
fmars-07-611497 December 22, 2020 Time: 12:17 # 1

ORIGINAL RESEARCH
published: 22 December 2020

doi: 10.3389/fmars.2020.611497

Edited by:
Kyung-Hoon Shin,

Hanyang University, South Korea

Reviewed by:
J. German Rodriguez,

Technological Center Expert in Marine
and Food Innovation (AZTI), Spain

Bum Soo Park,
University of Texas at Austin,

United States

*Correspondence:
Eyal Rahav

eyal.rahav@ocean.org.il;
eyalrahav@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Marine Pollution,
a section of the journal

Frontiers in Marine Science

Received: 29 September 2020
Accepted: 30 November 2020
Published: 22 December 2020

Citation:
Rahav E, Raveh O,

Yanuka-Golub K, Belkin N,
Astrahan P, Maayani M, Tsumi N,
Kiro Y, Herut B, Silverman J and

Angel DL (2020) Nitrate-Enrichment
Structures Phytoplankton

Communities in the Shallow Eastern
Mediterranean Coastal Waters.

Front. Mar. Sci. 7:611497.
doi: 10.3389/fmars.2020.611497

Nitrate-Enrichment Structures
Phytoplankton Communities in the
Shallow Eastern Mediterranean
Coastal Waters
Eyal Rahav1*†, Ofrat Raveh1,2†, Keren Yanuka-Golub3, Natalia Belkin1, Peleg Astrahan1,
Meor Maayani3, Noam Tsumi3, Yael Kiro3, Barak Herut1,2, Jacob Silverman1 and
Dror L. Angel2

1 Israel Oceanographic and Limnological Research, Haifa, Israel, 2 Leon H. Charney School of Marine Sciences, The Leon
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Submarine groundwater discharge (SGD) has been shown to be an important source
of nutrients in coastal environments, especially nitrogen and silica, and thereby relive
nutrient limitation to phytoplankton. Here, we followed autotrophic microbial biomass,
activity, and community composition at a site strongly influenced by SGD and a nearby
nutrients-poor reference site at the oligotrophic Israeli shallow rocky coast [southeastern
Mediterranean Sea (SEMS)] between 2011 and 2019. The surface water at the SGD-
affected area had significantly higher NO3 + NO2 (∼10-fold) and Si(OH)4 (∼2-fold)
levels compared to the reference site, while no significant differences were observed for
PO4 or NH4. This resulted in a significant increase in algae biomass (∼3.5-fold), which
was attributed to elevated Synechococcus (∼3.5-fold) and picoeukaryotes (∼2-fold) at
the SGD-affected site, and in elevated primary production rates (∼2.5-fold). Contrary
to most SGD-affected coastal areas, diatoms biomass remained unchanged between
sites, despite the elevated N and Si, suggesting the dominance of picophytoplankton
over microphytoplankton at the SEMS. DNA sequencing of the 16S and 18S rDNA
supported these findings. These results highlight the influence of SGD on shallow-water
microbial populations. Our observations are consistent with recent studies showing
that phytoplankton along the Israeli coast are likely nitrogen + silica limited, and may
have important ecological and regulatory implications for environmental policy and
management of coastal aquifers.

Keywords: submarine groundwater discharge, nitrate enrichment, chlorophyll-a, phytoplankton, primary
production, Eastern Mediterranean Sea

INTRODUCTION

The southeastern Mediterranean Sea (SEMS) is an impoverished environment (Siokou-Frangou
et al., 2010; Berman-Frank and Rahav, 2012). Phytoplankton are mainly inorganic nitrogen and
phosphorus co-limited (Kress et al., 2005; Zohary et al., 2005), while heterotrophic bacteria
are limited by PO4 (Tanaka et al., 2007; Tsiola et al., 2016) or by dissolved organic carbon
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(Hazan et al., 2018; Rahav et al., 2019). Consequently,
phytoplankton biomass is low and dominated mostly by
cyanobacterial species (Mella-Flores et al., 2011; Rahav et al.,
2013; Hazan et al., 2018) and the annual primary productivity
rates are among the lowest in the world (Psarra et al., 2000;
Siokou-Frangou et al., 2010; Berman-Frank and Rahav,
2012). Contrary to the offshore regions in the SEMS, higher
nutrient levels are often observed in nearshore areas (Herut
et al., 2000a; Kress et al., 2019), which may lead to higher
phytoplankton/bacterial biomass and activity (Raveh et al., 2015;
Rahav et al., 2018b), with different nutrient limitations (Rahav
et al., 2016a, 2018b; Sisma-Ventura and Rahav, 2019). Nutrient
enrichment of coastal waters occurs through inputs from
estuaries (Herut et al., 2000b; Kress and Herut, 2001) and other
coastal streams (Krom et al., 2014), sporadic terrestrial runoff
(Rahav and Bar-Zeev, 2017), aerosol deposition (Rahav et al.,
2016b, 2018a), and other anthropogenic inputs (Belkin et al.,
2017; Frank et al., 2019; Raveh et al., 2019), as well as submarine
groundwater discharge (SGD) (Garcés et al., 2011; Weinstein
et al., 2011; Rodellas et al., 2015). Among these external nutrient
inputs, the effect of SGD on phytoplankton biomass/activity has
been far less studied in Israel coastal waters (SEMS), despite
being a potentially important source of nutrients (Weinstein
et al., 2011). SGD is enriched in allochthonous nutrients (e.g.,
nitrogen, phosphorous, and silica) and micronutrients (e.g.,
iron, nickel, and zinc) (Lecher and Mackey, 2018; Wang et al.,
2018). A previous study demonstrated that the yearly N, P, and
Si inputs from SGD to the Mediterranean Sea is comparable to
riverine and atmospheric inputs combined (Rodellas et al., 2015),
suggesting this process may have a significant impact on primary
production in coastal waters.

In ultra-oligotrophic regimes, such as the SEMS, external
inputs of limiting nutrients from SGD or other sources may
greatly affect phytoplankton and bacterial communities, as well
as the specific interactions between them. This is especially true
given that recent studies demonstrated that N and Si additions
(either as pure nutrients or as well-amelioration brines) may lead
to cyanobacterial and phytoplankton proliferation in the SEMS
coast (Rahav et al., 2018b; Raveh et al., 2019). This suggests that
SGD, which is also rich in these compounds, is likely to lead to
similar responses.

The aim of this study was to investigate the in situ
responses of autotrophic microbial populations to nutrient
enrichment by SGD at shallow rocky coastal water sites in
the SEMS. Rocky shores are “biological hotspots” comprising
∼33% of the Israeli coast (Rilov, 2016), and are therefore
of great ecological value. Surface waters from two rocky-
shore sites; Achziv (highly affected by SGD; Weinstein et al.,
2011; Paldor et al., 2019) and Tel-Shikmona (an oligotrophic
environment with little SGD input) were sampled between 2013
and 2016. Inorganic nutrient concentrations, phytoplankton
biomass, phytoplankton taxonomic identification, and primary
production were recorded for the purpose of a comparison
among these two sites. Additional “background” characterization
of the sites included total alkalinity (TA) and inorganic nutrient
measurements that were carried out monthly, from 2011 to 2019
at these two sites by the Israeli National Monitoring Program

in Mediterranean waters (Herut et al., 2020). These time series
were used to demonstrate the difference in surface seawater
chemical signatures of SGD inputs in similar proximity to the
shoreline at both sites.

MATERIALS AND METHODS

Sampling Design
Surface seawater samples (∼0.5 m) were collected from two
coastal sites along the northern Israeli shore; Tel-Shikmona
(Lat. 32◦ 49′34 N, Lon. 34◦ 57′20 E) and Achziv (Lat.
33◦ 3′52 N, Lon. 35◦ 6′14.94 E) by diving (Figure 1).
Water chemistry (NO2 + NO3, Si(OH)4, PO4, and TA) was
measured at the edge of the rocky shore in Achziv and Tel
Shikmona on a monthly basis during the period 2011–2019
by the Israeli National Monitoring Program of Mediterranean
waters. Together with measurements of salinity and NOx that
were measured in May-June 2005 we were able to pinpoint
the intensified nitrate-rich SGD location in Achziv and to
choose an apparently less enriched site in Tel-Shikmona
(Figure 1). Finally, dedicated water sampling for phytoplankton
biomass/abundance, production and taxonomic identification
was conducted during April 2014, March 2015, May 2015,
October 2015, and March 2016. Surface water was collected from
up to six locations at both sites (i.e., Achziv or Tel-Shikmona)
during each sampling campaign.

Physical and Chemical Properties
Temperature, salinity, and pH were measured at the time
of sampling using a handheld WTW multiline 3410 sensor
(WTW, Germany). Irradiance was measured at the sampling
site using an Onset UA-002-64 instrument. Filtered (0.45 µm
Minisart filters) seawater samples were collected at the study
sites and the long term monitoring stations using acid-rinsed
plastic vials and stored frozen for later analysis in the lab.
These samples were analyzed for NO2 + NO3 (NOx), NH4,
PO4, and Si(OH)4 using a segmented flow Seal Analytical
AA-3 system (Sisma-Ventura and Rahav, 2019). The limits
of detection for NOx, NH4, PO4, and Si(OH)4 were 0.08,
0.09, 0.008, and 0.03 µM, respectively. In addition, filtered
(0.45 µm Minisart filters) seawater samples from the long term
(2011–2019) national monitoring stations (AKE and SKE) were
collected monthly from the sea surface into brown glass bottles
that were refrigerated until analysis in the lab within a few
days of collection. These samples were analyzed for density
and TA. Analyses of TA samples were done with a Methrom
785 Titrino Plus titration system with ∼0.05 N HCl, based
on the analytical procedures and calculations described by
Sass and Ben-Yaakov (1977). TA measurements were calibrated
and standardized using seawater CRMs from A. Dickson’s lab
(Dickson et al., 2003). The precision of TA measurements was
±2 µmol/kg. Seawater density measurements were made with a
6-digit accuracy Anton Paar DMA-5000 densitometer at a known
temperature (3 decimal places). Salinity values were calculated
from the density data at the measurement temperature using the
equation of state for seawater.
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FIGURE 1 | Map showing the two sampling areas at the Israeli coastline in the SE Mediterranean Sea. In each site, 6 surface water samples were collected by
diving. The Achziv sampling stations (left panel) are considered to be strongly influenced by nutrient inputs from SGD year round, and the Tel-Shikmona stations (right
panel) are less influenced by SGD nutrient input throughout the annual cycle. Scale bars within the expanded regions are 150 m.

Trace Elements
Groundwater, seawater, and discharged groundwater were
collected, filtered through 0.45 µm and acidified to pH∼2 with
NHO3. Sr and Ba concentrations were analyzed by inductively
coupled plasma–mass spectrometry (Agilent 7700s ICP-MS). The
uncertainties of the method were <5%.

Chlorophyll a
Particulate matter in seawater samples (300 ml) collected
at the study sites and monitoring stations was concentrated
onto 25 mm glass fiber filters (Whatman) using low
vacuum (<150 mmHg) immediately after sampling.
Chlorophyll (Chl a) was extracted from these filters
using 90% acetone overnight (Welschmeyer, 1994). After
extraction, fluorescence was measured with a Turner
Designs Trilogy

R©

fluorometer at 436 nm excitation and
680 nm emission.

Cyanobacterial and Picoeukaryotes
Abundances
Seawater samples (1.8 ml) were fixed with cytometry-
grade glutaraldehyde (Sigma G-7651, 0.02% final
concentration), snap-frozen in liquid nitrogen, and kept
at −80◦C until analysis. Prior to analysis, the samples
were fast-thawed at 37◦C in a water bath (Marie et al.,
1997). Autotrophic microbes were enumerated by an
Attune flow cytometer (Attune acoustic flow-cytometer,
100 µl min−1). Cell discrimination was done based on
side-scatter, forward scatter, red fluorescence (Chl a,

630 nm), and orange fluorescence (phycoerythrin, 585 nm,
only cyanobacteria).

Pigment Markers Analyses
High Performance Liquid Chromatography (HPLC) was used to
quantify the relative biomass of diatoms and dinoflagellates in
the samples based on biomarker photo-pigment concentrations
(fucoxanthin and peridinin, respectively). Water samples (∼10 L)
were filtered through Whatman GF/F filters and kept frozen
(−20◦C) in dark until analysis. Frozen filters were thawed
over ice in screw capped glass tubes and extracted with
2 ml of 90% acetone overnight. The filters were homogenized
under subdued light using a stainless steel spatula and then
sonicated in an ultrasonic bath (SYMPHONY) for 5 min
(Zapata et al., 2000). Following a further extraction of 24 h
at 4◦C, the extracts were filtered through a 0.45 µm Teflon
syringe filter (Thermo) and transferred into glass HPLC vials.
The extracts (1 ml) were analyzed using an Agilent 1220
HPLC system equipped with a diode array and fluorescence
detectors. Pigments were analyzed using a 40 min Ethyl acetate
methanol gradient method (Jeffrey et al., 1997). Selected pigment
standards (DHI Labs) were used for verification of the spectra
and retention times. The data presented are the relative peak
areas (mAU’s) of fucoxanthin or peridinin out of the total Chl
a area.

Primary Production (PP)
Photosynthetic carbon fixation rates were measured using
14C incorporation (Steemann-Nielsen, 1952). Seawater
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samples (50 ml) were collected in triplicates into transparent
polycarbonate bottles during the morning (∼08:00),
spiked with 5 µCi of NaH14CO3 (Perkin Elmer, specific
activity 1 mCi ml−1) and incubated under ambient light
and temperature for 4 h. Blank (dark) runs were also
conducted. Incubations were terminated by concentrating
the particulate matter onto GF/F filters and removing unbound
inorganic carbon by exposing the filters to 32% HCl vapors
overnight. The total radioactivity was determined by liquid
scintillation counting (Packard Tri carb 2100 TR liquid
scintillation analyzer).

DNA Extraction, PCR Amplification and
Sequence Processing
Water samples (4L) were filtered onto Sterivex filters (0.22 µm,
Merck) using a peristaltic pump and placed in a sterile
DNase/RNase Free Whirl-Pak bag. Lysis buffer (1.2 ml) was
added to the filters before these were sealed and stored at
−80◦C until analyses. DNA extractions were done directly
from the Sterivex filters as previously described in Raveh et al.
(2019), followed by amplification and sequencing of the 16S
and 18S rRNA gene regions. Prokaryote 16S rRNA genes (V4–
V5 hypervariable region) were amplified using the 16S rRNA
gene V4 variable region PCR primers 515F (Caporaso et al.,
2011). Eukaryotic 18S rRNA genes were amplified using the
universal primers Euk-A (Medlin et al., 1988) targeting the gene
V3 variable region with barcode on the forward primer in a 28
cycle PCR using the HotStarTaq Plus Master Mix Kit (Qiagen,
United States) under the following conditions: 94◦C for 3 min,
followed by 28 cycles of 94◦C for 30 s, 53◦C for 40 s, and 72◦C
for 1 min, after which a final elongation step at 72◦C for 5 min
was performed. After amplification, PCR products were checked
in 2% agarose gel to determine the success of amplification and
the relative intensity of bands. Pooled and purified PCR products
were used to prepare illumina DNA libraries. Sequencing was
performed at MR DNA1 (Shallowater, TX, United States) on a
MiSeq system following the manufacturer’s guidelines. Sequence
data were processed using MR DNA analysis pipeline (MR DNA,
Shallowater, TX, United States). Reads were truncated based
on quality plots, checked for chimeras, merged and grouped
into operational taxonomic units (OTUs) using the QIIME
platform. OTUs were defined by clustering at 3% divergence
(97% similarity). Final OTUs were taxonomically classified
using BLASTn against a curated database derived from RDPII
and NCBI2. All sequences were deposited in NCBI reference
number PRJNA671735.

Statistical Analyses
The differences between the chemical and biological
characteristics of the surface seawater in Tel-Shikmona and
Achziv were evaluated using a two-tailed student’s t-test
(α = 0.05) for each sampling event and then pooled together in
a box-plot for visualization. Prior to the analyses, the normality

1www.mrdnalab.com
2www.ncbi.nlm.nih.gov, http://rdp.cme.msu.edu

and the heterogeneity of variances of the data were examined.
Statistical testing was done using SPSS or XLSTAT software.

RESULTS

Physical and Chemical Characteristics of
the Study Sites
NOx and Si(OH)4 concentrations were ∼10-fold and ∼2-
fold higher at Achziv site compared to the Tel-Shikmona
site, respectively (Figures 2A,B and Supplementary Figure 1).
Similarly, the averaged TA was higher at Achziv (2,573–
2,749 µmole kg−1) than in Tel-Shikmona (2,523–2,736 µmole
kg−1) by 35 ± 14 µmole kg−1 (Figure 2C and Supplementary
Figure 1), indicating the stronger influence of alkalinity-
enriched groundwater at the Achziv site. While there was very
little difference between PO4 (Figure 2D and Supplementary
Figure 1) or NH4 (Table 1) levels at the sites, there were 10-
fold higher NOx:PO4 ratios (∼212:1 vs. 20:1) and fivefold higher
NOx:Si(OH)4 ratios (3.4:1 vs. 0.7:1) in Achziv than in Tel-
Shikmona, respectively. There was notable seasonal variability at
the Achziv site, with a drop in TA and Si(OH)4 from January till
May and then increasing again until December. Similarly, NOx,
decreased from January until July and then increased again until
December (Supplementary Figure 1).

At both sites, the highest water temperature was measured in
the fall (∼27◦C, October 2015), whereas the lowest temperature
was measured at the end of winter (∼18◦C, March 2015 and
March 2016) (Table 1). Global radiation levels were overall high
during most samplings (∼700 W m−2), except for October 2015
where lower values were recorded due to cloudy conditions
(∼250 W m−2) (Table 1). A significant inverse relationship
between NOx and salinity was observed during a tidal cycle at
a shoreline location in Achziv (r2 = 0.74, p < 0.01, Figure 3A),
while a direct-linear relationship was observed between NOx
and alkalinity (r2 = 0.51, p < 0.01, Figure 3B). Moreover, trace
element analysis of Sr and Ba collected from the discharge
point at Achziv were higher relative to Tel-Shikmona (Figure 4),
indicating a significant SGD signal at Achziv (Moore, 1996; Trezzi
et al., 2017). In contrast, no such relationship was found in Tel-
Shikmona (Figures 3A,B), suggesting little/no SGD input near
our sampling sites.

Phytoplankton Abundance, Composition,
and Activity at Achziv and Tel-Shikmona
Phytoplankton biomass, derived from Chl a measurements,
was consistently higher at Achziv than at Tel-Shikmona
(median 0.69 vs. 0.19 µg L−1, respectively, Figure 5A), as
were cyanobacteria (Synechococcus + Prochlorococcus, median
∼14,000 vs. ∼6,500 cells ml−1, respectively, Figure 5B)
and picoeukaryotes (median ∼4,000 vs. ∼2,000 cells ml−1,
respectively, Figure 5C). Microphytoplankton biomass,
determined by pigment markers, exhibited a different trend
than that of the picophytoplankton (Figures 5D,E). Peridinin,
a pigment marker of dinoflagellates, was significantly lower in
Achziv than in Tel-Shikmona (median ∼5 vs. ∼24% of total
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FIGURE 2 | The temporal variability of NOx (A), Si(OH)4 (B), total alkalinity normalized to a constant salinity of 39.234 PSU (multi annual average salinity measured at
both sites) (C), and PO4 (D) collected by the Israeli National Monitoring Program in the surface water in Achziv (black triangle) and Tel Shikmona (white circle) during
the period 2011–2019.

Chl a, respectively, Figure 5D), while fucoxanthin, a pigment
marker of diatoms, showed no difference between the sites
(∼50% of total Chl a, Figure 5E). Concurrent with the overall
differences in phytoplankton biomass and composition between
sites, primary production rates were lower in Tel-Shikmona
(median 0.19 µg C L−1 h−1) than in Achziv (median 0.52 µg C
L−1 h−1) throughout the study (Figure 5F).

DNA sequencing of the 16S and 18S rDNA showed
insignificant differences in the relative OTU abundances
of cyanobacteria, diatoms (Bacillariophyta), or dinoflagellates
(Alveolates) at both sites (Figure 6). Nevertheless, the mean
relative abundances of cyanobacteria and Bacillariophyta were
higher in Achziv than in Tel-Shikmona (Figures 6A,B; 19± 17%

vs. 11 ± 9% and 12 ± 17% and 5 ± 3%, respectively), and the
relative abundance of dinoflagellates was higher at Tel-Shikmona
(Figure 6C; 26%± 35 vs. 7± 7%) than at Achziv.

DISCUSSION

The oligotrophic status of the SEMS is derived, among others,
by the relatively low input of external nutrients to its coastal
zone. The main external nutrients source to the SEMS, the
Nile River, was dammed in the late 1960s, which effectively
stopped most of the water inflow and its associated nutrients
into the Mediterranean Sea. Most other surface water discharge
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TABLE 1 | Temperature, radiation, and salinity levels in surface waters (∼0.5 m) of Achziv and Tel-Shikmona during the phytoplankton collection campaigns, and the
calculated ratio between variables.

Site Sampling date Temperature (◦C) Global radiation
(W m−2)

Salinity (PSU) NOx (µM) NH4 (µM) PO4 (µM) Si(OH)4 (µM)

Tel-Shikmona Apr-14 23.6 915 38.7 BDL 0.57 0.04 0.76

Mar-15 18.5 766 38.4 0.12 0.62 0.03 0.65

May-15 23.4 734 38. 9 0.22 0.41 0.01 0.43

Oct-15 27.0 282 38.4 N/A N/A N/A N/A

Mar-16 18.1 710 38.9 0.31 0.38 0.06 0.81

Achziv Apr-14 23.5 N/A 38.5 31.20 1.11 0.04 4.54

Mar-15 18.7 779 38.0 9.24 0.59 0.03 1.73

May-15 23.2 678 38.3 4.14 0.61 0.01 0.99

Oct-15 27.3 268 38.4 N/A N/A N/A N/A

Mar-16 18.1 721 38.4 2.14 1.10 0.06 0.84

Achziv: Tel-Shikmona ratio Apr-14 1.0 N/A 1.0 N/A 1.9 1.0 6.0

Mar-15 1.0 1.0 1.0 77.0 1.0 1.0 2.7

May-15 1.0 0.9 N/A 18.8 1.5 1.0 2.3

Oct-15 1.0 1.0 1.0 N/A N/A N/A N/A

Mar-16 1.0 1.0 1.0 6.9 2.9 1.0 1.0

N/A, not available; BDL, below detection limit.

FIGURE 3 | Relationships between NO2 + NO3 concentrations and salinity [R = 0.86, p < 0.01, (A)] or total alkalinity [R = 0.71, p < 0.01, (B)] at a shoreline location
in Achziv (black triangle) and Tel-Shikmona (while circle). Values presented in panel (A) show a tidal time series measured during May and June 2005, April 2014,
March 2015, May 2015, October 2015 and March 2016, and monthly averages between 2011 and 2019. Data shown in panel (B) was derived from multiannual
monthly averages measured in the period 2011–2019. Note the different scales of the Y-axis between panels.

to the SEMS are considered as “seasonal streams” (i.e., flow
only during wintertime) that supply relatively low amounts
of nutrients to coastal waters (Poulos, 2020). We argue that
the significant differences in NOx (and silica) concentrations
between Achziv and Tel-Shikmona are the result of relatively
intense SGD rather than sporadic inflow of coastal streams or
nutrient-rich effluents discharge (e.g., Rahav and Bar-Zeev, 2017;
Rahav et al., 2018a). This conclusion is based on the inverse

linear relationship between salinity and NOx (Figure 3A), the
direct relationship between NOx and alkalinity (Figure 3B),
as well as by the pronounced and constant (year round,
including summertime) enrichment of NOx in Achziv relative
to Tel-Shikmona between 2011 and 2019 (Figure 2A). We
are aware that other approaches are often used to identify,
locate, and quantify SGD in coastal environments, including
measurements of natural tracers such as radon (Rn) and radium
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FIGURE 4 | Concentrations of Sr (A) and Ba (B) vs. Cl in Achziv (black triangle) and Tel-Shikmona (while circle). Gray squares show values measured in SGD wells
near Achziv (Yanuka-Golub, unpublished) and the red star indicate a seawater mean value based on Sivan et al. (2005) at the Israeli coast. Dash lines indicates the
freshwater-seawater mixing line (Sivan et al., 2005).

(Ra) and even methane (Burnett et al., 2008; Paytan et al.,
2015). Nevertheless, our results clearly indicate that the coastal
waters in Achziv were highly influenced by SGD as indicated
by the salinity and trace element measurements (Figures 3, 4).
Samples collected from underwater seeps at Achziv show
contribution of submarine groundwater diluting the seawater as
indicated from the freshwater-seawater mixing line established
by Sivan et al. (2005) and the overall high concentrations
of trace-elements measured (Figure 4). Specifically, the high
Ba concentrations are a typical indication of SGD (Moore,
1996), and the Sr concentrations lying above the mixing line
between fresh water and seawater indicate water-rock interaction
in the coastal aquifer (Sivan et al., 2005), where the fresher
water discharge from.

In turn, the discharge of nutrient-rich groundwater may
supply a substantial input to coastal waters of dissolved inorganic
nitrogen and silica, and to a lesser extent phosphate (Slomp and
Van Cappellen, 2004; Wang et al., 2018), often leading to an
increase in algal biomass (Paerl, 1997; Hwang et al., 2005; Lecher,
2017) and in some cases to the development of harmful algal
blooms (Laroche et al., 1997; Liefer et al., 2009; Lecher et al.,
2015). Similarly, several studies found a direct-linear relationship
between Chl a and Rn, which is a natural tracer for SGD (Valiela
et al., 1992; Su et al., 2014). Our in situ observations concur with
the abovementioned studies, showing that the high nutrient levels
in Achziv resulted in an increased phytoplankton biomass (most

pronounced are the cyanobacteria, see below discussion), activity
and changes in diversity (Figures 5, 6).

The response of phytoplankton to SGD may vary as a
function of the initial physicochemical characteristics of the
coastal environment (e.g., light levels, daily/seasonal temperature
amplitudes, and salinity), the microbial species present (e.g.,
small-size cyanobacteria vs. large-size phytoplankton), the
nutrient composition and content of the groundwater (e.g.,
absolute concentrations and N:P ratio), and the groundwater flux
(Blanco et al., 2008; Lecher, 2017; Sugimoto et al., 2017). In many
cases, diatoms are the main phytoplankton group to benefit from
SGD. Diatoms have silica-based frustules (Hildebrand, 2003),
and the high Si content in SGD which derives from rock–water
interactions in the aquifer (Anschutz et al., 2009), along with
N, often induce diatom blooms (Lecher et al., 2015). In this
study, diatom biomass (estimated via the fucoxanthin/Chl a
ratio) was similar in both the Achziv and Tel-Shikmona sites
(Figure 5E), despite the significantly higher nitrate and silica
concentrations at the Achziv site year round (Figure 2). While
diatoms belonging to the genera Chaetoceros, Thalassiosira,
Rhizosolenia, Pseudo-nitzschia, and Leptocylindrus are routinely
found along the Israeli coast (using taxonomy-based approaches),
their biomass is usually low (<1,000 cells L−1), even in sites
exposed to local anthropogenic eutrophication (Rahav and Bar-
Zeev, 2017). Even though the multi annual average of monthly
NOx measurements at Achziv exceeded the medium threshold
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FIGURE 5 | Box-Whisker plots showing the interquartile range (25th to 75th percentile) and median value (horizontal line within the box) of chlorophyll a (A),
cyanobacterial abundance (B), picoeukaryotes abundance (C), peridinin (D), fucoxanthin (E), and primary production (PP) (F) in Tel-Shikmona and Achziv between
2013 and 2016. The measured values used to generate the box-plots are shown in gray.

defined for eutrophication (>0.1 mg L−1) (Bricker et al., 2003),
and for “good environmental status” of Israeli Mediterranean
shallow coastal waters (Kress et al., 2019), our algal biomass
measurements derived from Chl a were <1 µg L−1 and usually
did not exceed the eutrophication threshold recently defined for

the SEMS coastal waters (∼0.2–0.8 µg L−1, depending on the
area along the Israeli coast; Kress et al., 2019). We surmise that
the “severe” oligotrophic characteristics of the SEMS, even at the
Achziv site (Chl a < 1 µg L−1, Figure 5A), preclude diatoms
from forming large blooms. This may be because diatoms
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FIGURE 6 | Box-Whisker plots showing the interquartile range (25th to 75th percentile) and median value (horizontal line within the box) of the relative OTU
abundances of Cyanobacteria (A), Diatoms (B), and Dinoflagellates (C) in Tel-Shikmona (white) and Achziv (cyan) between 2014 and 2016. Data derived from 16S
and 18S rDNA analyses (n = 4). The measured values used to generate the box-plots are shown in gray.

FIGURE 7 | Literature compilation showing the% change in chlorophyll a (Chl a) (A) primary productivity (PP) (B) attributed to SGD, NO3 (N), Si(OH)4 (Si), or
well-amelioration brines (WAB, containing mostly high levels of nitrate and silica). Data taken from De Sieyes et al. (2008), Garcés et al. (2011), Lecher et al. (2015),
Kobayashi et al. (2017), Sugimoto et al. (2017), Rahav et al. (2018b) and Raveh et al. (2019). Box shows the interquartile range (25th to 75th percentile) and median
value (horizontal line within the box). Red line indicates the median change found between Achziv and Tel-Shikmona.

are outcompeted by small cyanobacteria (e.g., Synechococcus;
Figure 5B) with more efficient nutrient uptake and utilization
rates due to their high surface-area to volume ratio (Snoeijs et al.,
2002). Moreover, diatoms at these sites may be outcompeted
by mixotrophic phytoplankton (e.g., dinoflagellates), or may
be limited by other factors that were not considered here
(e.g., dissolved organic phosphorus; Põder et al., 2003). It is
also possible that the diatoms grazing pressure was weaker at
Tel-Shikmona than in Achziv. A previous study in the NW
Mediterranean showed that zooplankton exert tighter control
on microphytoplankton in oligotrophic environments than in
productive systems (Calbet, 2001). To the best of our knowledge,
no recent zooplankton surveys were carried out along the Israeli
coast, and therefore we cannot estimate if indeed such top-
down control occurs.

Dinoflagellates were more abundant in the nutrient-
poor waters at Tel-Shikmona than at Achziv (Figure 5D),

in contrast to studies in which ammonium-rich SGD
induces dinoflagellates blooms (Gobler and Boneillo, 2003;
Troccoli-Ghinaglia et al., 2010). Here, however, ammonium
concentrations were similar in both sites (Table 1), while the
ratio between NOx and NH4 was 0.2–1:1 in Tel-Shikmona and
∼2–15:1 in Achziv, suggesting unknown nutrient-dependent
interactions. The factors governing nano/micro-phytoplankton
species (e.g., diatoms and dinoflagellates) interactions and
dynamics in the SEMS are still unclear and should be
further investigated.

Interestingly, unlike many coastal environments affected
by GSD where microphytoplankton species benefit the most
from the nutrients inputs (abovementioned references), here
cyanobacteria exhibited the biggest differences change, with
higher abundances at Achziv compared to Tel-Shikmona
(Figure 5B). We surmise that the reason why cyanobacterial
biomass increased while diatoms remained overall the same
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relates to the ultra-oligotrophic nature of the SEMS that
dictate the dominance of small-size microorganisms capable to
rapidly utilize nutrients from their surroundings (specifically
N as the initial Si(OH)4 levels in the water, even without
groundwater input, was not considered limiting for diatoms).
This was also reflected in the relative cyanobacterial OTU
abundances (Figure 6A). It is to be noted, though, that
information retrieved from DNA sequencing should be
interpreted with caution, and may not necessarily be comparable
to direct phytoplankton quantification measures (e.g., HPLC,
flow cytometry, and microscopic taxonomy), since the copy
number of rRNA per cell could vary depending on the taxa,
as demonstrated for microphytoplankton (Zhu et al., 2005;
Galluzzi et al., 2010) and bacteria (Valdivia-Anistro et al.,
2016).

In accordance with the increase in cyanobacteria at Achziv
over Tel-Shikmona, previous microcosm and mesocosm studies
from the SEMS showed that cyanobacterial biomass is stimulated
by additions of nitrate or nitrate + silica + phosphorus (Rahav
et al., 2018b; Raveh et al., 2019). Furthermore, a recent study, also
in the SEMS, showed that sewage discharges may lead to a short-
term bloom of the cyanobacterium Trichodesmium (Rahav and
Bar-Zeev, 2017), which may be harmful/toxic to local plankton
communities (Detoni et al., 2016). Therefore, a chronic input
of N (as well as silica and possibly other elements) by SGD is
likely to support cyanobacterial proliferation and boost primary
productivity. These observations are in agreement with other
studies showing an increase in cyanobacterial abundance due to
nutrient spikes at SGD sites (Blanco et al., 2008; Su et al., 2014).

The coastal SEMS harbors a variety of potentially toxic
cyanobacteria (e.g., Microcystis sp.), diatoms (e.g., Pseudo-
nitzschia multiseries) and dinoflagellates (e.g., Prorocentrum
minimum, Ostreopsis siamensis, and Akashiwo sanguinea),
especially near coastal river estuaries (Herut et al., 2020).
Due to its oligotrophic characteristics (Table 1; Kress et al.,
2019), natural or human-induced eutrophication in the SEMS
may potentially lead to increased harmful algal biomass, as
recently demonstrated in mesocosm experiments following
N + Si-rich well-amelioration brine enrichments (Raveh
et al., 2019) or in the past in Haifa Bay (Kress and Herut,
1998). An SGD discharge into the Gulf of Mexico triggered
a Pseudo-nitzschia bloom (Macintyre et al., 2011) and a
similar event occurred in an Alabama lagoon (Liefer et al.,
2009). Moreover, SGD stimulated eutrophication in Bangdy
Bay (Hwang et al., 2005) and in Lake Kasumigaura, Japan
(Nakayama and Watanabe, 2008).

The Chl a and PP rates measured in the SGD-enriched
site at Achziv are not consistent with the south-north gradient
routinely found along the Israeli coast, which is attributed to the
general longshore current in the same direction (Rosentraub and
Brenner, 2007) and to point-sources of anthropogenic pollution
(Frank et al., 2019; Kress et al., 2019; Raveh et al., 2019).
The southern Israeli coastal waters usually have higher Chl
a (∼0.5–1.0 µg L−1) and PP (∼4–9 µg C L−1 d−1) levels,
whereas lower values are often measured in the northern region
(0.05–0.5 µg L−1 and 1–4 µg C L−1 d−1, respectively) (Rahav
et al., 2018b). Although it is located at the northern end of

the Israeli coast, the Achziv site displayed similar characteristics
to those found in the southern stations which have higher
algal biomass. This highlights the potential of nutrient-rich
SGD to relieve nutrient limitation of phytoplankton along the
Israeli coast. In support of this observation, Raveh et al. (2019)
showed that co-addition of nitrate and silica in the form of
well-amelioration brines stimulates phytoplankton growth and
enhances PP in oligotrophic Israeli coastal waters. Moreover,
Sugimoto et al. (2017) showed that SGD leads to higher PP
rates when compared to anthropogenic pollution discharges in
Japanese waters, suggesting that SGD may cause eutrophication
even in non-oligotrophic systems.

Eutrophication from SGD is a well-known phenomenon,
observed both in field surveys and in laboratory manipulations
(De Sieyes et al., 2008; Garcés et al., 2011; Lecher et al., 2015;
Kobayashi et al., 2017; Sugimoto et al., 2017). The differences
in Chl a and PP levels in Achziv compared to Tel-Shikmona
(Figure 2) are in agreement with these studies (e.g., response
relative to unamended control or unaffected area), both in
magnitude (e.g., % effect) and direction (e.g., a positive increase)
(Figure 7). Additions of NOx or silica alone resulted in lower
increases in Chl a and PP in the southeastern Mediterranean
shelf waters, while well-amelioration brine amendments which
contain both high N and Si resulted in similar increases as in the
Achziv site (Figure 7). This suggests that phytoplankton along
the Mediterranean Israeli coast are N + Si limited, as opposed to
the offshore waters that are P or N and P co-limited (Zohary et al.,
2005; Tanaka et al., 2011; Tsiola et al., 2016). Given that the coastal
waters often intrude into offshore waters (Barale et al., 2008;
Efrati et al., 2013), enrichment by SGD may not only be a local
coastal phenomenon but may also influence the pelagic microbial
populations offshore and therefore higher trophic levels.

Lastly, in Europe, NO3 eutrophication from agricultural
sources to groundwater is addressed by the “Nitrates-Directive”
(#91/676/EEC) under the Water Framework Directive (Directive
2000/60/EC). It is aimed to attain “good ecological and chemical
status” of Europe’s fresh and coastal waters, where rivers and
groundwater containing NO3 > 25 mg L−1 (∼5.6 mg NO3-
N L−1) reflect a threshold of concern. While we did not
measure the NO3 levels in groundwater directly at Achziv (i.e.,
from a drilling site at the aquifer), nearly 70 mg NO3-N L−1

(∼15.7 mg NO3-N L−1) were previously found near the discharge
area (source: The Israeli Water Authority). In the context of
anthropogenic contamination of groundwater, and the flux to
the sea of nutrients via SGD, we recommend that further studies
assessing the influences of this mechanism should be conducted,
especially in oligotrophic marine areas such as the SEMS for the
proper determination and implementation of “good ecological
and chemical status.”

CONCLUSION

Our results indicate that SGD can be an important source
of nutrients at the oligotrophic SEMS coastal water. While
diatoms usually benefit from SGD due to the addition of both
N and Si in groundwater, here cyanobacteria increased the
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most while diatoms abundance remained overall unchanged.
This unusual phenomenon is a further indication for the
ultra-oligotrophic nature of the SEMS where small-size
cyanobacteria (as well as other prokaryotic microorganisms)
likely outcompete larger-size microphytoplankton for limiting
nutrients, specifically for nitrogen.
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