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Ocean Acidification (OA) can have pervasive effects in calcifying marine organisms,
and a better understanding of how different populations respond at the physiological
and evolutionary level could help to model the impacts of global change in marine
ecosystems. Due to its natural geography and oceanographic processes, the Chilean
coast provides a natural laboratory where benthic organisms are frequently exposed
to diverse projected OA scenarios. The goal of this study was to assess whether a
population of mollusks thriving in a more variable environment (Talcaruca) would present
higher phenotypic plasticity in physiological and morphological traits in response to
different pCO2 when compared to a population of the same species from a more
stable environment (Los Molles). To achieve this, two benthic limpets (Scurria zebrina
and Scurria viridula) inhabiting these two contrasting localities were exposed to ocean
acidification experimental conditions representing the current pCO2 in the Chilean coast
(500 µatm) and the levels predicted for the year 2100 in upwelling zones (1500 (µatm).
Our results show that the responses to OA are species-specific, even in this related
species. Interestingly, S. viridula showed better performance under OA than S. zebrina
(i.e., similar sizes and carbonate content in individuals from both populations; lower
effects of acidification on the growth rate combined with a reduction of metabolism at
higher pCO2). Remarkably, these characteristics could explain this species’ success
in overstepping the biogeographical break in the area of Talcaruca, which S. zebrina
cannot achieve. Besides, the results show that the habitat factor has a strong influence
on some traits. For instance, individuals from Talcaruca presented a higher growth rate
plasticity index and lower shell dissolution rates in acidified conditions than those from
Los Molles. These results show that limpets from the variable environment tend to
display higher plasticity, buffering the physiological effects of OA compared with limpets
from the more stable environment. Taken together, these findings highlight the key role
of geographic variation in phenotypic plasticity to determine the vulnerability of calcifying
organisms to future scenarios of OA.

Keywords: phenotypic plasticity, pCO2, experimental mesocosm, calcifying marine organisms, geographical
variation, physiology, metabolism, mollusk phenotypic plasticity in response to ocean acidification
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INTRODUCTION

Ocean acidification (OA) is a process where increasing amounts
of anthropogenic CO2 from the atmosphere are being diluted into
the ocean, affecting its geochemical balance and decreasing its pH
and carbonate saturation state (�) (Gattuso et al., 2015; IPCC,
2019). These changes affect the shell and skeleton formation of
calcifying marine organisms (Riebesell et al., 2000; Orr et al.,
2005; Ramajo et al., 2016). Moreover, as calcification has a core
role controlling other processes such as growth, metabolism, and
internal pH regulation, OA could have ubiquitous effects in these
organisms (Pörtner and Farrell, 2008; Somero et al., 2016). In
this context, to have a better understanding of how calcifying
species are responding at the physiological and evolutionary
level, it is crucial to model the impacts of this aspect of global
change in marine ecosystems (Reusch, 2014; Sunday et al., 2014;
Fox et al., 2019). It is increasingly documented that the marine
animals’ responses to stressors such as ocean acidification can
vary widely among and within species (Duarte et al., 2015, Shaw
et al., 2016). Differential tolerance to environmental stressors
is partly due to the conditions to which the individuals have
been naturally exposed (Vargas et al., 2017), so it is important to
consider those conditions before the experiments to understand
the consequences of OA. Unfortunately, just a few investigations
have considered the influence of geographical (e.g., Lardies
et al., 2014; Gaitán-Espitia et al., 2017b; Broitman et al., 2018)
and temporal environmental variation (Frieder et al., 2014;
Eriander et al., 2015; Jarrold et al., 2017; Cornwall et al., 2018;
Johnson et al., 2019) as drivers of differences in phenotypic
plasticity or physiological responses among populations of
marine organisms under OA.

The upwelling system along the southeast Pacific coast brings
cold deep seawaters, rich in nutrients, and presents abnormalities
in the surface temperature that produces oversaturation of CO2
(Torres et al., 2011). The low pH of these waters shows a low
degree of calcium carbonate saturation (�aragonite/calcite < 1)
(Broitman et al., 2018), which makes this region particularly
prone to the effects of ocean acidification (OA) (Gruber et al.,
2012; Vargas et al., 2017; Broitman et al., 2018). Waters in this
naturally acidified coastal system can be corrosive and impact
the calcification and physiology of benthic organisms, such as
mollusks (Fabry et al., 2008; Ramajo et al., 2019). Thus, local
populations of benthic organisms inhabiting this region can
experience differences in upwelling regimens’ frequency and
intensity (Ramajo et al., 2020). Specifically, Punta Lengua de Vaca
(Talcaruca, Coquimbo region, 30◦S), which is the most active
wind-driven upwelling center along the Chilean coast (Rutllant
and Montecino, 2002; Rahn and Garreaud, 2014), and also
presents abnormalities in the surface temperature that produces
oversaturation of CO2 (Torres and Ampuero, 2009; Aravena
et al., 2014). This natural scenario gives a unique opportunity
to evaluate how the natural variability in the carbonate system
affects the phenotypical and physiological characteristics of
marine organisms (e.g., Lardies et al., 2017; Ramajo et al., 2019).

Phenotypic plasticity is defined as the capacity of a single
genotype to exhibit different phenotypes depending on the
environment (Schlichting and Pigliucci, 1998; Gianoli and

Valladares, 2012), and in a variable environment, the level of
plasticity can define the survival of a species or population
(Schlichting and Pigliucci, 1998; Sultan, 2004; Lardies et al.,
2014; Osores et al., 2017). Thus, in this study, it is hypothesized
that a population thriving in a more variable environment
will present higher phenotypic plasticity in physiological and
morphological traits in response to different pCO2, compared
to a population of the same species from a more stable
environment. To achieve this, two intertidal mollusk sister
species were used as study models, the limpets Scurria zebrina
and Scurria viridula. These species are common calcifying marine
organisms and two of the most abundant herbivores in the mid
rocky intertidal level, along the transitional biogeographic break
situated at the southeast Pacific coast (30–32◦S) (Espoz et al.,
2004; Aguilera et al., 2013, 2020). They are sister species (Espoz
et al., 2004) that share morphological traits (e.g., maximum size)
and habitat but have contrasting behavioral responses to heat
stress and predators (Espoz and Castilla, 2000, Broitman et al.,
2018; Aguilera et al., 2020). Furthermore, it has been recently
reported that these species show metabolic and growth plasticity
in response to environmental changes (Aguilera et al., 2018;
Broitman et al., 2018). We compared the plastic phenotypic
responses between populations of these two species, inhabiting
the aforementioned zone of Punta Lengua de Vaca, Talcaruca
(where the rear and leading edges of the two sister species overlap;
Aguilera et al., 2020), and an adjacent area, with more stable
environmental conditions (Los Molles, northern Chile). Firstly,
the relationship between shell length and calcium carbonate
content was calculated in field specimens. Then, individuals
from both populations were exposed to mesocosms representing
the current pCO2 in the Chilean coast (500 µatm) and the
levels predicted for the year 2100 in upwelling zones (1500
(µatm) (Vargas et al., 2017). In these experimental conditions,
the carbonate content, metabolism, and physiological traits
such as hemocyanin content and growth rate were recorded in
both populations.

MATERIALS AND METHODS

Study Sites
Individuals of Scurria zebrina and Scurria viridula were
collected from different populations in the upwelling center
(i.e., biogeographic break) and in a near zone without the
influence of semi-permanent upwelling in the northern-central
Chilean coast (Figure 1): Talcaruca (30◦ 29′ S, 71◦41′ W)
and Los Molles (32◦ 24′ S, 71◦ 50′W), respectively. These
sites are characterized by different variability in upwelling
dynamics and the physical-chemical characteristics of coastal
waters (Torres et al., 2011; Aravena et al., 2014; Vargas et al.,
2017; Broitman et al., 2018). The environmental variables
(i.e., temperature and salinity) and seawater carbonate system
parameters were measured in the intertidal zone (see below
and Table 1). For the temperature measurements, submersible
temperature data loggers (HOBO R©, Onset Computer Corp., MA,
United States) were installed, housed inside PVC pipes embedded
in concrete blocks, and deployed at the mid-intertidal level.
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FIGURE 1 | Location of the study sites localized near the upwelling center Punta Lengua de Vaca around 30◦S on the Chilean coast. Map of the study sites
(Talcaruca and Los Molles) in north-central Chile and their relation to the South America map. The distribution of both species is that reported in Aguilera et al.
(2020), and it is indicated here with a red (Scurria viridula) or blue (S. zebrina) arrow. The distribution overlap zone for both species is marked with dashed lines.
A representative photograph of both species also shows S. viridula in a red square and S. zebrina in a blue one.

The loggers recorded the ocean temperature data every 30 min,
which was downloaded on a monthly or seasonal schedule;
see details in Gaitán-Espitia et al. (2017a). Using the same
methodology and time-frequency described above, we anchored
conductivity dataloggers (HOBO U24-001 Conductivity Data
Logger, ONSET R©) to determine salinity in the intertidal zone
(∼1 m below the seawater surface at the mid-intertidal). The
pH in the field was measured biweekly for 2 years using a
Metrohm 713 Meter (Metrohm R©) connected to a combined
electrode (Metrohm R© model 6.0219.100) previously calibrated
with the Metrohm R© pH 4 (6.2307.200), pH 7 (6.2307.210), and pH
9 (6.2307.220) standard buffers. The pH values are reported on
the NBS scale. Furthermore, seawater samples were taken with a
biweekly frequency (for 2 years) to measure Total Alkalinity (TA)
as described later. Given this information, we proceed to estimate
carbonate system parameters (see below for details of estimation)
in both localities.

Animal Collection and Maintenance
Firstly, 24–30 individuals were collected during low tide from
each species and population. These individuals were transported
in coolers to the laboratory and then measured to determine the
relationship between shell length and calcium carbonate content.

Subsequently, 40 individuals from each species were collected
during low tide from each locality in the spring-summer season
and were subjected to pCO2 manipulation in experimental

mesocosms as described below. The experimental design is
detailed in Supplementary Figure 1. In the laboratory, the
limpets were maintained in aquariums with seawater and
each individual was marked and identified with bee tags

TABLE 1 | Summary of salinity and seawater carbonate chemistry variables
measured in two study locations.

Parameter Locality

30◦ 29’ S Talcaruca 32◦ 24’ S Los Molles

Salinity 33.50 ± 0.30 33.31 ± 0.22

PHNBS (mol) 7.93 ± 0.28 8.07 ± 0.14

TA (µmol Kg−1) 2281.67 ± 96.48 2237.25 ± 25.62

CO3
−2 (µmol Kg−1) 126.60 ± 38.71 155.26 ± 39.16

PCO2 (µatm) 580.05 ± 463.98 386.07 ± 192.48

�calcite 2.83 ± 0.92 3.74 ± 0.73

�aragonite 1.82 ± 0.59 2.40 ± 0.42

SST (◦C) 13.20 (8.4, 15.8) 14.24 (10.8, 16.4)

CV SST (%) 24.00 17.33

Mean ± SD during 2019 and 2020, the temperature information includes the
annual average of the Sea Surface Temperature (SST) during the same periods.
The minimum and maximum temperatures are shown between parentheses. Other
parameters are total alkalinity (TA), carbonate (CO3

−2), the partial pressure of CO2
(pCO2), saturation states for aragonite �Aragonite, and saturation states for calcite
�Calcite.

Frontiers in Marine Science | www.frontiersin.org 3 May 2021 | Volume 8 | Article 647087

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-647087 April 28, 2021 Time: 14:20 # 4

Lardies et al. Phenotypic Plasticity to Ocean Acidification

(Beeworks©) glued to the rear zone of the shell. The seawater
for the aquariums was obtained from Quintay (33◦11′S; 71◦1′W,
Valparaíso Region), and the animals were maintained with a
salinity of 33 ppm and 14 ± 1◦C (using a water bath SunSun)
for 14 days of acclimation. Limpets were assigned to two different
pH treatments: pCO2; 500 µatm (7.9 pH), and 1500 µatm (7.5
pH), having four aquariums per treatment for each population
in both species (16 aquariums in each limpet species). Each
aquarium had four to five individuals from each species. The
phenotypic traits were measured after 15 days in each treatment,
and the limpets were moved to the other treatment for the next
15 days. Limpets were assigned randomly to different treatments
and fed with Ulva spp. three times a week. The frame time
of 15 days was chosen because the ecosystem influenced by
upwelling systems, specifically in Punta Lengua de Vaca, shows
that natural scales of variation in environmental variables (i.e.,
pH, pCO2, and temperature) have an average duration of 13 days
during upwelling activation (see Ramajo et al., 2019).

Experimental Mesocosms and
Carbonate System Parameters
The pCO2 was achieved in experimental mesocosms as described
in Torres et al. (2013) and Benítez et al. (2018). In brief,
500 µatm and 1500 µatm were obtained by pumping dry air
and pure CO2 until the target was achieved using a mass flow
controller (MFC, Aalborg, model GFC) as described in Benítez
et al. (2017; 2018). The air injected into the air MFC controller
was previously dried using a drierite desiccant column (W. H.
Hammond Drierite Co), filtered, and the CO2 was extracted using
a soda-lime column. The pH, salinity, and temperature were
controlled daily. Treatment conditions in the aquariums were
maintained bubbling with the corresponding CO2 concentration.
Total or partial water changes were performed according to
the registered pH. The pH samples were collected in 50 mL
syringes and immediately transferred to a 25 mL temperature-
controlled cell maintained at 25.0 ± 0.1◦C for standardization.
The pH was measured each day using a Metrohm 713 Meter
(Metrohm) R© connected to a combined electrode (Metrohm R©

model 6.0219.100) previously calibrated with the Metrohm R© pH 4
(6.2307.200), pH 7 (6.2307.210), and pH 9 (6.2307.220) standard
buffers. The pH values are reported on the NBS scale.

Samples for Total Alkalinity (TA) were poisoned using
HgCl250 µL, and the bottles (Pyrex R©, Corning) were sealed
using parafilm. Then, TA was determined using the open-cell
titration method (Dickson et al., 2007) using an automatic
alkalinity titrator (Model AS-ALK2, Apollo SciTech) equipped
with a combination pH electrode (8102BNUWP, Thermo Fisher
Scientific) and temperature probe (Star ATC, Thermo Fisher
Scientific) connected to a pH meter (Orion Star A211, Thermo
Fisher Scientific). All samples were analyzed at 25◦C (± 0.1◦C),
and the temperature was regulated using a water bath (Lab
Companion CW-05G). Accuracy was controlled using certified
reference material (CRM, supplied by A. Dickson, University
California San Diego), and the TA repeatability was 2 to 3
µmol kg−1 on average. Temperature, salinity, pH, and TA data
were used to calculate the carbonate system parameters (pCO2,

CO3
2−). To achieve this, analyses were performed using CO2SYS

software in MS Excel (Pierrot et al., 2006) set with Mehrbach
solubility constants (Mehrbach et al., 1973) refitted by Dickson
and Millero (1987). The carbonate systems in the mesocosms for
both localities are listed in Supplementary Tables 1, 2.

Physiological and Metabolic
Measurements
Calcium carbonate content (net calcification) of the limpets was
estimated from changes in their buoyant weight (i.e., underwater
weight) and verified with the dry weight measurements of
the shells (Palmer, 1982). All the weight measurements were
conducted using an analytical balance (Shimadzu AUX220). For
the field samples, the calcium carbonate content and shell length
were analyzed immediately once they arrived in the laboratory,
under controlled conditions in seawater parameters (see above).
For the individuals in the mesocosm, estimations were made on
day 0 (at the beginning of the experiment) and at the end of a 15-
days period exposition to each treatment. Shell dissolution rates,
in turn, were estimated by weighing 2–3 empty shells of limpets
(per treatment) at the beginning and the end of the experiment
(see Duarte et al., 2015). The inorganic material content was
calculated by putting the shells in a furnace (Vulcan model A-
550) for 4 h at 450–550◦C and weighing the remainder with an
analytical balance.

Growth rates were estimated from changes in the total
body weight (to the nearest 0.0001 g) of the limpets and
expressed as a daily rate of increase. Before oxygen uptake
measurements, all individuals were kept under starvation for
24 h in their specific experimental conditions (i.e., pCO2
concentration, temperature, salinity, and photoperiod). Then,
limpets were placed individually into a closed respirometric
chamber (113 mL), filled with filtered seawater from the
corresponding pCO2 treatment. Once sealed, the chambers
were placed into a tank with seawater at 14◦C controlled
by a chiller. Oxygen consumption rates were measured using
a fiber-optic oxygen optode connected to a PreSens Microx
TX3 temperature compensated oxygen meter (Precision Sensing,
GmbH, Regensburg, Germany) with a tip diameter of 140 mm.
Oxygen partial pressure measurements were run for at least
60 min and were never allowed to decrease below 85% O2
saturation to avoid animals experiencing hypoxia. The first
10 min and the last 5 min of determinations were eliminated
to avoid possible disturbances caused by the stress of animal
manipulation. Oxygen consumption values were expressed as O2
mg h1g−1. Metabolic and growth rates were calculated for at least
8 individuals from each population and species in each treatment.

Hemocyanin content was analyzed as described in Pascual
et al. (2003), extracting 10 µL of hemolymph from the foot using
a hypodermic syringe with EDTA anticoagulant solution and
quantifying in a spectrophotometer (GeneQuant 1300 Healthcare
BioSciences) at 325 nm and using the equation:

Hemocyanin concentration (Hc) = (Absorbance/extinction
coefficient) x dilution factor.

The phenotypic plasticity index (PImd) was calculated as
indicated in Valladares et al. (2006) for the metabolic and growth
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rate traits. Briefly, it was estimated comparing each species
and population separately, considering the maximum medians
(absolute values) as follows:

PImd = [(| Medianmax|−| Medianmin|)/| Medianmax|] x 100.

Statistical Analyses
All data analyses were performed using GraphPad Prism version
8.4.3, GraphPad Software, San Diego, CA, United States. A simple
linear regression was used to describe the relationship between
the length (L) of the individuals and the carbonate content (CC)
in each species from each population using data from at least 24
individuals per treatment. The slopes were compared between
each population. Metabolism, growth rate, and hemocyanin
content were compared using a two-way ANOVA with pCO2
and population as fixed factors, and a posteriori Sidak’s multiple
comparisons test. Data were previously evaluated for normality
using the Kolmogorov-Smirnov test and heteroscedasticity with
the Spearman’s test.

RESULTS

Environmental Conditions in Localities
and Their Relationship With the
Carbonate Content of Both Scurria
Species
Sea Surface Temperature (SST) in Los Molles presents an annual
media of 14.24◦C, with an annual maximum of 16.40◦C and a
minimum of 10.80◦C (see Table 1). On the other hand, Talcaruca
has an annual media of 13.20◦C, with an annual maximum of
16.8 ◦C and a minimum of 8.40◦C; the coefficient of variation was
38% higher in Talcaruca than in Los Molles (Table 1). Seawater
carbonate chemistry parameters in samples collected from the
field varied highly among study sites (Table 1). The highest and
more variable levels of pCO2 were observed in Talcaruca (870
± 312.9 µmol/Kg), while a pCO2 of 458 ± 141.4 (µmol/Kg)
was observed in Los Molles. Talcaruca also exhibited lower pH
values than Los Molles (7.93± 0.43 vs. 8.08 ± 0.11, respectively).
The saturation states for calcite (Calcite) and aragonite (�Aragonite)
were 27.14 and 22.5% lower in Talcaruca than in Los Molles,
respectively. Salinity and TA (Total Alkalinity) presented similar
values in both sites (see Table 1).

In order to analyze how the locality affects the ratio carbonate
content/shell length, a simple linear regression was performed
comparing these parameters in each species (Figure 2). In the
case of S. zebrina, slopes were significantly different from zero
(Talcaruca: CC = 0.1006∗L - 1.330; F(1,22) = 6.69, p = 0,0168 and
Los Molles: CC = 0,3819∗L - 8,354; F1,28 = 147.8, p < 0.0001).
Furthermore, slopes were significantly different between both
populations (F1,50 = 29.39, p < 0.00001) (Figure 2A). In
Talcaruca, individuals presented more variability, and the
maximum values of calcium carbonate were lower than in
Los Molles (Figure 2A). For S. viridula, slopes were also
significantly different from zero (Talcaruca: CC = 0.2418∗L -
- 4.990; F1,25=160.3, p < 0.0001 and Los Molles: CC = 0,2811∗L
- 5,566; F1,24=90.8, p < 0.0001). In this case, slopes from

both populations were not significantly different (F1,50=1.26,
p = 0.2671), and a similar variability was observed in both
populations (Figure 2B).

pCO2 Effects in Growth and
Physiological Traits of Two Different
Scurria Species
To understand how contrasting pCO2 levels could induce
different effects in the metabolism of the populations of
Talcaruca and Los Molles, two mesocosms were installed to
reach 500 and 1500 µatm of CO2. The carbonate systems in
the experimental mesocosm for Talcaruca and Los Molles are
detailed in Supplementary Tables 1, 2, respectively. Interestingly,
in both species, individuals of Talcaruca showed more variability
and a higher mean in metabolic rate in both conditions
than those from Los Molles (Figure 3). Two-way ANOVA
analyses were performed considering the pCO2 and population
as factors. For S. zebrina, metabolic rates were not significantly
different between pCO2 treatments (Figure 3A; F1,36 = 0.34,
p = 0.56), however, the mean metabolic rates and variation of
the populations from Talcaruca were higher than those from Los
Molles, regardless of pCO2 treatment (Figure 3A; population
factor F1,36 = 11.97, p = 0.0014). Additionally, a significant
effect was observed at 1500 µatm of CO2 between the two
populations (p = 0.023). A similar pattern was observed in
S. viridula, where both the pCO2 and population factors had
significant effects on the metabolic rate (F1,30 = 4.7, p = 0.037; and
F1,30 = 11.36, p = 0.0021, respectively). Again, a significant effect
was observed at 1500 µatm of CO2 between the two populations
(p = 0.0229) (Figure 3B). The phenotypic plasticity index (PImd)
was compared between the pCO2 treatments in each species and
population. For S. zebrina, this index for metabolism was higher
(12.14%) in Talcaruca than in Los Molles (5.9%). The opposite
pattern was observed in S. viridula, where the PImd was higher in
Los Molles (89%) than in Talcaruca (43%).

Growth rates were also analyzed with two-way ANOVA (pCO2
and population as factors), finding no significant effects of the
interaction, both in S. zebrina (Figure 4A) and S. viridula
(Figure 4B) (F1,33 = 1.28, p = 0.26, and F1,28 = 0.35, p = 0.55,
respectively). Alike, no significant effects were detected for the
pCO2 or population factors in both species (Figures 4A,B). PImd
for growth rates was higher for both species in Talcaruca than in
Los Molles, 39.9% versus 12.9% in S. Zebrina, respectively; and
91% versus 75.6% for S. viridula, respectively.

The differences in the dissolution rate of shells belonging to
the two different populations were measured, finding that the
highest dissolution rate was observed at 1500 µatm for the shells
from Los Molles in both species, S. zebrina (Figure 5A) and
S. viridula (Figure 5B).

Finally, the hemocyanin content did not show significant
differences between populations and treatments, but a higher
concentration of hemocyanin in S. viridula (Figure 6B) than in
S. zebrina was observed (Figure 6). Additionally, both species
presented a different pattern regarding the population, where
S. zebrina showed a higher value when coming from Los Molles
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FIGURE 2 | Carbonate content in populations of two congeneric Scurria species. Simple linear regressions (lines) of length and calcium carbonate (Log10

transformed) in S. zebrina (A) and S. viridula (B) from two different localities, Talcaruca (empty circle), and Los Molles (black square). Each dot represents one
organism.

(Figure 6A), and S. viridula presented higher values when
coming from Talcaruca (Figure 6B).

DISCUSSION

Phenotypic plasticity is a primary way by which organisms
respond to environmental variability, including those imposed
by global change (Bonamour et al., 2019), and phenotypic
changes registered in natural populations have been correlated
with climate change (Charmantier et al., 2008; Reusch, 2014).
Still, the distinction between genetically or plasticity-based
changes is not always provided (Merilä and Hendry, 2014).
Here we combined field characterizations with experimental
approaches to analyze the metabolic and physiological responses
of two populations from contrasting environments, using two
congeneric species of limpets.

Both study sites, despite being separated on a small
spatial scale (i.e., approximately 200 km), differ abruptly

in their environmental conditions. These differences were
mainly due to the semi-permanent upwelling center at Punta
Lengua de Vaca, which is localized on the coast of Talcaruca
(Torres et al., 2011; Lardies et al., 2017; Broitman et al., 2018).
Temperatures near the coast in Talcaruca are influenced
by prolonged cold events associated with upwelling; these
factors are important since such changes could affect the
dynamics and structure of ecological communities (Aravena
et al., 2014; Broitman et al., 2018). Our results indicate that
the salinity levels in both locations were similar, whereas
the temperature, pH, and carbonate system parameters
(i.e., states of saturation of aragonite and calcite) showed
abrupt spatial variation, characterizing this coastal zone
as highly patchy in terms of temperature and carbonate
system parameters.

Most experimental studies reveal that growth rates and
calcification are negatively affected under OA conditions in
a wide range of taxa (Hofmann et al., 2010; Kroeker et al.,
2013; Duarte et al., 2015; Bednarsek et al., 2019). Although,
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FIGURE 3 | pCO2 effects on the metabolic rate of two different Scurria species. Box and whiskers plot representing the metabolic rate of S. zebrina (A) and
S. viridula (B) under 500 or 1500 µatm of CO2. Data from Talcaruca is presented in white and from Los Molles in black. The boxes represent the interquartile range,
while the inner line indicates the median value, and the vertical lines represent the maximum and minimum values. Asterisks represent statistical differences (Two-way
ANOVA and Sidak multiple comparison test, p < 0.01).

FIGURE 4 | pCO2 effects on the growth rate of two different Scurria species. Box and whiskers plot representing the growth rate of S. zebrina (A) and S. viridula (B)
under 500 or 1500 µatm of CO2. Data from Talcaruca is presented in white and from Los Molles in black. The boxes represent the interquartile range, while the inner
line indicates the median value, and the vertical lines represent the maximum and minimum values.

a few studies show positive effects on growth (e.g., Wood
et al., 2008; Findlay et al., 2009; Gutowska et al., 2010;
Lardies et al., 2017) and calcification rates (Wood et al., 2008;
Ries et al., 2009; Lagos et al., 2016). This suggests that the

effects of OA on shell growth and carbonate precipitation are
species-specific (Ries et al., 2009; Kroeker et al., 2013), and that
carbonate layers can develop at low pH and under subsaturation
conditions, namely below the threshold of �aragonite = 1
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FIGURE 5 | pCO2 effects on the dissolution rates of two different Scurria species. Bars represent the mean and the standard error mean in the dissolution rates of
S. zebrina (A) and S. viridula (B) under 500 or 1500 µatm of CO2. Data from Talcaruca is presented in white and from Los Molles in black.

FIGURE 6 | pCO2 effects on the hemocyanin content of two different Scurria species. Bars represent the mean and the standard error mean in the hemocyanin
content of S. zebrina (A) and S. viridula (B) under 500 or 1500 µatm of CO2. Data from Talcaruca is presented in white and from Los Molles in black.

proposed in other studies (Findlay et al., 2011). OA affects
the pH in body fluids, such as the extrapallial fluid, affecting
calcification and shell structures (see Cohen and Holcomb, 2009;
Ries, 2011).

In general, we observed that the changes in phenotypic
traits in scenarios of ocean acidification correlated with the

environmental variability experienced in the native habitat of
the populations. The shells’ carbonate content showed higher
variability in S. zebrina individuals from Talcaruca than those
from Los Molles, and some individuals from Los Molles reached
larger body sizes. Interestingly, this correlates with the fact
that S. zebrina is on the edge of its range in Talcaruca, where
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the species has a north endpoint of distribution and is not
able to overstep this biogeographic break of the Chilean coast
(Espoz et al., 2004; Rivadeneira and Fernaìndez, 2005; Aguilera
et al., 2020). On the other hand, S. viridula showed a similar
carbonate content/size relation in the two analyzed populations
(see Figure 2B). In smaller individuals, higher quantities of
carbonate content were observed in those individuals from
Talcaruca, but the individuals of greater sizes showed similar
carbon content ratios, and interestingly, similar maximum sizes
were detected in both localities. This indicates that S. viridula
can compensate the effects of this variable environment along
its ontogeny, in terms of growth rate and calcification, and
consequently surpass the biogeographic break of the Talcaruca
site, extending its distributional range to the northern coast (see
Aguilera et al., 2013). Growth rates estimated in experimental
mesocosm did not significantly differ among populations. Still,
data were less variable in S. viridula than in S. zebrina (see
Figures 4A, B, respectively) and S. viridula seems to be less
affected in the acidified conditions than the control, both in the
population of Talcaruca and in Los Molles. Greater differences in
phenotypic plasticity between populations have been implicated
as key contributors to persistence under challenging or new
environmental conditions, especially under ocean acidification
(Murren et al., 2014). The degree of phenotypic plasticity can
vary greatly between related species (Gibbin et al., 2017; Hattich
et al., 2017), as was registered in S. viridula and S. zebrina,
and can be influenced by the spatial differentiation of the niche
or even by competition (Broitman et al., 2018; Aguilera et al.,
2020). This is even more relevant for these species, which
thrive in areas with semi-permanent upwelling, generating higher
physiological demand, particularly in larval stages (Doney et al.,
2012). On the other hand, the intertidal zone already exhibits
considerable variability in pH (Hofmann et al., 2011; Jellison
et al., 2016) and temperature (Aravena et al., 2014; Helmuth
et al., 2016), but ocean acidification and ocean warming are likely
to result in greater intertidal zone extremes in temperature and
pH in the future (Solomon et al., 2007; Paganini et al., 2014),
which could add significant physiological stress on intertidal
marine fauna. In this sense, our experimental setup where
limpets were submerged during the period of acclimation and
experimental could be underestimating the effects of OA in
physiological process compared with variability experienced in
their natural habitat. In this sense, in our experimental setup,
limpets were submerged and not exposed to intertidal cycles,
which could cause an underestimation of the effects of OA in
the physiological processes in their natural habitat. Despite this,
as both populations were exposed to the same conditions, our
experimental setting allowed us to detect differences in their
plastic responses (see also Broitman et al., 2018).

The pattern of energy usage of an organism is reflected
in energy expenditure measurements, the most common being
the rate of metabolism. Furthermore, physiological variation
within an individual’s life history can have profound implications
for fitness (Lardies and Bozinovic, 2006; Koop et al., 2011;
Ramajo et al., 2020). Increasing evidence suggests that organisms
associated with environments that naturally present high pCO2

levels may have physiological and metabolic adaptations and
consequently be better acclimatized to ocean acidification (e.g.,
Duarte et al., 2015; Calosi et al., 2017; Vargas et al., 2017;
Ramajo et al., 2019). Biomineralization in calcifying organisms is
a highly regulated and potentially energy-demanding biological
process (Sokolova et al., 2012); therefore, organisms exposed to
hypercapnic conditions face higher energy demands to supply
processes that are vital for the maintenance of cellular and
extracellular homeostasis and/or maintenance of calcareous
integrity (Stumpp et al., 2011). It has been shown that low pH
and the associated reduction in carbonate ion availability can
affect multiple physiological pathways in bivalves, beginning with
calcification (Gobler et al., 2014). Concordantly, experiments
carried out with Mytilus edulis exposed to acidic conditions
responded with higher metabolic rates at the expense of a
decrease in calcification and growth rates (Thomsen et al., 2010).
Nevertheless, Milano et al. (2016) suggest that organisms react
differently to acidified waters and that different responses may
depend on the specific capacities of organisms to regulate their
internal pH (Ries et al., 2009; Gutowska et al., 2010). Here,
we found that the metabolic rate was highly dependent on the
population habitat, but in general, was lower in Los Molles
than in Talcaruca (Figure 3). When individuals were exposed to
acidification, those of S. zebrina maintained or even increased
their metabolic rate, whereas the individuals of S. viridula were
more likely to decrease their metabolic rate at higher pCO2 levels.

Besides, the shell dissolution rate was lower for both species
in limpets from the Talcaruca population, and especially in
S. viridula, the shells were more resistant to dissolution.
Comparable results have been reported in other studies of
mollusks from estuarine and upwelling zones (e.g. Duarte et al.,
2015; Lagos et al., 2016; Lardies et al., 2017; Ramajo et al., 2020),
and also in other mussel species that appear resilient to elevated
pCO2 (e.g., Thomsen and Melzner, 2010; Mackenzie et al., 2014;
Clements et al., 2018). However, the changes in empty shell
weight were used as a proxy of shell dissolution but must be
interpreted with caution, given the role of organic layers such as
the shell periostracum protecting live animals from dissolution
(Tunnicliffe et al., 2009; Nienhuis et al., 2010).

Hemocyanins in the hemolymph of marine invertebrates are
functional analogs of the hemoglobin present in vertebrates
and exhibit cooperativity in their oxygen-binding properties and
allosteric regulation to efficiently uptake and deliver oxygen
under physiological conditions (Taylor et al., 1995; Birk et al.,
2018). The results obtained showed no significant differences
in the hemocyanin content among treatments. Despite this, it
is important to note that S. viridula individuals from Talcaruca
could produce a higher concentration of hemocyanin at higher
levels of pCO2, compared to those from Los Molles (see
Figure 6B), which is consistent with the levels of oxygen
consumption recorded during the experiment (Figure 3B).

We observed contrasting phenotypic responses between the
populations of S. zebrina and S. viridula, across the biogeographic
boundary where their geographic distributions overlap; therefore,
local environmental conditions are key in the maintenance of
coastal marine patterns of distributional ranges. Nevertheless,
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it is worth mentioning that there is an inherent limitation in
scope between the time-scale of the incubation period considered
in our study (i.e., 15 days) with the scales at which natural
variation occurs, and the projected event of OA will take place
in nature. Nevertheless, an ecosystem influenced by an upwelling
system, specifically on Punta Lengua de Vaca, shows that natural
scales of variation in environmental variables (i.e., pH, pCO2,
and temperature) have an average duration of 13.8 days during
upwelling activation (see Ramajo et al., 2019). Despite these
discrepancies, such experiments provide insights into stressor
tolerance and adaptation levels, mainly because the rates of
acclimation to hypercapnia have been reported to occur especially
fast in some marine invertebrates (Widdicombe and Spicer, 2008;
Calosi et al., 2013; Ramajo et al., 2019). Then, it is probable that
the observed differences in studied physiological traits are the
end-product of local adaptation.

Taken together, our results from the field and laboratory
analyses show that responses to OA are species-specific, even
in this related species. Interestingly, S. viridula showed better
performance under OA than S. zebrina (i.e., similar sizes and
carbonate content in individuals from both populations; lower
effects of acidification on the growth rate combined with a
reduction of metabolism at higher pCO2). Interestingly, these
characteristics could explain this species’ success in overstepping
the biogeographical break of Talcaruca, which S. zebrina cannot
achieve. Additionally, the results show that the habitat factor
has a strong influence on some traits. For instance, individuals
from Talcaruca presented a higher growth rate plasticity index
than those from Los Molles. Although we cannot conclude
(within the experimental frame time) that this higher plasticity
is associated with a higher fitness or performance, the literature
indicates that this could be related to the maintenance of
the physiological performance in individuals exposed to acidic
waters (Osores et al., 2017; Ramajo et al., 2020). According to
the literature, differences in populations’ metabolic responses
might be related to their aerobic capacity as an adaptation
to different habitats (Clarke and Fraser, 2004; Watson et al.,
2014). Therefore, compared populations that occupy more stable
environments (Los Molles) with populations that inhabit more
variable environments appear to be more tolerant to extreme
acute acidification events because of their higher metabolic limits
(Osores et al., 2017; Jahnsen-Guzmán et al., 2020; Kurihara et al.,
2020). However, many studies indicate that these populations
may be at higher risk because of the adverse effects of chronic
exposure to acidification, where higher metabolic costs may
imply trade-offs (i.e., a decrease in calcification) (Lannig et al.,
2010; Lagos et al., 2016; Osores et al., 2017). Thereby, this work

highlights the relevance of incorporating the biogeographical
dimension to have a better understanding of the environmental
challenges that the marine organisms are already facing and
brings insights to model the future effects of OA in different
populations and species.
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