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The global decline of coral reefs heightens the need to understand how corals may
persist under changing environmental conditions. Restructuring of the coral-associated
bacterial community, either through natural or assisted strategies, has been suggested
as a means of adaptation to climate change. A low complexity microbial system would
facilitate testing the efficacy of microbial restructuring strategies. We used the model
organism for corals, Exaiptasia diaphana, and determined that short-term (3 weeks)
exposure to filter-sterilized seawater conditions alone reduced the complexity of the
microbiome. Metabarcoding of the V5–V6 region of the bacterial 16S rRNA gene
revealed that alpha diversity was approximately halved in anemones reared in filter-
sterilized seawater compared to controls reared in unfiltered seawater and that the
composition (beta diversity) differed significantly between the two. By reducing the
complexity of the E. diaphana microbiome, the development of a system for testing
assisted strategies such as probiotics, is more feasible.

Keywords: metabarcoding, microbiome manipulation, Exaiptasia pallida, bacteria, cnidarian

INTRODUCTION

Corals are colonized by microbes, including bacteria, eukaryotes, archaea, and viruses (Blackall
et al., 2015; Ainsworth et al., 2017; Huggett and Apprill, 2019), that contribute to the overall health
of this complex host-microbe association, or holobiont (Rohwer et al., 2002). A noted eukaryote
in the coral holobiont is the algal endosymbiont, a dinoflagellate of the family Symbiodiniaceae,
which actively interacts with other coral-associated microbes (Camp et al., 2020; Matthews et al.,
2020). Coral-associated bacteria, hereafter referred to as the “microbiome,” likely consist of a
combination of commensals, transients, and long-term stable members, and combined with the
host, form a mutually beneficial, stable symbiosis. Evolution of the coral microbiome to confer
benefits to the holobiont may occur naturally (Ziegler et al., 2017) or be directed through assisted
evolution strategies, in which the microbiome of cnidarians is manipulated (van Oppen et al., 2015,
2018; Epstein et al., 2019a). Manipulation of the coral microbiome could be achieved through the
addition of a bacterial consortium with specific purposes such as degradation of oil (dos Santos
et al., 2015), nutrient cycling, disease prevention (Alagely et al., 2011), or mitigation of bleaching
(Rosado et al., 2018). These consortia, also known as probiotics, are developed to target specific
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aspects of holobiont health and functioning and should be based
on the management of the already complex ménage à trois of
host-bacteria-algae interactions.

One strategy to unravel the functions of and interactions
between host-associated bacteria is to identify and synthetically
recreate the minimal microbiome (MM). The MM is defined
as the fewest microbes and/or microbial functions needed to
maintain health and functioning of the holobiont (de Vos, 2013).
The concept of a MM has been explored in plant science (Qin
et al., 2016) and the human gut microbiome (de Vos, 2013; Clavel
et al., 2017), with suggestions for its application in coral science
(van Oppen and Blackall, 2019). While the ability to achieve the
MM is important for functional microbiome studies, realizing
this with antibiotics is difficult for many marine invertebrates
(D’agostino, 1975), including the model organism for corals, the
sea anemone Exaiptasia diaphana (Hartman, 2020).

As an alternative approach to creating the MM, we have
explored a community reduction strategy of the E. diaphana
microbiome by manipulating the external environment (Clavel
et al., 2017), instead of the application of antibiotics. Studies on
the microbiome of E. diaphana indicate a similar phylum level
diversity to corals (Blackall et al., 2015) for anemones sourced
from the Great Barrier Reef (GBR) (Hartman et al., 2019, 2020;
Dungan et al., 2020a), Hawaii (Herrera et al., 2017), Pacific and
Caribbean (Brown et al., 2017), Atlantic (Röthig et al., 2016),
and Red Sea (Ahmed et al., 2019). We hypothesize that selective
forces acting on E. diaphana and its microbiome, when placed
in sterile seawater, will reduce the complexity of the microbiome
with the loss of some (e.g., transient) members. This hypothesis
is driven by existing evidence that environment has a significant
influence on the cnidarian microbiome (Zhang et al., 2015;
Webster and Reusch, 2017; Hartman, 2020), and that autoclave-
sterilized seawater is correlated with a reduction in alpha diversity
for GBR-sourced E. diaphana (Hartman et al., 2019). If their
microbiomes were successfully reduced, we sought to identify
bacterial taxa that persisted in anemones reared in sterile seawater
as these taxa may be critical to holobiont health.

METHODS

Sample Collection
Anemones and the surrounding seawater from each of four GBR-
sourced genotypes (Dungan et al., 2020b) were sampled once
from each of two conditions:

1) control anemones—maintained in Red Sea SaltTM (R11065,
Red Sea, United States; RSS) seawater prepared with reverse
osmosis water at∼34 parts per thousand (ppt) salinity, or

2) “sterile” anemones—defined as anemones removed from
stock conditions (see 1), maintained in sterilized glass jars with
300 mL of 0.2 µm filtered RSS (fRSS), and sampled after 3 weeks.

Before fRSS was added to the anemones, the water was plated
on Marine Agar (DifcoTM Marine Agar 2216; MA); the absence
of any bacterial growth on agar plates after 7 days confirmed
sterility. In both conditions, anemones were fed ad libitum with
freshly hatched Artemia salina (brine shrimp, Salt Creek, UT,
United States) nauplii twice weekly. A. salina feedstock was not

sterile prior to feeding (see Hartman et al., 2020 for details
on feedstock bacterial community composition). Control and
“sterile” anemone tanks were cleaned each week after feeding with
complete RSS or fRSS water changes, respectively. Each anemone
(n = 6 for control anemones and n = 15 for “sterile” anemones
from each genotype) was individually homogenized in a sterile
glass homogenizer in 1 mL fRSS, flash frozen in liquid nitrogen,
and stored at –20◦C for later DNA extraction. Immediately
following anemone acquisition, RSS and fRSS was collected from
each anemone culture container (n = 3 for RSS and n = 5 for
fRSS for each genotype container). The collected RSS and fRSS
had hosted the anemones for 7 days since the last water change.
Briefly, 250 mL of RSS or fRSS was filtered through a 0.2 µm
Supor hydrophilic polyethersulfone membrane (Pall, New York)
with a Sentino peristaltic pump (Pall). The membrane was flash
frozen then stored at –20◦C until genomic DNA extraction.

Anemone Health Metrics
Health metrics were measured in control and “sterile” anemones.
Photosynthetic efficiency, according to maximum quantum yield
(Fv/Fm) was measured on the intracellular algae by pulse-
amplitude-modulated (PAM) fluorometry with an imaging-PAM
system (IMAG-MAX/L, Walz Heinz, Germany) weekly, and
immediately prior to sampling for both control and “sterile”
anemones. Additionally, a subset (n = 5 per genotype for both
control and “sterile” anemones) were sacrificed for host protein
and Symbiodiniaceae cell density determinations as described in
Dungan et al. (2020b). Additionally, feeding behaviors, anemone
body and tentacle position, and asexual propagation were
qualitatively documented throughout the experiment.

DNA Extraction and MiSeq Library
Preparation
DNA was extracted (Wilson et al., 2002; Hartman et al.,
2019) from the anemones and RSS/fRSS samples for
bacterial community analysis by metabarcoding of the 16S
rRNA genes. Extraction blanks (n = 7) were processed
simultaneously to identify contaminants introduced during
DNA extractions. Extracted DNA along with no template
negative PCR controls (n = 2) were amplified by PCR in triplicate
using bacterial primers with Illumina adapters (underlined)
targeting the V5–V6 regions of the 16S rRNA genes: 784F [5′
GTGACCTATGAACTCAGGAGTCAGGATTAGATACCCTGG
TA 3′]; 1061R [5′ CTGAGACTTGCACATCGCAGCCRRCACGA
GCTGACGAC 3′] (Andersson et al., 2008). Each PCR contained
12.5 µL MyTaq HS Mix polymerase (Bioline, Australia), 2 µL
of DNA template, 0.4 µM of each primer, and nuclease-free
water up to 25 µL. PCR conditions were: 1 cycle × 95◦C for
3 min; 18 cycles × 95◦C for 15 s, 55◦C for 30 s, and 72◦C for
30 s; 1 cycle × 72◦C for 7 min; hold at 4◦C. Triplicates were
not pooled and instead treated as technical replicates in library
preparation and sequencing.

To prepare DNA sequencing libraries, 20 µL of each
PCR product was purified by size-selection using Ampure
XP magnetic beads (Agencourt, Beckman Coulter, Australia).
Indexing PCRs were created by combining 10 µL of purified
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DNA with 10 µL 2x Taq master mix (M0270S, New England
BioLabs, Australia) and 0.25 µM of forward and reverse
indexing primers. PCR conditions were: 1 cycle × 95◦C
for 3 min; 24 cycles × 95◦C for 15 s, 60◦C for 30 s,
and 72◦C for 30 s; 1 cycle × 72◦C for 7 min; hold
4◦C. A subset of samples, chosen at random, were checked
for product size and quantity (2200 TapeStation, Agilent
Technologies, Australia); sequencing libraries were created by
pooling 5 µL from each reaction and performing a final bead
clean-up on 50 µL. Each library was checked for quality
and quantity to guide pool normalization (2200 TapeStation),
then sequenced on a single Illumina MiSeq run using v3
(2 × 300 bp) reagents at the Walter and Eliza Hall Institute,
Melbourne, Australia.

Metabarcoding Data Processing and
Analysis
Raw 16S rRNA gene sequences were imported into QIIME2
v2019.10.0 (Bolyen et al., 2019) and demultiplexed. Primers were
removed with cutadapt v2.6 (Martin, 2011). Filtering, denoising,
and chimera checking was performed using DADA2 (Callahan
et al., 2016) in the QIIME2 environment to correct sequencing
errors, remove low quality bases (mean Qscore < 30), and
generate bacterial amplicon sequence variants (ASVs). Taxonomy
for each ASV was assigned against a SILVA database (version
132) trained with a naïve Bayes classifier against the same
V5–V6 region targeted for sequencing (Bokulich et al., 2018).
A phylogenetic tree was produced in QIIME2 by aligning ASVs
using the PyNAST method (Caporaso et al., 2010) with mid-
point rooting.

All data were analyzed in R (v3.6.2; R Core Team, 2019).
Statistical tests were considered significant at α = 0.05. ASV,
taxonomy, metadata and phylogenetic tree files were imported
into R and combined into a phyloseq object (McMurdie and
Holmes, 2013). Potential contaminant ASVs were identified
and removed sequentially from the dataset according to their
abundance in the extraction and PCR negative controls relative to
the anemone and seawater samples using the prevalence method
in the R package decontam with p = 0.1 (Davis et al., 2018).

Alpha diversity of the bacteria was investigated to assess the
impact of RSS type on the bacterial communities. Alpha diversity
metrics were calculated in the R package vegan (Oksanen
et al., 2018) after rarefying the samples to 3,718 reads per
sample. Alpha diversity data were then analyzed for overall
differences using linear mixed effects models (LME) against the
variables genotype, maintenance in RSS or fRSS, and sample
type (anemone or seawater) with culture container specified as
a random effect, in the R package nlme (Pinheiro et al., 2019).
Post hoc pairwise comparisons were performed by genotype
using Tukey’s honestly significant difference test (Tukey, 1949)
in the R package emmeans (Searle et al., 1980) with Tukey’s
adjustment for multiple comparisons. Standard deviations from
the LME model were used to determine the within and between
sample variation for triplicate sequencing data. Bar charts were
created by agglomerating taxa at the family level based on relative
abundances using the R package phyloseq.

Differences in the bacterial community compositions of
each genotype were visualized in principal coordinates analysis
(PCoA) ordinations based on a weighted UniFrac distance
matrix. To compare bacterial community compositions, we
applied a non-parametric permutational multivariate analysis
of variance (PERMANOVA) using the weighted UniFrac
distance matrix as implemented in the vegan function adonis
(permutation = 999) (Oksanen et al., 2018). Data were center log
ratio transformed (Morton et al., 2017) prior to PERMANOVA
and all data were evaluated for homogeneity of dispersion
among groups as an assumption for adonis. Genera that were
significantly associated with treatment groups were identified
using the indicspecies function multipatt (Cáceres and Legendre,
2009) and changes in their relative abundances were visualized in
bubble plots for each genotype.

RESULTS

Anemone Health
Throughout the 3-week period, all E. diaphana maintained good
health based on the density and photophysiological performance
of their in hospite Symbiodiniaceae, tentacle extension, active
feeding on A. salina nauplii, and asexual propagation. Average
Symbiodiniaceae cell densities (normalized to host protein) were
not significantly different between control and “sterile” anemones
by genotype (p > 0.05, Supplementary File S1). After an initial
drop in Fv/Fm following the transfer of anemones to fRSS and in
a different incubator, Fv/Fm values returned to control levels.

Metabarcoding Data Processing
Sequencing produced 8.8 M reads across E. diaphana (n = 84),
RSS/fRSS (n = 32), extraction blanks (n = 7), and negative control
samples (n = 2) sequenced as triplicate technical replicates for
a total of 375 samples. After merging, denoising and chimera
filtering, 6.2 M reads remained; one triplicate from each of
three samples was removed as they had <20 reads. Decontam
identified 138 putative contaminant ASVs constituting 4.25%
relative abundance of the bacterial communities. Upon review
of these putative contaminants, 20 were found to be common
marine bacteria. To be conservative, these 20 were removed from
the decontam output and thus included in the subsequent data
analyses. The remaining 118 ASVs (3.91% relative abundance)
were removed from the data set prior to all statistical analyses
(Supplementary File S2). After all filtering steps, there were 1171
ASVs across the remaining samples.

Triplicate Technical Replicates
For amplicon sequencing of the bacterial 16S rRNA gene V5–
V6 region, the standard error within the three replicates of
a single sample was greater than the error between biological
replicates for the observed number of ASVs (13.12 and 9.35,
respectively). For both Shannon’s and Simpson’s diversity
metrics, the error between biological replicates and within a
biological replicate was approximately the same. Given that these
technical replicates all stem from one biological sample, the
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triplicates were merged for visualization and exploration of the
bacterial microbial communities.

Bacterial Community Shifts
For all alpha diversity metrics, a one-way analysis of variance
(ANOVA) reported a significant interaction of sample type
(anemone vs. seawater) and environment (RSS vs. fRSS)
[FObsASVs(1, 81) = 62.35, p < 0.0001; FSimp(1, 81) = 12.26,
p = 0.0008; FShan(1, 81) = 51.67, p < 0.0001]. Substantial
decreases in bacterial alpha diversity were observed in all “sterile”
anemone genotypes (Figure 1A and Supplementary File S3)
with the average number of observed ASVs dropping 55% from
(mean± SE) 134± 6 in control anemones to 74± 3 [t(18) = 8.85,
p < 0.0001] in “sterile” anemones. Simpson’s and Shannon’s
bacterial diversity also decreased in all anemones, regardless of
genotype, with significant reductions in AIMS2 (Shannon’s only),
AIMS3 (both Shannon’s and Simpson’s), and AIMS4 (Shannon’s
only) (Figures 1B,C and Supplementary File S3). A total of 13
bacterial families were found in at least three genotypes of control
anemones and absent in at least three genotypes of “sterile”
anemones (Supplementary File S4). These families were all part
of the rare bacterial biosphere (Sogin et al., 2006) with the most
abundant, Microtrichaceae, having an average of 0.12% relative
abundance across all control genotypes. Conversely, there were
five families that were present in the “sterile” anemones, yet
absent in control anemones (Supplementary File S4). The most
abundant of these was Nisaeaceae at 0.18% relative abundance in
“sterile” anemones.

Principal coordinate analyses (PCoA) showed a change in
composition of the bacterial communities within each genotype
(Figure 2A). There was clear clustering of data points by sample
type (anemone vs. fRSS/RSS) and environmental condition.
For all genotypes, homogeneity of dispersion was >0.05 for
seawater treatment and sample type. PERMANOVA results by
genotype confirmed that the bacterial community structure
(Figure 2B) varied significantly with the interaction of sample
type and environment [FAIMS1(1, 86) = 6.59, p = 0.001; FAIMS2(1,
83) = 5.82, p = 0.001; FAIMS3(1, 85) = 6.18, p = 0.001; FAIMS4(1,
86) = 5.64, p = 0.001]. The indicator species analysis highlighted
genera that are characteristic of the microbiomes in these
distinct groups (Figure 3 and Supplementary Files S5–S8).
Erythrobacter, Winogradskyella, Phaeodactylibacter, Muricauda,
and unresolved Rhodobacteraceae genera were significantly more
abundant in control anemones compared to “sterile” anemones
(Supplementary File S9). Few genera were significantly more
abundant in “sterile” anemones (only Nisaea, Thalassobaculum,
and Alteromonas in AIMS3 and Tropicibacter in AIMS4).
Groups that were significantly more abundant in the anemones,
regardless of environment or genotype, compared to seawater
were Alteromonadaceae, Terasakiellaceae, Coxiella, Labrenzia,
Nannocystaceae, Sphingobacteriales, and Fulvivirga. In the RSS
Roseibacterium and Pseudohongiella were consistently more
abundant while Algiphilus was in greater abundance in fRSS.
Saprospiraceae was the only group that was significantly more
abundant in all seawater samples, regardless of genotype or
environment (Supplementary File S9).

DISCUSSION

The coral holobiont has the capacity to restructure its
bacterial component, either through natural (Ziegler et al.,
2017) or assisted strategies (Damjanovic et al., 2017), which
has been suggested as a means of holobiont adaptation
to climate change (Ziegler et al., 2019). We found that
the bacterial diversity and community structure for each of
four anemone genotypes was significantly different with a
reduction in alpha diversity when anemones were moved from
RSS to fRSS and maintained in fRSS for 3 weeks. Several
taxa, including Alteromonadaceae, Terasakiellaceae, Coxiella,
Labrenzia, Nannocystaceae, Sphingobacteriales, and Fulvivirga,
maintained high abundances in “sterile” anemones despite
changes in other aspects of community structure. We suggest
that these groups have a key role in holobiont health. Our results
have implications for future manipulation of the E. diaphana
holobiont, as these anemones can be manipulated to reduce
the diversity of their microbiome while remaining healthy and
thus are good models. The loss of bacterial diversity in the
“sterile” anemones and likely passage of these microbes into
the seawater hints at the interaction of E. diaphana with their
seawater environment.

Exaiptasia diaphana Microbiome Can Be
Reduced With Sterile Seawater
From this study, the average number of ASVs from GBR-sourced
E. diaphana was 134, which is substantially lower than >750
ASVs, which was previously reported for these anemones
(Hartman et al., 2020). After anemones were maintained for
3 weeks in fRSS, the number of observed bacterial ASVs
was significantly reduced in all genotypes while maintaining
holobiont health. This has been previously shown with GBR-
sourced E. diaphana (Hartman et al., 2019). A common approach
to reduce the microbiome of a complex system is the application
of antibiotics, which has been successful in marine invertebrates,
including corals (Sweet et al., 2011), but often at the expense of
holobiont health (D’agostino, 1975; Gilbert et al., 2012; Hartman,
2020). Even when there are no visible adverse effects of antibiotic
treatment, the artificial shift in or depletion of the holobiont
microbiome may have unintended consequences such as
perturbations of native microbial communities and proliferation
of pathogens (Raymann et al., 2017), or the development of
antibiotic resistance. A disruption to the bacterial community
of coral via antibiotic treatment has resulted in diminished
resilience to thermal stress (Gilbert et al., 2012), bleaching,
and necrosis (Glasl et al., 2016). We have demonstrated that
the microbial diversity of E. diaphana is rapidly (in 3 weeks)
reduced in sterile seawater with an average of 55% of ASVs lost,
critically, with no changes in Symbiodiniaceae photophysiology
or anemone heath. A total of 13 bacterial families were found
in at least three genotypes of control anemones and absent in
at least three genotypes of “sterile” anemones (Supplementary
File S3). The capacity for horizontal transmission (recruitment
of microorganisms from the environment) has been proposed
for several marine organisms (Bright and Bulgheresi, 2010),
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FIGURE 1 | Observed ASVs (A), Simpson’s Index (B), and Shannon’s Index (C) for AIMS1-4 anemones (orange, purple, blue, green) and seawater (gray) samples in
control (unfiltered seawater) or sterilized seawater (SW). The data set was rarefied to 16,993 reads per sample with technical triplicates pooled. Asterisks indicate
significant pairwise differences between sample types by genotype. Averages ± SE are shown. Statistical output for pairwise comparisons is in Supplementary
File S3. ∗fRSS was collected after hosting anemones for 7 days.

including corals (Damjanovic et al., 2019b) and sponges (Taylor
et al., 2007). It is plausible that horizontal transmission of
bacteria in a marine environment is an active process with
some host-associated bacteria capable of leaving if the conditions

are favorable. Here, by filter sterilizing the seawater, we may
have removed competitive bacterial taxa that prevented some
host-associated taxa from proliferating. Alternatively, filtering
of RSS could have removed non-soluble organic compounds
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FIGURE 2 | Principle coordinate analysis (PCoA) (A) for AIMS1-4 using a weighted UniFrac distance matrix for the anemone (circles) and seawater (triangles)
samples in the control (blue symbols) and sterile (red symbols) treatments. Each point is an individual sample with technical triplicates merged. Relative abundance of
bacterial families (B) for anemone and seawater samples in RSS and fRSS treatments between GBR-sourced anemone genotypes AIMS1-4. Families whose relative
abundance was less than 5% across the whole data set were pooled into a single category. ∗fRSS was collected after hosting anemones for 7 days.

that supported the growth of facultative taxa. Thus, fRSS might
not have been a favorable environment for a diverse set of
bacteria to persist.

Potential Key Microbiome Members of
Exaiptasia
Bacterial genera were identified as indicators that reflect the
treatment (RSS or fRSS) of the anemones and seawater (Figure 3).
Erythrobacter, Winogradskyella, Phaeodactylibacter, Muricauda,
and unresolved Rhodobacteraceae genera were significantly more
abundant in control anemones compared to “sterile” anemones.
At least three of these groups (Erythrobacter, Winogradskyella,
and Muricauda) are common members of the Symbiodiniaceae
microbiome (Lawson et al., 2017; Nitschke et al., 2020) and
some are known carotenoid producers (Prabhu et al., 2014;
Zhang et al., 2016; Setiyono et al., 2019), which could serve
as potent antioxidants protecting the algal symbiont during
periods of oxidative stress (Schmitt et al., 2014). Erythrobacter
produces enzymes that can inactivate common antibacterial
compounds (Jiang et al., 2018), while Winogradskyella produces
antifouling compounds (Dash et al., 2009). Muricauda has an
increased competitive advantage during stressful conditions due
to their production of the signal molecule indole (Wang et al.,
2017). Given their absence in healthy “sterile” anemones and
ability to outcompete other bacteria, they might be considered
opportunistic colonizers. The only bacterial genera that were
significantly more abundant in “sterile” anemones were Nisaea,
Thalassobaculum, and Alteromonas (AIMS3) and Tropicibacter
(AIMS4). These four genera are all Alphaproteobacteria, with the
former two being members of the order Thalassobaculales and
the latter two being Rhodobacterales members.

Several taxa were significantly more represented in the
anemones vs. seawater, regardless of genotype or seawater
filtration status. These included Alteromonadaceae, Labrenzia,

Terasakiellaceae, Coxiella, Nannocystaceae, Sphingobacteriales,
and Fulvivirga. These potentially obligate anemone-associated
taxa likely contribute to an important anemone feature like health
or metabolism. The taxa we identified as stably associated with
E. diaphana can be divided into those that are frequently found in
cnidarians or their algal symbionts, including Alteromonadaceae
(Rothig et al., 2017; Ahmed et al., 2019; Damjanovic et al.,
2019a; Epstein et al., 2019b), Labrenzia (Lawson et al., 2017),
Fulvivirga (Glasl et al., 2016; Ziegler et al., 2017; Epstein et al.,
2019b; Pootakham et al., 2019; Damjanovic et al., 2020) and
Sphingobacteriales (Meron et al., 2012; Kellogg et al., 2013;
Li et al., 2014; van de Water et al., 2017; Bonthond et al.,
2018), and those that occur much more infrequently, including
Terasakiellaceae, Coxiella, and Nannocystaceae. Labrenzia is part
of the core microbiome of the anemones’ Symbiodiniaceae
(Lawson et al., 2017) and may have a role in the production of
antioxidants such as dimethylsulfoniopropionate (DMSP) and its
breakdown products (Sunda et al., 2002). The DMSP biosynthesis
(Curson et al., 2017) and degradation genes, were found in
the whole genome sequences of E. diaphana-sourced Labrenzia
isolates (Dungan et al., 2020a). Sphingobacteriales in soil systems
are believed to be copiotrophic, referring to their ability to
metabolize a wide array of carbon sources (Hester et al., 2018).

Terasakiellaceae (Rhodospirallales) were reported in the cold
water coral Paragorgia arborea (Weiler et al., 2018) where
they were implicated in nitrogen cycling, and they could
have a similar role in the anemone holobiont. Coxiella are
members of the order Legionellales, which are described as
facultative or obligate intracellular parasites known to infect
invertebrate and vertebrate species (Garrity and Brenner, 2005),
including marine animals; their role in anemones should be
determined. While there are few references to Nannocystaceae
in the literature (i.e., Gignoux-Wolfsohn et al., 2020), the order
Myxococcales has been reported in coral metabarcoding studies
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FIGURE 3 | Heat map showing the relative abundance of bacterial taxa for each treatment group (control and “sterile” anemones, RSS and fRSS) for AIMS1-4
anemones. The color of each square corresponds with the relative abundance, which was log10 normalized. Taxa were selected from an indicator species analysis
with parameters At = 0.8 and Bt = 0.8, where A is the probability that a sample belongs to its target group or specificity and B is the probability of finding the genus
in samples belonging to the sample group or fidelity. ∗fRSS was collected after hosting anemones for 7 days.

(Godoy-Vitorino et al., 2017; Ziegler et al., 2017; Pollock et al.,
2018; Rosales et al., 2019). Myxococcales has been associated with
disease resistant corals (Rosales et al., 2019) and could have some
importance in pathogen control.

Mitigating Metabarcoding Biases
Recent evidence suggests that pooling triplicate PCRs prior
to sequencing is redundant and that a single replicate is
sufficient as modern amplicon data analysis is robust enough
to reduce the influence of artifacts introduced during the
PCR (Marotz et al., 2019). We compared triplicate technical
replicates from single reactions for amplicon sequencing of
the bacterial 16S rRNA gene V5–V6 region and found that
the standard error within was greater than the error between
biological samples from a single sampling replicate for the
observed number of ASVs. Because each sample was sequenced
in the same MiSeq run, we would expect less variation
between the technical replicates than the biological samples.
However, in the case of observed numbers of ASVs, there

was a strong, consistent effect of technical replicate. The
variation between technical replicates is likely an artifact of
errors that arise during the early stages of PCR, which are
then amplified exponentially, and chimera formation (Polz and
Cavanaugh, 1998), thus these results support the continued
practice of pooling triplicate PCRs prior to the indexing step
as outlined in the Earth’s Microbiome Project protocol (Gilbert
et al., 2014). Like the Earth’s Microbiome Project, having
standard procedures for cnidarian sampling and processing,
as well as the establishment of a mock community standard
comprised of coral-associated taxa, could mitigate some of these
potential biases.

CONCLUSION

The results from this study have implications for future
manipulation of the E. diaphana microbiome and perhaps
that of corals. Recent studies have shown that cnidarians can
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acquire bacteria introduced into their external environment
(Damjanovic et al., 2017, 2019b, 2020) and, with the
addition of probiotic bacteria, may have the ability to
mitigate the effects of climate change (Rosado et al., 2018).
Future studies should test the ability of E. diaphana to
acquire bacteria from their environment with a focus on
microbes that have potentially beneficial traits for the
holobiont.

The use of probiotics or synthetic bacterial communities has
been effective in treating disease in humans (de Vos, 2013;
Shetty et al., 2019) and aquaculture (Verschuere et al., 2000;
Ringø, 2020) as well as promoting plant growth (Qin et al.,
2016). Following these systems, modifying or engineering the
microbiome of corals with probiotics may be an option to
enhance coral recovery from bleaching or disease (Peixoto et al.,
2017; Rosado et al., 2018). These types of interventions will
likely require extensive experimentation, thus, the ability to work
with a reduced microbiome in a healthy anemone holobiont is
important. We found that culturing E. diaphana in fRSS vs. RSS
was able to halve the microbiome diversity while still maintaining
holobiont health and function. This finding will be invaluable
for bacterial bioengineering approaches to increase the climate
resilience of the coral holobiont.
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