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vilibic@izor.hr

Specialty section:
This article was submitted to

Coastal Ocean Processes,
a section of the journal

Frontiers in Marine Science

Received: 06 January 2021
Accepted: 23 April 2021
Published: 20 May 2021

Citation:
Denamiel C, Huan X and Vilibić I
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Coastal hazards linked to extreme sea-level events are projected to have a direct impact
(by flooding) on 630 million of people by year 2100. Numerous operational forecasts
already provide coastal hazard assessments around the world. However, they are largely
based on either deterministic tools (e.g., numerical ocean and atmospheric models) or
ensemble approaches which are both highly demanding in terms of high-performance
computing (HPC) resources. Through a robust learning process, we propose conceptual
design of an innovative architecture for extreme sea-level early warning systems based
on uncertainty quantification/reduction and optimization methods. This approach might
be cost-effective in terms of real-time computational needs while maintaining reliability
and trustworthiness of the hazard assessments. The proposed architecture relies on
three main tools aligning numerical forecasts with observations: (1) surrogate models of
extreme sea-levels using polynomial chaos expansion, Gaussian processes or machine
learning, (2) fast data assimilation via Bayesian inference, and (3) optimal experimental
design of the observational network. A surrogate model developed for meteotsunami
events – i.e., atmospherically induced long ocean waves in a tsunami frequency
band – has already been proven to greatly improve the reliability of extreme sea-
level hazard assessments. Such an approach might be promising for several coastal
hazards known to destructively impact the world coasts, like hurricanes or typhoons
and seismic tsunamis.

Keywords: coastal hazard assessment, surrogate model, Bayesian inference, optimal experimental design, early
warning system

INTRODUCTION

The size and number of global coastal communities have increased dramatically in the past century.
Today more than 40% of the worldwide population is residing within 100 km of the coast, and 10%
in nearshore areas less than 10 m above the sea-level (Nicholls and Cazenave, 2010; Neumann et al.,
2015). Coupled with more frequent and more energetic weather phenomena due to global climate
changes (e.g., Emanuel, 2017; Romera et al., 2017), these coastal communities are under high risks
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and extremely vulnerable to catastrophic events such as
hurricanes, tropical storms, tsunamis, as well as flooding
associated with smaller, sometimes less intensive events (e.g.,
meteotsunamis, wave storms, and medicanes). With the ultimate
aim to ensure public safety and to manage resources along the
coastal zones, early warning systems for extreme sea-level events,
based on both computer models and monitoring networks, have
been developed worldwide.

Early warning systems have been broadly defined by
The United Nation International Strategy for Disaster
Reduction (UNISDR, 2009) as “the provision of timely and
effective information, through identified institutions, that allows
individuals exposed to a hazard to take action to avoid or reduce
their risk and prepare for effective response.” In many countries
and regions of the world, these systems have been implemented
for extremely destructive sea-level hazards, such as tsunamis
and hurricanes or typhoons (Franklin et al., 2003; Basher, 2006;
Chatfield et al., 2013; Hettiarachchi, 2018). However, other
localized and less known sea-level coastal hazards can also
produce major structural damages and losses of life. For these
specific types of events, very few early warning systems have
been developed worldwide, of which many were implemented
with very limited human resources and funding (i.e., most
often within academic research projects). This is the case,
for example, of the prototypes for meteorological tsunamis –
long ocean waves in a tsunami frequency band generated by
atmospheric gravity waves, pressure jumps, frontal passages, and
squalls, etc (e.g., Pattiaratchi and Wijeratne, 2015; Rabinovich,
2020) – in the Adriatic and Balearic Islands (Renault et al., 2011;
Vilibić et al., 2016).

Although constantly developed to reliably and timely provide
forecast of extreme events (Swail et al., 2019), extreme sea-
level early warning systems may still fail to produce accurate
predictions, in particular concerning the intensity of the
hazard. For hurricanes, no substantial improvement in intensity
forecasting has been achieved since the 1990s (DeMaria
et al., 2014; Emanuel, 2017), largely due to limitations in
development (of both physics and resolution) of ocean and
atmospheric models (Rotunno et al., 2009; Andreas et al.,
2015). For tsunamis, a failure in coastal hazard forecast
may be triggered by improper parameterization of the source
(initial conditions for tsunami models) which may lead to
substantial overestimation or underestimation of the hazard
(Titov et al., 2016). For meteotsunamis, improper reproduction
of the atmospheric forcing and poorly represented coastal
bathymetry often result in the underestimation of the coastal
hazard (Vilibić et al., 2016).

Additionally, as lead-time and robustness/stability are the
main controlling factors of real-time sea-level forecasting, fidelity
of scale, resolution, and geographic domain are often sacrificed
so that extreme events can be simulated at higher speeds (i.e.,
fast enough to implement a response) and higher frequency (e.g.,
recalculated every time new information becomes available).
This is well illustrated for atmospherically driven extreme sea-
levels, for which three main types of storm surge predictions
can be implemented. The first type is a deterministic forecast
based on single simulation such as in Suh et al. (2015), which

forces a relatively lightweight ocean mesh covering the North
Western Pacific Ocean with real-time meteorological forecast
advisories. The main advantage of such an approach is that,
as the storm surge forecast at a given time is based on a
unique simulation, high-resolution domains which accurately
describe the geomorphology of the coastal areas and fully
coupled wave-current models can be used, even though they
require longer simulation times. However, the major drawback
of such a deterministic surge prediction is that it does not offer
any quantified uncertainty or confidence in its computations,
and thus limited in use for risk assessment. The prediction
validity then heavily relies on the quality and availability of
the forecasted meteorological input, which can carry extremely
high uncertainties in terms of track, intensity, speed, etc.
Generally, the deterministic approach is thus used in research
to analyze past storms (i.e., with known atmospheric forcing
derived from reanalysis) and not in real-time evacuation
decisions. The second and third types are the statistical
forecast and ensemble/composite approach, which are most
often implemented within early warning systems since they
can propagate the atmospheric forcing uncertainties to the
surge results. In the former, a statistical error derived from
past forecasts is applied to the atmospheric forecast during the
extreme event in order to create probable storms forcing for
the ocean model (e.g., P-surge model from National Oceanic
and Atmospheric Administration, NOAA). In the latter, the
ocean model is run multiple times forced by hypothetical storm
conditions in order to determine the storm surge vulnerability
for a given area. For example, at the NOAA National Hurricane
Centre1 this approach forms the basis for developing evacuation
zones in the United States (Taylor and Glahn, 2008). However,
running statistical and/or ensemble/composite approaches can
be prohibitive as they require extensive numerical resources
and long simulation times (i.e., hundreds or thousands of
simulations per forecast or assessment). Therefore, the ocean
model resolutions and domain sizes, and thus the simulation
accuracy, are generally greatly sacrificed to keep these costs low.
Additionally, the wave-current dynamics, which can drive up
to 20% of the extreme sea-levels for certain events (e.g., Murty
et al., 2020), is also often ignored. As suggested in Veeramony
et al. (2012), a good balance between ocean model fidelity (via
high resolution meshes and detailed physics) and atmospheric
uncertainty (via probabilistic approaches) has yet to be properly
achieved in real-time forecasts.

Therefore, other avenues should be explored to improve
coastal sea-level hazard forecast within early warning systems.
One recently demonstrated successful approach relies on a
surrogate stochastic model created within the early warning
system prototype for meteotsunamis in the Adriatic Sea
(Denamiel et al., 2019a, 2020). Meteotsunamis are an interesting
example as specialized atmospheric forecasts (i.e., AdriSC
deterministic model, Denamiel et al., 2019b) and observational
networks (i.e., barograph measurements) are required to capture
the highly variable (in time and space) air-pressure disturbances
driving the tsunami-like waves Vilibić and Šepić (2009). Within

1www.nhc.noaa.gov

Frontiers in Marine Science | www.frontiersin.org 2 May 2021 | Volume 8 | Article 650279

http://www.nhc.noaa.gov
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-650279 May 17, 2021 Time: 17:26 # 3

Denamiel et al. Extreme Sea-Level Early Warning Systems

this application, the surrogate model, covering all potential
meteotsunamis in the middle Adriatic Sea, demonstrated
that it achieves execution speeds 1000 times faster than the
deterministic ocean model in operational use, whilst largely
increasing the accuracy of the overall extreme sea-level hazard
assessments (i.e., by thoroughly quantifying the uncertainty in the
atmospheric forcing and propagating it to the ocean forecast).

The objective of this perspective paper is thus to provide
a new concept on a generalized framework for designing
reliable early warning systems for extreme sea-levels. This
new framework aims to provide computationally inexpensive
forecasts compared with present systems, while keeping
reliability and trustworthiness of the hazard assessments, thus
seeking to break the barrier caused by computational resource
limitations to provide near real-time forecast.

CONCEPTUAL DESIGN AND MAJOR
POSTULATES

We postulate that fast and reliable stochastic extreme sea-
level hazard assessments, using uncertainty quantification
(UQ, Najm, 2009; Yildirim and Karniadakis, 2015) and
optimization engineering methods (Marler and Arora,
2004), can be implemented within real-time early warning
systems in place of expensive state-of-the-art physical ocean
model forecasts. This postulate relies on the innovative
concept illustrated in Figure 1. The framework integrates
advanced stochastic methods such as surrogate models
based on forward UQ, Bayesian inference and optimal
experimental design within an efficient operational extreme
sea-level forecast system built around four main hypotheses
presented below.

Hypothesis 1: Uncertainty of Extreme
Sea-Level Forecasts Can Be Captured
With Stochastic Forcing
Theory The core component of the postulated early warning
system is the ocean model, which requires an atmospheric or
other source input derived either directly from measurements
or indirectly from observation-driven models. The uncertainty
associated with this input propagates to the extreme sea-level
forecasts, and therefore needs to be properly captured in order
to produce reliable hazard assessments. In the extreme sea-
level community, idealized stochastic forcing are already used
to provide hazard assessments with, for example, Monte Carlo
(MC) sampling (ensemble/composite approach, Gallagher et al.,
2009; Stanford et al., 2011) or perturbation methods (statistical
forecast, Cubasch et al., 1994), but not yet fully implemented
in near real-time and forecast modes. We hypothesize that
extreme sea-level forecasts can be produced with UQ to reflect
the uncertainty of the atmospheric or other forcing. We thus
propose to produce a large ensemble of ocean simulations forced
by idealized stochastic forcing (hereafter referred as synthetic
forcing) which are a simplified representation of the atmospheric
or other source input depending on uncertain parameters

(i.e., stochastic variables) with prescribed prior distributions
(e.g., wind speed and air pressure for hurricanes, pre-failure slope
angle for seismic tsunamis, etc., Figure 2 steps 1 & 2). The
prescribed prior distributions (e.g., Uniform, Gaussian, Gamma)
should cover all potential realizations of the studied hazard in a
specific geographical location based on the previously acquired
knowledge from historical events.

Practical Implementation and Cost At NOAA, this approach
is considered the best to assess the vulnerability of the coastline
to storm surges during hurricanes (i.e., to capture the worst-case
high-water value at a particular location for hurricane evacuation
planning), as it accounts for uncertainties linked to forward
speed, storm trajectory, landfall location, and maximum wind
speed, etc. In terms of cost, to predict the worst-case surges along
the Gulf of Mexico and the US East Coasts, several thousand
of simulations were run with hypothetical hurricanes under
different storm conditions2.

Hypothesis 2: Surrogate Models Can
Shift Computational Needs From
“Online” to “Offline” and Achieve Fast
and Accurate Predictions
Theory High-fidelity physics-based models are very
computationally demanding, with each simulation taking
minutes to hours to run on supercomputers depending on the
geographic domain size, grid resolution (which define the level
of accuracy of the coastal geomorphology representation) and
the model physics (e.g., if including wave-current dynamics).
Direct attempts to accelerate these computations generally
involve coarsening the grid, simplifying the physics, and/or
reducing the number of models if in an ensemble setting – none
of which is desirable for coastal early warning systems where
accuracy and reliability are critical. We hypothesize that real-time
ensemble ocean forecasts can be replaced by surrogate models
(e.g., Polynomial Chaos Expansion, PCE, Le Maître and Knio,
2010; Gaussian Process, GP, Rasmussen and Williams, 2006;
Deep Neural Network, DNN, Goodfellow et al., 2006) and can
achieve fast and accurate UQ analysis, thus providing rigorous
accounting of the forcing uncertainty to the extreme sea-levels
(Figure 2, steps 7 & 8). Surrogate models can be developed and
updated offline ahead of any emergency situation and run online
when the severe events are (about to) taking place at very high
speeds and with nearly no computational cost.

Practical Implementation and Cost Within the coastal
hazard community, PCEs have already been used for the
propagation of uncertainty in an earthquake ocean floor
displacement model to tsunami wave parameters (Giraldi et al.,
2017) and the reproduction of Hurricane Gustav, (2008) by
probing its track and intensity (Sochala et al., 2020). In terms
of cost, to implement the meteotsunami surrogate model in the
Adriatic Sea – using 6 uniformly distributed stochastic variables
to describe the synthetic atmospheric forcing – 4161 ocean
simulations derived with a mesh of 513 340 triangular elements
were needed to reach the 5th order of the polynomial chaos

2https://www.nhc.noaa.gov/surge/momDescrip.php
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FIGURE 1 | Extreme sea-level hazard assessments based on uncertainty quantification and optimization engineering methods: (1) uncertain input parameters with
prior distribution are used to create stochastic ocean model forcing which are both (2) and (3) used to optimized the observational network with optimal experimental
design strategies and (4) modified with the assimilation of observational data via Bayesian inference in order to (5) create the posterior distributions of the input
parameters. Finally, (6) new stochastic ocean forcing based on these parameters are used to force (7) the surrogate models and produce (8) extreme sea-level
hazard assessments. Drawing of the flooded city adapted from Frits Ahlefeldt: https://fritsahlefeldt.com/2019/01/24/not-ready-city-facing-flooding.

method (Denamiel et al., 2020). Till now, the meteotsunami
surrogate model has been proven to be extremely reliable in
terms of providing extreme sea-level assessments during real
events (Denamiel et al., 2019b; Tojčić et al., 2021) at nearly zero
additional computational cost (i.e., less than 5 min to produce
maximum sea-level distributions at all sensitive locations from
20 000 samples).

Hypothesis 3: Observational Data and/or
Operational Atmospheric Forecasts Can
Be Assimilated to Reduce Uncertainty
via Bayesian Inference at High Speeds
and Statistical Accuracy
Theory The uncertainty of extreme event forecasts in the
postulated early warning system can be reduced through
the assimilation of observational data and/or operational

atmospheric forecasts into the model. However, classical filtering-
based data assimilation methods (Eversen, 1994) (e.g., Kalman
filters, ensemble Kalman filters, and particle filters) cannot be
used for our problem for two main reasons. First, whereas
classical data assimilation typically targets the direct forecast
of state variables (e.g., atmospheric pressure for meteotsunami
events) over time, we are interested in reducing uncertainty of
indirectly observed “hidden” model parameters (i.e., stochastic
variables of the synthetic forcing). Second, our approach
forgoes the physics-based dynamical systems in favor of
surrogate models, which offers advantages in mapping directly
to the prediction quantities of interest. In order to reduce
the uncertainty associated with the forcing, we propose to
use Bayesian inference (e.g., Berger, 1985; Sivia and Skilling,
2006; Von Toussaint, 2011) which involves updating a prior
uncertainty of model parameters (e.g., wind speed, air pressure
or pre-failure slope angle) estimated before receiving the data, to
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FIGURE 2 | Proposed conceptual design for early warning systems illustrated for hurricanes in the Gulf of Mexico and the US East Coast. The three blue wheels
represent the uncertainty quantification and optimization tools including the surrogate models, the fast data assimilation and the optimal experimental design. The
green ellipses show the input needed to build (bottom right, the synthetic forcing and the ocean model) and run (top, real-time observations and operational
atmospheric forecast) the early warning system.

the posterior uncertainty after assimilating the new observations
and/or operational atmospheric forecasts (Figure 2, steps 4 & 5).

Practical Implementation and Cost Bayesian inference
provides a probabilistic solution to solving an inverse problem,
which generally requires repeated forward model simulations
under different parameter settings. The primary class of Bayesian

inference algorithms is the Markov chain Monte Carlo (MCMC;
Andrieu et al., 2003; Robert and Casella, 2004; Brooks et al.,
2011). In practice, MCMC often requires thousands or more
model evaluations to obtain good chain mixture and convergence
to the posterior distribution. Coupling a physics-based model
with MCMC is often prohibitive, and a fast surrogate model

Frontiers in Marine Science | www.frontiersin.org 5 May 2021 | Volume 8 | Article 650279

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-650279 May 17, 2021 Time: 17:26 # 6

Denamiel et al. Extreme Sea-Level Early Warning Systems

(Hypothesis 2) would be needed to render the computation
tractable. Once a surrogate is available, the forward model
expense is greatly mitigated, and the computational cost then
primarily resides with the performance of MCMC. Advanced
MCMC variants are widely available in implemented packages,
such as for the delayed rejection adaptive Metropolis (Haario
et al., 2006) and Hamiltonian Monte Carlo (Duane et al., 1987;
Neal, 2011).

Hypothesis 4: Optimal Experimental
Design (OED) Can Find the Most
Informative Data in Observational
Networks That Best Reduce the
Forecast Uncertainty
Theory While Hypothesis 3 describes the use of observational
data to reduce uncertainty which in turn improves the forecast
reliability of early warning systems, the cost of acquiring
such data is extremely high, often requiring the installation
or deployment of aerial, nautical, and land-based sensors and
probes. Moreover, not all data are equally useful. Therefore, a
careful design of these valuable data-acquisition opportunities
can provide substantial savings of operational costs. We propose
to develop and utilize model-based statistical OED methods
(Chaloner and Verdinelli, 1995; Müller et al., 2007; Huan
and Marzouk, 2013) that can also leverage our knowledge
of the physical system and model predictive capabilities,
in order to answer questions such as: where should the
sensors be placed? how frequently should the observations
be taken? what quantities should be measured? We further
propose to conduct sensitivity studies with synthetic forcing
on both (i) present observational networks and (ii) optimized
observational networks (varying observational networks in the
space, changing temporal resolution, choosing parameters to
be measured), to also understand the robustness of these
networks that are aimed to minimize uncertainty as described
in Hypothesis 3.

Practical Implementation and Cost Conceptually, OED
involves simulating different possible experimental outcomes
and their corresponding Bayesian inference results at a design,
and then optimizing for the best design that maximized
uncertainty reduction (information gain). As a result, the cost
of OED is equivalent to many repeated Bayesian inference
solutions. For example, an approach described in Huan and
Marzouk (2013) involves a double-nested Monte Carlo estimator
of the expected utility (objective function) wrapped within
an iterative optimization routine. Thus, the total number of
forward model evaluations in OED can easily reach millions,
and cannot be achieved without a surrogate model except
for very simple (e.g., algebraic or analytical) physical models.
The computational cost is further compounded if we are
interested in assessing the uncertainty reduction to specific
quantities of interest (e.g., the maximum wave height at a
harbor) induced by the parameter posterior, requiring additional
model evaluations. Further algorithmic advances in addition
to surrogate modeling are thus required to quell the intensive
computational needs for OED.

PRACTICAL FEASIBILITY FOR A
HURRICANE EARLY WARNING SYSTEM

The practical feasibility of the postulated conceptual design is
illustrated Figure 2 for a hurricane early warning system in the
Gulf of Mexico and the US East Coast.

In this application, the first task is to develop the extreme
sea-level surrogate models for hurricanes (as described in
Hypothesis 2) with idealized stochastic forcing (as described
in Hypothesis 1). The main advantage of this application is
that both analytical synthetic forcing (e.g., Holland, 1980;
DeMaria and Kaplan, 1994; Knaff et al., 2007; Wood et al.,
2013) and high-resolution wave-current ocean model (i.e.,
ADCIRC + SWAN; Dietrich et al., 2011) were already developed
and used to study hurricanes in the Gulf of Mexico and
the US East coast and are publicly available (bottom green
ellipse, Figure 2). This means that the principal work prior
to building the surrogate model is reduced to define the
most accurate possible distributions of the stochastic input
parameters used, for example, in the Holland synthetic forcing
(i.e., track, central and environmental surface pressures,
maximum winds, radius of maximum winds, etc.). In this
case, again, our work is simplified thanks to the publicly
available revised Atlantic hurricane database (HURDAT23)
compiled by the NHC and containing the best track information
of all historical tropical and sub-tropical cyclones of the
Atlantic basin. Additionally, the future of tropical cyclones
in a warmer environment can also be derived from Emanuel
(2006, 2013). The construction of hurricane surrogate models
along the coast of the Gulf of Mexico and the US East
Coast is thus feasible and benefits from the past experience
of many researchers and institutions. Practically, if the
Holland (1980) model is used with the hurricane aspect
ratio defined by Levinson et al. (2010), the number of stochastic
variables is reduced to 7: landfall location, track direction,
translational speed, central pressure, radius of maximum winds,
maximum wind speed and density of the air. The Florida
Commission on Hurricane Loss Projection Methodology4

published the distributions derived from HURDAT2 for
these parameters and found that translational speed, central
pressure and radius of maximum wind can be described
with well-known Lognormal distributions, while landfall
locations, track direction, maximum wind speed and density
of the air are best described with a maximum likelihood
estimation kernel smoothing. As some of the stochastic
parameters do not follow a well-known distribution that
can be easily described with polynomials (e.g., Legendre,
Hermite, Jacobi, Laguerre and other), the most efficient
design for the surrogate model would probably require to
use Deep Neural Network (DNN). However, gPCE could also
be implemented with, for example, Uniform distributions
for the landfall location, the track direction, the density

3https://www.nhc.noaa.gov/data
4https://www.sbafla.com/method/Portals/Methodology/ModelSubmissions/2017/
FCHLPM_CoreLogic2017_12March2019.pdf?ver=2019-06-18-181833-547
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of the air and the maximum wind speed while Lognormal
distributions would be kept for the other parameters.
Comparison of the efficiency of the two surrogate models could
be done following Laloy and Jacques (2019). Finally, in terms of
cost, identically to the assessment of the coastline vulnerability
to storm surges during hurricanes done by the NOAA, it is
expected that the implementation of both surrogate models
would require a unique set of a few thousand ocean simulations.
However, once the surrogate models built, the extreme sea-level
hazard assessments would only take a few minutes to be derived
(similarly to the meteotsunami example).

The second task of the implementation of the hurricane early
warning system, based on the proposed conceptual design, is to
optimize the observational network using experimental design
(as described in Hypothesis 4). Both historical and synthetic
forcing can be used to design and test different theoretical
observational networks in order to minimize the uncertainty of
the extreme sea-level forecast. Based on the outcome, the winning
network(s) may be proposed to environmental agencies running
the real networks (NOAA in this case) for implementation within
the monitoring system.

Finally, available real-time observations chosen from the
optimal observational network designed in the previous task
and the available operational atmospheric forecasts would be
collected in forecast and/or near real-time modes (top green
ellipses, Figure 2). Identically to the first task, this work is greatly
simplified by the existence of the NOAA National Hurricane
Centre which already produces both atmospheric analyses and
forecast of tropical cyclones based on a dense observational
network (e.g., automated surface observing systems, radiosondes,
airport weather observing systems, satellites, meteorological
buoys, marine observations, and radars, etc.). Then, the best
available forecast and real-time data would be used to run the
fast data assimilation via Bayesian inference (as described in
Hypothesis 3). To test the methodology, the surrogate models
and Bayesian inference will first be used for historical storms
in order to derive the capacity of the newly developed early
warning system to produce accurate extreme sea-level hazard
assessments based on saved historical atmospheric forecasts as
well as real observational networks and their data. If the new
system provides satisfactory results, it then could be used in
parallel and compared to the more traditional approaches in
forecast and near real-time modes.

DISCUSSION AND PERSPECTIVES

While surrogate models, Bayesian inference and optimal
experimental design are mathematical tools widely used in
statistics and computational engineering, they remain mostly
unknown and marginally explored within the extreme sea-level
and geosciences communities. In this article we describe how
they can be applied to early warning systems for extreme sea-
levels driven by hurricanes, tsunamis, meteotsunamis, and other.
These hazards are known to have substantial impacts on coastal
regions around the world, and thus any improvement of early
warning system reliability and performance might be of a great

societal benefit. However, many of these systems are constrained
by the development of numerical tools providing accurate and
timely forecast and consequently are largely restricted by the
available computational resources. For that reason, we postulated
a new and innovative conceptual design that might be a leapfrog
in development of more accurate and more efficient extreme
sea-level hazard assessments in early warning systems. The
potential impact of the proposed conceptual design for extreme
sea-level early warning systems is far-reaching: (1) it provides
a low-cost approach to early warning systems that would be
highly valuable for local communities that may have inadequate
computational resources for running high-fidelity forecasts in
real-time, (2) in hindcast (research) mode, it might improve
the coastal hazard estimates, thus providing a valuable input
for improving coastal planning and mitigation plans, and (3)
it can improve the reliability of warning systems, thus having
capacity to adequately quantify the incoming coastal disaster and
to make appropriate decisions. The real advantages as well as the
unforeseen shortcoming of the presented conceptual design can
only be achieved via the development of the surrogate model,
Bayesian inference and optimal experiment design methods
within different early warning systems around the world. To
encourage potential system developers, we have discussed in
details the practical feasibility of this approach within the Gulf
of Mexico and the US East Coast hurricane warning system.
More broadly, the postulated conceptual design, if proven
effective, can also be adapted for destructive geohazards (e.g.,
Navarro et al., 2018; Chandra et al., 2020) other than extreme
sea-levels.
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Denamiel, C., Huan, X., Šepić, J., and Vilibić, I. (2020). Uncertainty propagation
using polynomial chaos expansions for extreme sea-level hazard assessment:
The case of the eastern Adriatic meteotsunamis. J. Phys. Oceanogr. 50, 1005–
1021. doi: 10.1175/JPO-D-19-0147.1
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Vilibić, I., Šepić, J., Rabinovich, A. B., and Monserrat, S. (2016). Modern
approaches in meteotsunami research and early warning. Front. Mar. Sci 3:57.

Von Toussaint, U. (2011). Bayesian inference in physics. Rev. Modern Phys. 83,
943–999. doi: 10.1103/RevModPhys.83.943

Wood, V. T., White, L. W., Willoughby, H. E., and Jorgensen, D. P. (2013). A new
parametric tropical cyclone tangential wind profile model. Mon. Weather Rev.
141, 1884–1909. doi: 10.1175/MWR-D-12-00115.1

Yildirim, B., and Karniadakis, G. E. (2015). Stochastic simulations of ocean waves:
an uncertainty quantification study. Ocean Modell. 86, 13–35. doi: 10.1016/j.
ocemod.2014.12.001

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Denamiel, Huan and Vilibić. This is an open-access article
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