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Fat greenling (Hexagrammos otakii) is an important aquaculture fish species in northern
China. Unfortunately, the increase of nitrogen in water due to residual feed and
animal feces has caused considerable losses to the fat greenling breeding industry.
Studies on detoxification metabolism and immune responses of fat greenling under
ammonia stress have not been carried out. We used high-throughput sequencing to
extract RNA from the liver of fat greenling, 48 and 96 h post-exposure, to water
containing 30 mg/L NH4Cl. A total of 87,675 high-quality unigenes were obtained
by transcriptome analysis, the N50 and mean length were 1,523 and 772 bp,
respectively. There were 320 and 272 genes (DEGs) identified in the two sampling
times (48 and 96 h), containing 132 and 137 significantly up-regulated genes, and
188 and 135 down-regulated genes, respectively. Ten DEGs were randomly selected
for validation by quantitative PCR. Further annotation and analysis indicated that
the DEGs were enriched in the MAPK-signaling pathway, FOXO-signaling pathway,
phosphatidylinositol-signaling pathway, cytokine-cytikine receptor interaction, Hippo-
signaling pathway, and neuroactive ligand-receptor interaction. These pathways were
mainly related to oxidative stress and immune responses. This research provides a
valuable resource to further study of detoxification metabolism and immune responses
of fat greenling under ammonia stress.

Keywords: fat greenling (Hexagrammos otakii), ammonia, transcriptomic analysis, detoxification, immune
responses, nitrogen

INTRODUCTION

Fat greenling (Hexagrammos otakii) is one of the most important marine economic fish, largely
because of its high-quality meat. In China, fat greenling are mainly distributed in the Yellow Sea,
the Bohai Sea, and the East China Sea (Habib et al., 2011; Hu et al., 2017). With rapid aquaculture
intensification and increased scales of production, nitrogen (especially ammonia) pollution from
the aquaculture industry has become increasingly problematic. Degradation of nitrogenous organic
matter, such as residuals from bait and fish excrement, increases the load of nitrogenous chemicals
in surrounding waters. Increases of ammonia in aquaculture water may result in disease or death
of fat greenling, which may restrict further development of the fat greenling aquaculture industry.

Ammonia nitrogen exists in two forms, namely, non-ionic ammonia (NH3) and ionic
ammonium (NH4

+); ionic ammonium is non-toxic to aquatic animals, but non-ionic ammonia
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may be harmful (Constable et al., 2003). Non-ionic ammonia
can directly affect gills of fish and has a significant impact
on enzymatic hydrolysis reactions and the stability of cell
membranes. In some cases aquatic animals die, causing severe
economic losses (DeFreitas et al., 2000; Koo et al., 2005). Studies
also have shown that long-term exposure to NH3-N could affect
the antioxidant enzyme activity of fish, destroy antioxidant
systems, and reduce immune capacity (Hegazi et al., 2010; Yang
et al., 2010, 2011). Under chronic ammonia stress, it also could
affect osmotic pressure balance and cause death of nerve cells. As
content of ammonia in tissues increases, damage to the liver and
kidney systems, congestion, and hepatic comas may ensue (Felipo
et al., 1994; Randall and Tsui, 2002; Eddy, 2005; Benli et al., 2008;
Wilkie et al., 2011). Many studies have shown that liver plays a key
role in homeostatic processes (Alvarellos et al., 2005; Alves et al.,
2010; Cordeiro et al., 2012). When a fish is under stress, the liver
provides energy needed by other tissues as amino acid catabolism
occurs (Vijayan et al., 1990; Mommsen et al., 1999; Aluru and
Vijayan, 2007), to help reduce risk of ammonia poisoning (Walsh
and Mommsen, 2001; Ip et al., 2004). There has been little study
of response mechanisms to ammonia stress in fat greenling.

RNA-Seq is a powerful high-throughput sequencing method,
which has been widely used in a variety of fish research, including
minnows (Gobiocypris rarus) (Gao et al., 2015), topmouth
culter (Culter alburnus) (Zhao et al., 2016), and Mandarin
fish (Siniperca chuatsi) (Hu et al., 2015). To better understand
the liver detoxification mechanism of fat greenling under
ammonia nitrogen stress, after ammonia nitrogen exposure, we
used transcriptomic profiling on fat greenling liver, targeting
differentially expressed genes (DEGs) and cellular signaling
pathways. We also focused analysis on the anti-oxidative system
and immune responses. In doing so, we provide new data on
detoxification of ammonia by fish livers.

MATERIALS AND METHODS

Experiment and Sample Collection
Fat greenling (400–500 g) were obtained from Luhai Aquatic
Technology Development Company of Qingdao, China. Fish
were acclimated in tanks (5 m3) containing aerated sand-filtered
seawater (salinity 31%, pH 7.9–8.1, dissolved oxygen 6 mg/L)
at 20 ± 0.5◦C for 3 weeks before experiments. During the
acclimation period, half of the water was replaced twice a day in
each tank, and fish were fed to satiation with special feed twice a
day. Fish were fasted for 48 h before (and then during) ammonia
exposure experiments.

Following studies that have previously suggested 96 h
LC50 values for fat greenling was 39.35 mg/L, we performed
a preliminary experiment to determine optimal ammonia
concentration. Based on results from our preliminary
experiment, 30 mg/L NH4Cl was chosen for the 48 and 96
h trials. Animals were randomly divided into the experimental
group (48, 96 h) and control group (seawater only) with 3
replicates, each of which had 6 fishes. After anaesthetizing
with MS-222, 3 fish livers from each replicate were removed
and immediately submerged in 10 ml RNAlater (Ambion,

United States) at 0 (as control), 48, and 96 h after exposure
experiment. Tissues were stored at -80◦C until RNA extraction.

RNA Isolation and Illumina Sequencing
RNA was extracted from each liver sample using Trizol reagent
(Invitrogen, United States) following the manufacturing
protocol. RNA degradation and contamination were detected
using a 1% agarose gel. RNA purity was measured using
the NanoPhotometer R© spectrophotometer (IMPLEN, CA,
United States). RNA concentration was measured using Qubit R©

RNA Assay Kit in Qubit2.0 R© Fluorometer (Life Technologies,
CA, United States). RNA integrity was measured using
the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, United States). The
RNA of each mixed sample is divided into two parts: one
is used for transcriptome sequencing and the other is used
for real-time fluorescence quantitative PCR (qRT-PCR) to
validate the reproducibility of DEGs data obtained from
transcriptome sequencing.

Sequencing libraries were generated using NEBNext R©UltraTM

RNA Library Prep Kit for Illumina (NEB, United States)
according to the manufacturer’s recommendations; index codes
were added to attribute sequences to each sample. Briefly,
purification of mRNA from total RNA with poly-T oligo-attached
magnetic beads. First, cDNA strands were synthesized using
random hexamer primers and M-MuLV reverse transcriptase
(RNase H-). Second, cDNA strand synthesis using DNA
polymerase I and RNase H. Select 150–200 bp cDNA fragments
and use the AMPure XP system to purify the library fragments
(Beckman Coulter, Beverly, CA, United States). The PCR
products were purified by AMPure XP system and library quality
was assessed on the Agilent Bioanalyzer 2100 system. Then,
sequencing was carried out by BioMarker (Beijing, China) using
the Illumina Hiseq 2000 platform.

Transcriptome Assembly, Quality
Control, and Gene Functional Annotation
The protocols of transcriptome assembly and annotation were
provided by BioMarker (Beijing, China). Briefly, raw reading
in fastq format is handled by an internal perl script. Clean
reads were obtained by deleting reads including adapters or
ploy-N, as well as low quality reads. Calculate the Q20,
Q30, GC-content, and sequence duplication level of the clean
data. All downstream analyses were based on high-quality
cleaning data. The clean reads were spliced and assembled into
transcript using Trinity software (Haas et al., 2011), and the
longest transcript under each gene was extracted as a unigene
(Altschul et al., 1990).

Gene function was annotated based on the following
databases: NR (NCBI non-redundant protein sequences); Pfam
(Protein family) (Coggill et al., 2012); KOG/COG/eggNOG
(Clusters of Orthologous Groups of Proteins) (Fedorova et al.,
2004); Swiss-Prot (a manually annotated and reviewed protein
sequence database) (Bairoch et al., 2003); KEGG (Kyoto
Encyclopedia of Genes and Genomes) (Kanehisa, 2000); and GO
(Gene Ontology).
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Quantification of Gene Expression Levels
and Differential Expression Analysis
Gene expression levels were estimated by RSEM for each
sample (Li and Dewey, 2011). The read count for each
unigene comes from the mapping results and then normalized
to FPKM (expected number of Fragments Per Kilobase
of transcript sequence per Millions base pairs sequenced)
(Trapnell et al., 2010).

Differential expression was performed using the DESeq R
package (1.10.1) with biological replicates (Anders and Huber,
2010). DESeq provides statistical routines for determining
differential expression of digital gene expression data using a
model based on the negative binomial distribution. The resulting
p-value uses Benjamini and Hochberg’s method to control the
false discovery rate. Genes with an adjusted p < 0.05 after DESeq
adjustment were assigned as differentially expressed (Benjamini
and Hochberg, 1995).

GO/KEGG Enrichment Analysis for DEGs
Gene topological (GO) enrichment analysis was performed on
differentially expressed genes (DEGs) using topGO R package
based on Kolmogorov-Smirnov test. All DEGs of fat greenling
liver were mapped to GO terms in the GO database. The
study set represented the GO terms of all identified DEGs. The
calculated p-value was corrected by Bonferroni, with p ≤ 0.05
as the threshold.

According to KEGG database resources, pathway enrichment
analysis was performed to find significantly enriched signal
transduction or metabolic pathways. KOBAS (Mao et al., 2005)
software was used to detect the enrichment of differentially
expressed genes in the KEGG pathway.

Quantitative Real-Time PCR (qRT-PCR)
To validate reliability of DEGs data obtained from the
transcriptome sequencing in liver of fat greenling, selected 10
differently expressed genes for qRT-PCR detection. Primers for
qRT-PCR were designed with Premier 5.0 (Table 1). Briefly,
the same RNA samples were used for sequencing, and the
cDNA was synthesized using the TransScript II All-in-One First-
Strand cDNA Synthesis SuperMix for qPCR (One-Step gDNA
Removal). The qRT-PCR was carried out using Bio-Rad CFX96.
All reactions were done in triplicate. The 30524 gene was used
as the internal reference. Expression levels were quantitatively
analyzed using the 2−1 1 CT method (Schmittgen and Livak,
2001), and all data were given in terms of relative mRNA
expression. Differences between the experimental group and the
control group were used to assess changes in gene expression.

RESULTS

Sequencing and de novo Assembly of
Fat Greenling Transcriptome Data
In total, 195,335 transcripts with an average length of 1,647bp
were generated. After assembling clean reads, 87,675 unigenes
were generated from 195,335 transcripts, with a N50 and mean

length of 1,523 and 772 bp, respectively, were generated from
195,335 transcripts (Table 2). There were 8,007 unigenes larger
than 2,000 bp (Figure 1). The sequencing data of each treatment
and control group have been stored in NCBI sequence read
archive database with the accession number SAMN11155636.
The major characteristics of each library, including clean reads,
GC content, and Q30, are summarized in Table 3.

Functional Annotation of Unigenes
Functional annotation of unigenes was performed using the
Blast comparison database. The annotated database includes
COG, GO, KEGG, KOG, Pfam, Swissprot, eggNOG, and NR.
A total of 28,062 unigenes were successfully matched in these
databases, accounting for 32% of all unigenes (Table 4). Results
showed that 6,724 unigenes (7.67%) successfully matched in the
COG database, 14,559 unigenes (16.6%) in GO, 16,131 unigenes
(18.4%) in KEGG, 17,437 unigenes (19.89%) in KOG, 18,757
unigenes (21.4%) in Pfam, 14,111 unigenes (16.1%) in Swissprot,
26,230 unigenes (29.92%) in eggNOG, and 24,567 unigenes
(28.02%) in the NR database (Table 4).

For KOG, a total of 17,437 unigenes (19.89%) were assigned
to 26 descriptions. Main categories included: signal-transduction

TABLE 1 | Sequences of primers used in qRT-PCR analysis.

Primer name Sequence (5′–3′)

30524-F GAAACGACCACACGCTTTG

30524-R TGTGTTCCAGTGTATGAAGCC

AACS-F AGTACAATGCCGATGGAGAAG

AACS-R GGTGTATGGAATGTCTCTGGTC

DUSP2 -like-F ACTTTAACCTCTACTGTAGCTGC

DUSP2 -like-R TGACGCTGTTCCTTCTGTG

LSS-F AGTCCCGCTCTTCATTCTTTG

LSS-R GAAGGAGCAGGGATATAAGGC

EGR1-F ACTGGTGGGCCTTGAGCTG

EGR1-R CTTCTTAGTCAGACTGGAGG

TNFAIP3-F CTCATCGAGATCCGTTGCGC

TNFAIP3-R CCTCATTCCTCCACCGGTAG

Nocturnin X1 -F ACGGATCATGCAGTGGAATATAC

Nocturnin X1 -R AGGATGTCTGGGCGGTAG

MBP-1-F ACACTAAGGAAAGGCAGGAAG

MBP-1-R CAACCCACTCCCAACTACAC

FKBP5-like-F GCTAGAGATGGAGTGTGGTTC

FKBP5-like-R CGCTAAATTGAGGTGTGCTG

MAPKKK8-like-F GGCTCAAGATGACTGGACAAG

MAPKKK8-like-R TGACATCTCTTCCAACCACTG

RNF19A-E3-F GTACAGTGAAACTCATGCCATG

RNF19A-E3-R TTCTGCCTGGAGTTGAAGC

TABLE 2 | Summary of sequence analysis.

Parameter Transcript Unigene

Total number 195,335 87,675

Total length (bp) 321,767,110 67,699,486

N50 (bp) 3,076 1,523

Mean length (bp) 1,647 772
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FIGURE 1 | Length distribution of assembled unigenes. X-axis: length, Y-axis: Unigene number.

TABLE 3 | Quality of sequencing.

Sample Clean data Base number GC% Q30%

CG1 24,850,360 7,413,583,918 51.81 92.35

CG2 38,754,017 11,572,797,550 51.79 92.71

CG3 20,214,327 6,024,979,314 51.74 91.54

TG48h-1 31,497,373 9,376,319,502 52.14 90.90

TG48h-2 22,533,561 6,695,054,972 52.00 90.89

TG48h-3 34,948,232 10,408,738,670 51.38 90.70

TG96h-1 21,707,902 6,452,548,686 51.78 90.12

TG96h-2 32,131,041 9,564,560,080 51.85 91.31

TG96h-3 36,833,966 10,967,585,388 51.64 89.97

TABLE 4 | Annotation of unigenes in different database.

Database Number of annotated unigenes Percentage (%)

COG 6,724 7.67

GO 14,559 16.6

KEGG 16,131 18.4

KOG 17,437 19.89

Pfam 18,757 21.4

Swissprot 14,111 16.1

eggNOG 26,230 29.92

Nr 24,567 28.02

All_Annotated 28,062 32

Total Unigenes 87,675 100

mechanisms, post-translational modification, protein turnover,
chaperones, and transcription (Figure 2). In the eggNOG
database, a total of 26,230 unigenes (29.92%) were assigned

to 26 descriptions. Among them, genes involved were signal
transduction mechanisms, post-translational modification,
protein turnover, chaperones, and intracellular trafficking,
secretion, and vesicular transport (Figure 3).

After GO annotation, the genes divided into three ontologies:
biological process (BP), cellular component (CC), and molecular
function (MF). There were 14,559 unigenes (16.6%) in the GO
database which aligned with 58 functional terms. In the CC
designation, these unigenes were related to the categories: cell,
cell part, organelle, and membrane. In the MF designation, these
unigenes mainly related to binding and catalytic activity. The
BP category related to cellular process, metabolic process, single-
organism process, and biological regulation (Figure 4).

Identification and Analysis of DEGs
Analysis revealed 320 and 272 genes showed different expression
in the two sampling times (48 and 96 h). Among them, the
significantly up-regulated unigenes were 132 and 137, and
the significantly down-regulated unigenes were 188 and 135,
respectively (Figure 5). The DEGs of control group and 48 h (G0),
the DEGs of control group and 96 h (G2), the DEGs of 48 and 96
h (G6) (Figure 6).

GO Functional Classification of DEGs
Go enrichment analysis of DEG showed that these genes were
significantly enriched in three main functional categories (based
on a value of p ≤ 0.05). GO-enrichment categories at 48
and 96 h are similar (Figure 7). In the BP category, the
DEGs were significantly enriched in metabolic process, single-
organism process, and cellular process. In the CC category,
the DEGs were significantly enriched in cell part and cell. In
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FIGURE 2 | The KOG function classification of assembled unigenes. X-axis: the function class of KOG, Y-axis: the frequency of unigens.

FIGURE 3 | The eggNOG functional classification of assembled unigenes. X-axis: the function class of eggNOG, Y-axis: the frequency of unigens.

MF category, the DEGs were significantly enriched in catalytic
activity and binding.

KEGG Pathway Classification of DEGs
Since there is no reference genomic sequence for fat greenling,
the function and classification of the selected genes are obtained
by comparison with sequence homology analysis of related
gene sequences of the species in Table 5. Function and pathway

allocation of DEGs were performed after ammonia exposure
48 and 96 h, and all DEGs were analyzed against the KEGG
database. The top 20 pathways with the most abundant DEGs
involved in with ammonia exposure are shown in Figure 8,
and pathway-enrichment analysis showed that DEGs were
mainly enriched in carbon metabolism and biosynthesis of
amino acids. After ammonia exposure for 48 and 96 h, DEGs
enriched in carbon metabolism were dominant. DEGs induced
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FIGURE 4 | GO classification of assembled unigenes. X-axis: GO classification, including biological process, cellular component, and molecular function, Y-axis: The
left ordinate is the percentage of genes; the right ordinate is the numbers of genes.

FIGURE 5 | MA plot of differentially expressed genes between ammonia exposure and control group (A, 48 h; B, 96 h). Volcano Plot of differently expressed genes
after ammonia exposure. Each dot represents a gene. X-axis: The logarithmic value of the multiple of the difference in the expression of a gene between two
samples, Y-axis: The negative pair value of the error detection rate.
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FIGURE 6 | Venn diagrams indicating the differentially expressed genes in 48 and 96 h after ammonia exposure. (A) Upregulated genes; (B) downregulated genes.

by exposure mainly were reflected in environmental information
processing that play an important role in immune function,
oxidative stress, and apoptosis. Seven subclasses related to
immune function, oxidative stress, and apoptosis, and further
elaborate on the basis of KEGG pathway analysis, including
the MAPK-signaling pathway, FOXO-signaling pathway,
phosphatidylinositol-signaling pathway, cytokine-cytikine
receptor interaction, Hippo-signaling pathway, and neuroactive
ligand-receptor interactions (Table 5). A total of 16 DEGs were
induced, of which three genes were up-regulated and 13 genes
were down-regulated. These DEGs are associated with oxidative
stress and apoptosis.

Validation of Expression Genes by
qRT-PCR
To verify RNA-seq results, we randomly selected four up-
regulated and six down-regulated DEGs with different fold
changes for qRT-PCR analysis. As shown in Figure 9, in both
experiments, the expression of these 10 genes showed the same
pattern of up-regulation and down-regulation. The qRT-PCR
analysis results are thus consistent with data from the RNA-seq.

DISCUSSION

Fat greenling is one of the most common commercial
aquatic animals. Studies on fat greenling mainly have focused
on pollution biology and physiology; few have focused on
transcriptome analysis, with the exception of spleen analysis
following V. harveyi infection (Diao et al., 2019). We carried
out high-throughput sequencing nine samples of fat greenling
under ammonia exposure. A total of 78.48 Gb of clean data were
obtained, the clean data of each sample reached 6.02 Gb, and
the Q30 was above 89.97%, indicating that the sequencing effect
was good and provided a credible basis for subsequent assembly.
A total of 87,675 unigenes were obtained after assembly, of
which 16,756 unigenes were over 1 kb in length, 28,062 unigenes
were successfully annotated by blast alignment databases. The
experimental sequencing data coverage was high, and the library
construction was successful. These results contribute to our

understanding of fat greenling genes, providing data for the
future study of the species.

Ammonia is a highly toxic environmental pollutant (Ye et al.,
2018). Previous reports have suggested that high concentrations
of ammonia in water accumulate in different tissues of aquatic
organisms, triggering oxidative stress, immunosuppression, and
other physiological problems (Cheng et al., 2015; Zhang et al.,
2015; Li et al., 2016). GO-enrichment analysis showed that DEGs
in fat greenling liver under ammonia exposure were significantly
enriched in terms of cellular process, metabolic process, and
single-organism process in BF, which were correlated with
oxidative stress and immunological function. KEGG analysis
showed that the DEGs were mainly involved in environmental
information processing, including the MAPK-signaling pathway,
FOXO-signaling pathway, phosphatidylinositol-signaling
pathway, cytokine-cytikine receptor interaction, Hippo-signaling
pathway-fly, and neuroactive ligand-receptor interactions. These
pathways were mainly associated with oxidative stress and
immunological functioning. Several important KEGG pathways
to be discussed below are likely to be involved in the response of
fat greenling under ammonia exposure.

MAPK Signaling Pathway
Eukaryotic cells regulate gene expression through a cascade of
MAPK (mitogen-activated protein kinase) signals under various
stressful conditions, such as oxidative stress inflammation (Obata
et al., 2000; Kyriakis and Avruch, 2001; Lee and Choi, 2003;
Marshall et al., 2005; Feidantsis et al., 2012). In this study, some
DEGs in the MAPK pathway were associated with cell damage,
disease, and immunity, including NF-kappa-B, fibroblast growth
factor (FGF-13), mitogen-activated protein kinase kinase kinase
8 (MAP3K8), interleukin-1 receptor (IL-1RI), proto-oncogene
and dual-specificity protein phosphatase 2 (Dusp2)
(Table 5). NF-kappa-B is a pleiotropic transcription factor
existing in almost all cell types and is the end point
of a series of signal transduction events triggered by
a series of stimuli related to biological processes such
as inflammation, immunity, differentiation, cell growth,
tumorigenesis, and apoptosis (Lee et al., 2013). Studies
have shown that medaka defensins are important cationic
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FIGURE 7 | Gene ontology (GO) classification of DEGs. X-axis: GO classification, including biological process, cellular component, and molecular function; Y-axis:
The left ordinate is the percentage of the numb er of DEGs, and the right ordinate is the number of DEGs (darker bars) and the number of all genes (lighter bars) (A,
48 h; B, 96 h).
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TABLE 5 | List of DEGs involved in environmental information processing in
control and ammonia exposure treatments.

Pathway/Gene Species Log2FC

MAPK signaling pathway

Nuclear factor NF-kappa-B p100 subunit
isoform X4

Larimichthys crocea −1.38

Nuclear factor NF-kappa-B p100 subunit
isoform X1

Lates calcarifer −1.48

Putative fibroblast growth factor 1 Notothenia coriiceps −1.6

Mitogen-activated protein kinase kinase
kinase 8-like isoform X1

Neolamprologus brichardi −1.64

Interleukin-1 receptor type 2-like Seriola dumerili 2.04

Fibroblast growth factor 13-like isoform X2 Lates calcarifer 2.19

Proto-oncogene c-Fos-like Notothenia coriiceps 2.96

Dual specificity protein phosphatase 2-like Lates calcarifer 2.72

FOXO-signaling pathway

G1/S-specific cyclin-D1-like Larimichthys crocea −1.55

Phosphoinositide 3-kinase regulatory
subunit 5-like isoform X1

Amphiprion ocellaris −1.68

Insulin-like growth factor 1 receptor, partial Stegastes partitus −2.05

Phosphatidylinositol-signaling pathway

Phosphoinositide 3-kinase regulatory
subunit 5-like isoform X1

Amphiprion ocellaris −1.68

Cytokine-cytikine receptor interaction

C-X-C chemokine receptor type 3-2-like Amphiprion ocellaris 1.55

Hippo-signaling pathway-fly

Transcriptional coactivator YAP1 isoform X1 Ictalurus punctatus −2.54

Neuroactive ligand-receptor interaction

Prostaglandin E2 receptor EP4 subtype-like
isoform X1

Seriola dumerili −1.47

Hippo signaling pathway -multiple species

Transcriptional coactivator YAP1 isoform X1 Ictalurus punctatus −2.54

antimicrobial peptides, which have been shown to have a
relationship with NF-kappa-B and play an important role
in resistance to pathogens (Zhao, 2008). Down-regulation

of NF-KB is triggered by autoimmune diseases, chronic
inflammation, and cancers.

MAP3K8 (TPL-2) is associated with the TLR-signaling
pathway; TLRs target a common signaling pathway
that causes activation of NF-KB, MAPKs, ERK, P38,
and JNK. When cells receive signal stimulation, p105
is phosphorylated (Salmeron et al., 2001), causing its
ubiquitination to release tpl2; the released tpl2 is activated
by phosphorylation of the site, thereby activating MEK1/2
and its downstream ERK1/2, realizing the entire MAPK signal
(Lang et al., 2003).

Interleukin type I receptor (IL-1RI) intracellular regions
are also present in the Drosophila Toll protein, a discovery
that highlights the role members of the il-1 family have in
innate responses (Gay and Keith, 1991). IL-1β is a major
inflammatory cytokine that also plays a role in inflammation
associated with many chronic diseases (Wettlaufer et al.,
2016). The expression of IL-1RI in kidney, spleen, liver,
and sputum of Salmo salar was up-regulated after LPS
and TNF-α stimulation, indicating that IL-1RI plays a
major role in inflammatory response by regulating IL-1β

(Subramaniam et al., 2002).
Under normal conditions, intracellular c-fos is highly

conserved and has only low levels of expression which are
difficult to detect (Blume et al., 1999). When the body is
stimulated by external factors, intracellular c-fos can be induced
rapidly (Usuki et al., 2000; Dong et al., 2005). A variety
of extracellular signals can activate downstream transcription
factors through second messengers, induce Fos protein biological
expression, act on target genes, and then respond to external
stimuli (Akins et al., 1996). At present, a variety of fish
c-fos genes have been cloned, including in Oncorhynchus
mykiss (Matsuoka et al., 1998), Rivulus marmoratus (Li et al.,
2004), Dicentrarchus labrax (Rimoldi et al., 2009), Fugu
rubripes (Trower et al., 1996), and Oryzias latipes (Okuyama
et al., 2011). We found that ammonia exposure led to the
expression of the MAPK-signaling pathway in the liver of

FIGURE 8 | Scatterplot of enriched KEGG pathways for DEGs (A, 48 h; B, 96 h). Sizes of bubbles indicates the number of DEGs in the corresponding pathway, and
the colors of the bubble represent the q-value, q-value is the P-value after multiple hypothesis test.
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FIGURE 9 | Validation of RNA-seq data by qRT-PCR analysis. Relative expression of gene expression was log2 (fold change) (A, 48 h; B, 96 h). The relative
expression of 10 random genes, were determined by RT-qPCR (blue column) and RNA-seq (red column). Error bars represented standard deviation (SD, n = 3).

fat greenling, and the response is used to mobilize the up-
regulated and down-regulated expression of related genes to
cope with stress.

FOXO-Signaling Pathway and
Phosphatidylinositol-Signaling Pathway
Studies have shown expression of related factors in the
FOXO-signaling pathway, which can increase expression of
related antioxidant defense system enzymes (Cox and Lane,
1995). Down-regulated expression of phosphoinositide 3-kinase
(PI-3K) genes occurs in both the FOXO-signaling pathway
and phosphatidylinositol-signaling pathway. Phosphoinositide
3-kinase is an enzyme with serine/threonine protein kinase

activity, consisting of two chains, P85 and P110, and is
involved in immune cell activation signal transduction and
activation. Reports have shown that in T cells, a variety of
cytokines, antigen receptors, and environmental factors stimulate
activation of PI-3K. Akt is activated accordingly, as well as other
downstream transcription factors, in response to viruses and
other environmental factors. As such, they play a key role in
maintaining a positive immune response of T cells, and promote
development of T cells during the immune response (Sasaki et al.,
2002). We showed expression of G1/s-specific cyclin-d1 and the
PI-3K gene were down-regulated, and we speculate that ammonia
had a negative regulatory effect on the PI-3K signal pathway.
We observed that, compared with the control group, fish showed
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sluggish activity, and some fish had ulcerations on their skin,
indicating that stress resistance of fish may have been decreased.

Cytokine-Cytikine Receptor Interaction
and Hippo-Signaling Pathway-Fly
Chemokines are low-molecular (mostly 8–10KD) proteins that
are capable of attracting leukocytes to the site of infection, and
they play an important role in the inflammatory response. C-X-
C chemokine receptor type 3 (CXCR3) plays an important role
in regulating the transport and function maintenance of T cells
(Groom, 2011). There are many studies that have focused on
induction of chemokines and chemokine receptors by pathogens
and environmental stimuli. For example, acute toxicity of sodium
nitrite, along with bacterial, fungal, and viral infections, can
induce the expression of CXCR3a in Channa striatus (Bhatt et al.,
2014). LPS also can induce the expression of CXC chemokines in
carp (Savan et al., 2003).

We found CXCR3 involved in cytokine and cytokine receptor
pathways was up-regulated, as well as were genes in other
immune-related pathways, including interleukin-1 receptor type
2-like, fibroblast growth factor 13-like isoform X2, proto-
oncogene c-fos like, and dual-specificity protein phosphatase
2-like. These are helpful for screening immune-related genes and
analyzing their expression.

The Hippo-signaling pathway is mediated through the
downstream effector molecule YAP (yes-associated) protein
(transcriptional coactivator with pdz-binding motif)/TAZ
(transcriptional coactivator with pdz-binding motif), and
regulates cell proliferation, apoptosis, differentiation, and tissue
size by inhibiting cell proliferation and promoting apoptosis; it
also plays an important role in development and homeostasis
(Pan, 2007; Saucedo and Edgar, 2007; Zhao et al., 2008, 2010,
2011; Zhang et al., 2009). The core members of the Hippo-
signaling pathway were first identified by genetic screening in
Drosophila. Hippo-signaling pathways are highly conservative,
and include MST1/2, SAV1, LATS1/2, MOB1A/B, and YAP/TAZ
(Chan et al., 2005; Dong et al., 2007; Zhao et al., 2007).

At present, there is no report thorough published examination
on the HIPPO signaling pathway in fishes. YAP1 also is associated
with apoptosis. It is speculated that the down-regulation of YAP1
gene under ammonia-N stress is related to the occurrence of
various diseases.

Neuroactive Ligand-Receptor Interaction
and Hippo Signaling Pathway-Multiple
Species
Prostaglandin E2 (PGE2) is an important arachidonic acid
metabolite with strong immune activity, which can regulate the
development, function, and survival of immune cells (Tilley

et al., 2001). E-prostanoid receptors (EPs) are divided into
four subtypes: EP1, EP2, EP3, and EP4. PGE2 ACTS on
T lymphocytes and dendritic cells through EP4 receptors to
promote differentiation of Th1 cells and the amplification of
Th17 cells. Recent studies have shown that PGE2-EP4 signaling
plays an important role in some autoimmune diseases (Libioulle
et al., 2007; Yao et al., 2009; Chen et al., 2010; Ngoc et al., 2011).

In summary, our results show that fat greenling experience
ammonia-driven physiological stress. A number of DEGs were
significantly enriched, and related to pathways of immune or
oxidative stress. Parallel results from GO functional analysis and
KEGG-signaling pathway classification analysis, suggest we have
identified various genes related to immune and oxidative stress.
Ammonia exposure clearly seems to affect liver function, and our
data provide a foundation for future research on this ecologically
and economically important fish species.
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