional seismic-to-well tie). For this work,
however, the wavelet was extracted from the processed SO data
by averaging the primary seafloor reflection of several traces
selected from a region of relatively flat bathymetry, following
the approach used by Warner (1990). The resulting synthetic
traces are then compared against the corresponding real traces
following:

S =
2∗
∑N

s=1 (xs∗ys)∑N
s=1 (xs)

2
∗
∑N

s=1 (ys)
2 , (2)

where xs and ys are the real and synthetic seismic traces,
respectively, with N seismic samples. The similarity, S, like the
Pearson’s correlation coefficient is bounded between −1 and
1, but ensures a simultaneous match of the synthetic seismic
on both waveform and amplitude values of the recorded SO
data. The plausibility of the inverted models depends on the
reproduction of both properties of the observed data.

The deviations (dev) of each single realization of temperature
and salinity from the background ocean models are computed
following:

dev =

(
1−

(
|msim−mbackground|

msim+mbackground

))
, (3)

where msim is a realization of temperature or salinity and
mbackground is the corresponding background model. Finally, a
two-term objective function (OF) is computed combining Eqs.
(2) and (3):

OF = w1S+w2

(
devT+devS

2

)
, (4)

where w1 and w2 are user defined weights that sum to 1 and
control the influence of each term depending on the quality of
the existing SO data and the reliability of the background model;
devT and devS are the deviations of the simulated parameter from
the background model for temperature and salinity, respectively.
If the quality of the SO data is low, then w1 should decrease.
Similarly, if the reliability of the background temperature and
salinity is poor, w2 should be reduced. In the application example
shown herein w1 and w2 were set by trial-and-error. However,
these can be optimized under an optimization framework (e.g.,
Gennert and Yuille, 1988; Mead, 2008; Marler and Arora, 2010).
Notice that OF is also bounded between −1 and 1 so it can
be used as a proxy of a collocated correlation coefficient in
the geostatistical co-simulation of a new set of temperature and
salinity models in the subsequent iteration of the inversion (e.g.,
Soares, 2001).

For a given iteration (j), the pairs of temperature and salinity
traces (i.e., vertical columns of grid samples) that ensure the
maximum OF values are stored in auxiliary temperature and
salinity models along with the corresponding OF values. These
models are used as secondary variables in the co-simulation of
a new set of models in the subsequent iteration. In practice,
regions of the seismic profile with low OF will exhibit a large
variability of simulated values within the ensemble of simulated
models, while region of high OF will produce similar models in
the next iteration.

The proposed iterative geostatistical SO inversion method is
summarized in the following sequence of steps (Figure 1):

(i) Create temperature and salinity background models for
the entire inversion grid. The background models might
be vertical sections extracted from numerical ocean
simulations collocated with the existing SO data for the
same acquisition time;

(ii) Stochastic sequential simulation (direct sequential
simulation; Soares, 2001) of Ns temperature models for the
entire inversion grid. Direct temperature measurements
located nearby the location of the SO profile are used to
infer the conditioning distribution;

(iii) Stochastic sequential co-simulation (direct sequential co-
simulation with joint probability distributions; Horta and
Soares, 2010) of Ns salinity models for the entire inversion
grid. Direct salinity measurements located nearby the
region of interest are used to infer the conditioning
distribution. Each temperature model simulated in ii is used
as an auxiliary variable to ensure the relationship between
both ocean properties are reproduced in each Ns pairs of
simulated models;

(iv) For each pair of simulated ocean models, calculation of
Ns reflection coefficient models using the International
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FIGURE 8 | (A) An illustrative field seismic record. Echo from the previous shot is very clear. Shallow reflections from the water layer are obscured by the very strong
direct arrival; (B) field record after linear moveout; (C) doubling the short offsets and merging to build a shot gather that will mitigate the border effects of the median
filter; (D) after applying the median filter with 11 traces; (E) same as (C) after subtraction of the median filter shown in (D); (F) field record [as shown in (A)], after the
full processing sequence of horizontal median filter with subtraction to attenuate the energy from the direct wave in the water; (G) processed record after NMO
correction at 1,500 m/s (50% stretch mute allowed).

FIGURE 9 | Migrated seismic profile. Black boxes represent the locations of the zoom-ins shown in Figure 10.

thermodynamic equation of seawater (IOC, SCOR, and
IAPSO, 2010). The resulting Ns reflection coefficients
volumes are then convolved on a trace-by-trace basis with a
wavelet extracted from the recorded seismic reflection data,
producing Ns synthetic SO sections;

(v) Calculate the objective function (Eq. 4) on a trace-by-trace
basis;

(vi) Select and store the temperature and salinity traces that
generated the highest OF value in best local salinity and
temperature models along with the corresponding OF;

Frontiers in Marine Science | www.frontiersin.org 8 August 2021 | Volume 8 | Article 685007

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-685007 August 6, 2021 Time: 14:55 # 9

Azevedo et al. Geostatistical Seismic Oceanography Inversion

FIGURE 10 | Close-up of: (A) the eddy interpreted in the Western part of the
profile; (B) elliptical shallow feature and oblique reflection within the MOW; and
(C) bright continuous seismic reflections interpreted as possible double
diffusion.

(vii) Use these local best OF, temperature and salinity models
as secondary variables in the co-simulation of a new set of
temperature and salinity models;

(viii) Return to ii and iterate until the global correlation
coefficient between real and synthetic SO data is above a
certain threshold or a pre-defined number of iterations is
reached.

Temperature and salinity models simulated and co-simulated
during the last iteration generate highly correlated synthetic SO
data with the observed data. These models were classified
into distinct water masses. Bayesian classification (e.g.,
Avseth et al., 2005; Grana et al., 2017) was trained based
on the existing direct measurements of temperature and
salinity profiles of spatially located nearby Argo floats taken
during the acquisition of the seismic oceanography data.
Nw different types of water were identified including the
Central Atlantic Water, the Mediterranean Outflow and
the Subarctic Intermediate Waters, as described in Comas-
Rodríguez et al. (2011). The statistical properties (i.e., mean,
covariance and proportions) were inferred from the training

data and used to compute the prior and likelihood function
for the Bayesian classification according to Bayes’ rule:

P
(
k|d
)
=

P
(
d|k
)

P(k)
P(d)

=
P
(
d|k
)

P(k)∑Nw
k = 1 P

(
d|k
)

P(k)
, k = 1, . . . ,Nw

(5)
where, d is the vector of the ocean properties used for the
classification, the simulated pairs of models, and k is the
number of water masses. In Eq. (5), P

(
d|k
)

is the likelihood
function, P(k) is the prior model and P(d) is a normalization
constant. The set of Ns models classified in k water masses
was then used to compute the probability of occurrence of
each water mass.

Finally, the pointwise average models of temperature and
salinity inverted during the last iteration of the inversion
and the water probability sections were used to perform a
simple and preliminary interpretation of the oceanographic
features observed in the data. Nevertheless, this is not the main
focus of this work.

REAL CASE APPLICATION

Dataset Description
The proposed iterative geostatistical SO inversion method was
applied to a seismic profile (WM-MAD01-003) acquired over
the MAP with conventional MCS reflection methods (Figure 2).
A summary of the main acquisition parameters is shown in
Table 1. This seismic profile was acquired by the Portuguese Task
Force for the Extension of the Continental Shelf (EMEPC in its
Portuguese acronym) between June 6 and June 8, 2006 and is
part of a larger seismic dataset located within the MAP. The
typical thermohaline structure of the water column in this area
is characterized by surface waters of subtropical type (warmer
and saltier) over central waters of subpolar origins (Central
Atlantic Waters) with lower temperature and salinity. Below the
Central Atlantic Waters between about 500–1,500 m the water
becomes saltier and warmer due to the presence of Mediterranean
Outflow Water (MOW). Deeper in the water column, at the lower
intermediate levels, temperature and salinity decrease with the
presence of subpolar type intermediate waters (e.g., Segade et al.,
2015). This vertical structure of water masses is unique as far as
a considerable thermohaline structure is enclosed in the upper
2,000 m of the water column and a clear structure in the SO data
was expected. Besides, this area is characterized by recurrent eddy
activity associated with the energetic and unstable Azores Current
jet on the upper ocean (Barbosa Aguiar et al., 2011), and with
the main path of propagation of the Mediterranean Water Eddies
(Richardson et al., 2000; Barbosa Aguiar et al., 2013), which carry
very distinct salty and warm water anomalies within its core at
intermediate levels.

The MCS profile was processed to image the fine-structure
in the water column. Particular attention was given to mitigate
the effect of the direct arrival and enhance shallow reflections
while preserving true amplitudes by applying processing
parameters that minimize amplitude and phase distortion.
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FIGURE 11 | (A) Observed SO data used in the inversion; (B) synthetic SO data computed from the pointwise mean temperature and salinity models generated
during the last iteration; (C) trace-by-trace S between (A,B).

Different processing sequences would produce different results
and impact the models predicted with the SO inversion. The
detailed description of the processing sequence is presented in
the following sub-section.

As collocated and contemporaneous direct measurements
of temperature and salinity were not available, we used
three vertical profiles of temperature and salinity (from two
ARGO floats—ARGO, 4,660 and 44,909), profiling close to
the acquisition period (in May 21 and May 31, 2006) and
located in the surroundings of the SO section during the data
acquisition (Figure 3). The ARGO profiles were used to infer

the marginal (Figure 4) and joint distributions (Figure 5)
of both ocean properties and were used as conditioning
distributions for the stochastic sequential simulation and co-
simulation of temperature and salinity models. We assume that
the statistical properties of temperature and salinity measured by
these floats hold for the location of the SO profile. According
to the temperature and salinity measurements, three distinct
water masses could be inferred: central Atlantic water; MOW;
and Subarctic Intermediate Water, as described in Comas-
Rodríguez et al. (2011). Low-frequency temperature and salinity
background models were built using a global ocean dynamics
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FIGURE 12 | Pointwise mean model of the set of inverted (A) temperature and (B) salinity models generated during the last iteration of the geostatistical inversion.

FIGURE 13 | Pointwise variance model of the set of inverted (A) temperature and (B) salinity models generated during the last iteration of the geostatistical inversion.
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FIGURE 14 | Comparison between the temperature and salinity vertical profiles measured at the ARGO floats locations (Figure 3) and the average vertical profile of
temperature and salinity for all the thirty-two realizations generated during the last iteration of the geostatistical inversion.

model (CMEMS, 2016) for the dates of seismic acquisition
(Figure 6). These two-dimensional sections are collocated
with the MCS data but are smooth and low resolution.
While the background temperature model shows a vertical
trend of high temperature at shallower water depths and
low temperature at deeper depths, the background salinity
model follows the description above and considers the effect
of the MOW (i.e., a saltier water layer) around 1,125 m of
water depth.

Seismic Processing of Line
WM-MAD01-003
The processing sequence (Figure 7) included data resampling
and recording length reduction to comprise data exclusively
above the seafloor. Bad traces, both due to poor signal-to-noise
ratio or bad readings, were edited and those unrecoverable
were removed from the dataset. The direct arrival was
tackled by applying a horizontal median filter with adaptive

amplitude subtraction, similar to ocean bottom seismometers
data processing (Duncan and Beresford, 1995). This kind of
amplitude subtraction aims at minimizing the effects on the
resulting amplitudes. This process was performed sequentially
in a four-step approach (Figure 8): first, field records were
flattened using a linear moveout correction with a constant
velocity of 1,500 m/s (Figure 8A); the flattened records were
doubled to avoid edge effects when applying a median filter
(Figure 8B); a horizontal median filter was applied to those
records to preserve horizontal coherent reflection (Figure 8C).
Finally, the resulting record was subtracted to the doubled
flatten record (Figure 8E) to eliminate the effect of the
direct arrivals and keep reflections in the records (Figure 8F).
The filtered gather, after applying a normal moveout (NMO)
correction with a constant velocity of 1,500 m/s, is shown in
Figure 8G where the reflections within the water column around
500 ms are enhanced.

The second part of the processing sequence comprises band-
pass filtering between 10 and 80 Hz, and surgical mutes to remove
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FIGURE 15 | Probability of occurrence of: (A) Central Atlantic Water; (B) Mediterranean Outflow Water; (C) Subarctic Intermediate Water. Probability models
calculated from the classification of the thirty-two temperature and salinity models generated during the last iteration of the inversion using the training data shown in
Figure 5.

bursts of energy at the smallest offsets (Pinheiro et al., 2010).
True amplitude recovery was applied to compensate spherical
divergence. A detailed velocity analysis was performed along
the MCS profile. The resulting velocity field was used in the
normal moveout correction of the records. After CMP sorting,
the CMP gathers were stacked considering all offsets. Finally, a
constant velocity (1,500 m/s) phase-shift migration (Stolt, 1978)
and time-to-depth conversion were carried out using the same
constant velocity model.

Due to computational constraints, the MCS profile was
processed in swaths of 400 field records, with an overlap of
50 records. This computational limitation results in the vertical
stripping observed in the final time migrated section, which also
affect the inverted temperature and salinity models (Figure 9). All

sections are plotted in the depth domain to ease interpretation by
assuming an average P-wave velocity of 1,500 m/s. However, the
inversion of the SO section was performed in the time domain
(i.e., prior to depth conversion).

Preliminary Interpretation of Line
WM-MAD01-003
A preliminary interpretation of the SO profile allows its vertical
division in two layers: the top one, down to approximately
1,875 m, comprises bright and coherent reflections with different
seismic signatures and dips; the bottom one, below this depth,
which is relatively reflection-free maybe due to the relatively
homogeneous North Atlantic Deep Water. For this reason, only
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the top layer of the SO profile was considered for the geostatistical
inversion (i.e., from 0 to 2.5 s in TWT).

The top layer shows the presence of an eddy at depths
where Meddies are typically expected 600–1,500 m (Figure 10A).
A smaller lenticular feature is also observed at shallow depths
(around 750 m) that could be associated with the transition
to Mediterranean waters or a secondary feature associated with
that eddy (Figure 10B). Oblique reflections between 750 and
2,250 m might be related to oceanic fronts within the MOW
or an inclined eddy of smaller dimensions as imaged in Tang
et al. (2020). A possible double diffusion phenomenon can be
detected by the continuous, parallel and bright reflections at
approximately 1,500 ms for almost all the profile (Figure 10C).
Double diffusion generates staircase thermohaline structure. The
seismic signature of this oceanic structure has already been
observed and investigated in the area near the Lesser Antilles in
the Caribbean Sea (e.g., Fer et al., 2010) and in the Gulf of Cadiz
associated to Mediterranean Outflow Water eddies (e.g., Biescas
et al., 2008).

INVERSION RESULTS

The geostatistical SO inversion ran with six iterations, where at
each iteration thirty-two pairs of temperature and salinity models
were generated using direct sequential simulation (Soares,
2001) and direct sequential co-simulation with joint probability
distributions (Horta and Soares, 2010). The stochastic sequential
simulation and co-simulation were conditioned to the histograms
and bi-histograms from Figures 4, 5, respectively. Since the
ARGO floats were not located along the seismic profile, no
spatial conditioning was considered. Vertical variograms for
each property were modeled from both ARGO floats while
the horizontal variogram was modeled directly on the seismic
amplitudes. This is a conventional approach in seismic reservoir
characterization and often results in overestimation of the
horizontal ranges of the variogram model (Azevedo and Soares,
2017). The objective function (Eq. 4) used to drive the inversion is
based on the mismatch between synthetic and real seismic traces
used for the inversion and the deviation of each realization of
temperature and salinity from the background models shown in
Figure 6.

The synthetic SO data computed from the pointwise average
temperature and salinity models generated during the last
iteration is shown in Figure 11. These data reproduce the location
of the main oceanographic features as interpreted from the
observed data as well as their amplitude content. As expected, the
synthetic SO data calculated from these models is less noisy than
the observed seismic (e.g., Avseth et al., 2005) and, consequently,
increases the spatial continuity of the seismic reflections at the
bottom part of the section (∼1,500 m). Iterative geostatistical
seismic inversion methods are known for the ability to remain
unmatched in noisy areas of the observed data (Azevedo and
Soares, 2017). This effect is illustrated by the lack of vertical
artifacts in the synthetic data. To illustrate the local convergence
of the synthetic data, Figure 11C shows the trace-by-trace S
between true and inverted SO data.

The inverted temperature and salinity models (Figure 12)
capture the oceanic features of interest at finer scale when
compared with the observed SO data. This effect is related to the
use of geostatistical simulation as model perturbation technique,
the geostatistical simulation fills-in the frequency band related
to high-frequencies (Azevedo and Soares, 2017). Modeling
oceanographic features at these scales is not possible with
either deterministic seismic inversion methods or conventional
interpolation techniques of direct observations of the ocean
properties as represented by CTDs or XBTs. This is one of the
main benefits of using geostatistical seismic inversion methods.
These models show the filamentation structures around the
eddie’s core and in particular the warm intrusions around the
homogenous nucleus. The use of background temperature and
salinity models (Figure 6) allows reproducing the expected large-
scale vertical distribution of both properties as interpreted from
the global ocean models.

Additionally, the benefit of using geostatistical inversion
methods is related to the ability to assess the uncertainty
associated with the model predictions. Figure 13 shows the
pointwise variance of temperature and salinity computed from
the ensemble of models generated for each property during
the last iteration of the inversion procedure. It is interesting
to discuss the spatial distribution pattern of these models. As
temperature is the main contributor for the existence of reflection
coefficients (Ruddick et al., 2009; Sallarès et al., 2009) the spatial
uncertainty (i.e., the variance) is smaller in regions where the
observed SO data exhibits coherent seismic reflections (i.e., above
approximately 375 m and below 1,500 m). On the other hand,
the region of lower variance for salinity, between the 750 and
1,125 m, matches the depths associated with the saltier layer
as observed in the background model (Figure 6). The reason
for this phenomenon still needs to be further investigated but
might be related to: (i) the differences in signal-to-noise ratio in
different parts of the seismic section; (ii) the local influence of the
background models.

When contemporaneous direct measurements of temperature
or salinity along the SO profile are available, one could
assess the local performance of the inversion by retaining
one observation out of the conditioning data and comparing
the inverted traces with the observed data (i.e., a blind-well
test in subsurface modeling). In this application example we
compare the depth trend of the inverted two-dimensional
sections of temperature and salinity of all the realizations
generated during the last iteration of the inversion with the
vertical one-dimensional profiles acquired by the ARGO floats
(Figure 14). Note that the ARGO floats are not used to spatially
constrain the inversion. In this simple exercise we aim at
evaluating if the vertical trend of both properties is reproduced.
As expected the direct measurements are not exactly reproduced
but we consider the reproduction of the main trends to be a
positive result.To illustrate the potential of geostatistical seismic
inversion methods we used the ensemble of pairs of temperature
and salinity models generated during the last iteration to
generate two-dimensional sections of probability of occurrence
of different water masses. First each pair of models was classified
into three distinct water masses using Bayesian classification.
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The a priori probabilities were inferred from the ARGO floats
profiles, which were used as a training dataset (Figure 5).
After classification of each pair, the ensemble of 32 models was
used to compute the probability of occurrence of each water
type (Figure 15). The resulting probability sections agree with
the overall knowledge of this oceanic basin and with previous
results obtained using exclusively large-scale oceanographic
observations (Comas-Rodríguez et al., 2011). It is relevant to
highlight that the order relationship of the different water masses
(i.e., the Central Atlantic Water above the MOW above of the
Subarctic Intermediate Water) is reproduced in the probability
models, but it is not imposed by any other information rather
than the SO data and the background models. As expected the
regions of higher uncertainty are located at the boundaries of
each water mass.

CONCLUSION

This paper presents the first seismic oceanography images of the
Madeira abyssal plain region. The work focuses on two main
aspects: (i) the introduction of a simple but efficient way to
mitigate the effect of the direct arrival in the data; and (ii) the
development of a geostatistical SO inversion that can be used
when contemporaneous and collocated direct measurements are
not available. The interpretation of the inverted models from an
oceanographic perspective is limited, as it would benefit from the
processing and inversion of the other two adjacent SO sections.

The processing sequence applied to these data was able to
effectively attenuate the effect of the direct wave, revealing
reflections in the first few hundred meters below the sea surface
(Figure 10). The time-migrated section clearly shows fine-scale
structure down to 2,000 m, below this depth the SO data shows
no reflection. The upper part of the section exhibits a series
of interesting oceanographic features that might be interpreted
as eddies associated with the MOW and as double diffusive
phenomena. However, these features need to be further explored
to provide insights about the complex dynamics of the study area
(Figure 10). The detailed interpretation of these oceanographic
features will be performed after inverting the neighbor SO
profiles existing in the region.

The processed time-migrated section was inverted using the
proposed geostatistical SO inversion. We show how this inversion
technique can be applied when no direct and contemporaneous
observations of the ocean are available. We leverage common
models of large-scale ocean dynamics and existing vertical
profiles of the ocean properties measured by ARGO floats. This
method was proved to be a useful tool to characterize sub-
mesoscale oceanic features and has demonstrated a potential
to invert for temperature and salinity. From the inverted
models we also propose Bayesian classification of water masses.
The probability of occurrence of the different water masses

along the profile clearly agrees with the known vertical
distribution (Figure 15).

As a final remark, it is worthwhile to highlight that the
ensemble of inverted temperature and salinity fields generated
at the last iteration still exhibits large variability (Figure 14).
While this uncertainty is related to the lack of knowledge
about the system under investigation (i.e., the ocean properties),
it may be reduced and better predictions can be obtained
by including additional constraints from other oceanographic
variables (e.g., density, water column stability) during the
inversion procedure. This approach would increase the reliability
of the inverted models.
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