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In many areas, storm surges caused by tropical or extratropical cyclones are the main
contributors to critical extreme sea level events. Storm surges can be simulated using
numerical models that are based on the underlying physical processes, or by using
data-driven models that quantify the relationship between the predictand (storm surge)
and relevant predictors (wind speed, mean sea-level pressure, etc.). This study explores
the potential of data-driven models to simulate storm surges globally. A multitude of
predictors (obtained from remote sensing and climate reanalysis) along with predictands
(from tide gage observations and storm surge reanalysis) are utilized to train and validate
data-driven models to simulate daily maximum surge for the global coastline. Data-
driven models simulate daily maximum surge better in extratropical and sub-tropical
regions [average correlation and root-mean-square error (RMSE) of 0.79 and 7.5 cm,
respectively], than in the tropics (average correlation and RMSE of 0.45 and 5.3 cm,
respectively). For extreme events, the average correlation decreases to 0.54 (0.33) and
RMSE increases to 14.5 (13.1) cm for extratropical (tropical) regions. Models forced with
remotely sensed predictors showed a slightly better performance (average correlation of
0.69) than models forced with predictors obtained from reanalysis products (average
correlation of 0.68). Results also highlight a significant improvement (i.e., average
correlation increases from 0.54 to 0.68; RMSE reduces from 11 to 7 cm) over the Global
Tide and Surge Reanalysis (GTSR), derived from the only global hydrodynamic model.
For approximately 70% of tide gages, mean sea-level pressure is the most important
predictor to model daily maximum surge. Our results highlight the added value of data-
driven models in the context of simulating storm surges at the global scale, in addition
to existing hydrodynamic numerical models.

Keywords: data-driven modeling, machine learning, Random Forest, storm surge, Global Tide and Surge
Reanalysis, atmospheric reanalysis, remote-sensing, ERA-Interim

INTRODUCTION

Storm surge is a rise in the coastal water level due to low atmospheric pressure and strong winds
(Muis et al., 2016), which could be induced by tropical or extratropical cyclones (Salmun and
Molod, 2015), but also modulated by the coastal bathymetry (Pore, 1964). The greatest destruction
from tropical cyclones stems from storm surge driven coastal flooding (McInnes et al., 2003) and
half of the fatalities owed to Atlantic tropical cyclones are caused by storm surge (Rappaport, 2013).
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Many recent examples have demonstrated the vulnerability of
coastal populations across the globe to such extreme events,
including Hurricanes Katrina in 2005 and Sandy in 2012 in
the United States, Cyclone Nargis in 2008 in Myanmar, or the
1970 Bhola Cyclone, which alone caused 300,000 fatalities along
the coasts of Pakistan and India (Karim and Mimura, 2008).
Storm surges caused by extratropical storms can also lead to high
impacts, such as the 1993 storm of the century that affected much
of the eastern United States (Thompson et al., 2013), Cyclone
Xynthia in 2010 in France (Chadenas et al., 2014), and the North
Sea flood in 2013 in northern Europe (Dangendorf et al., 2016).

There are two commonly used and distinct approaches
to modeling storm surges, viz. dynamic numerical methods
and data-driven methods. Harris (1962) expounded on the
difference between the two approaches; the former integrates
the governing shallow water equations explaining the underlying
physical processes that induce storm surges, whereas the latter
quantifies the relationship between predictors (the number
of which can vary) and predictands using statistical methods
and/or machine learning. Numerical models require high quality
bathymetric and topographic data to simulate storm surges, and
are computationally expensive. Data-driven approaches, on the
other hand, do not divulge the fundamental physical processes
involved in storm surge genesis and propagation, but they offer
a simple and fast way to simulate storm surges by making
efficient use of the data. However, these models rely on availability
of historical data of predictors and predictands to identify the
relationships between them.

Many studies have been conducted at various spatial scales
and with different techniques to model storm surges. For
example, Haigh et al. (2014) presented a combined statistical-
numerical modeling approach (i.e., statistically simulated tropical
cyclones and numerically simulated surges) toward estimating
the present-day extreme water level probabilities for the whole
coastline of Australia. Due to coarse temporal (6 hourly) and
spatial (2.5◦) resolution of the model, extreme surge events
were underestimated. Muis et al. (2016) presented the first
global reanalysis of storm surges, termed Global Tide and Surge
Reanalysis (GTSR), based on hydrodynamic modeling, using
the Delft3D Flexible Mesh Suite with D-Flow. They reported
an root-mean-squared error (RMSE) of less than 0.45 m for
90% of the stations for the 1 in 10-year water level. However,
extreme sea levels are highly underestimated in the tropics.
Vousdoukas et al. (2016) used a similar model and studied the
effect of climate change on extreme storm surge levels along
the European coastline by forcing the hydrodynamic model
with wind and pressure fields from climate models. For the
validation period, they reported RMSE below 0.1 m for most of
the Mediterranean, the Atlantic coast, and the Norwegian Sea.
Montblanc et al. (2019) demonstrated the implementation and
validation of the pan-European storm surge forecasting system
(EU-SSF) based on an unstructured hydrodynamic storm surge
and tidal model. An average RMSE of below 0.1 m was reported,
whereas extreme surge events (>99th percentile) were simulated
with lower than 0.25 m RMSE.

In the realm of statistical modeling, Salmun (2009) applied
multiple regression analysis to model the maximum storm surge

for a given storm at The Battery tide gage, New York. Using
statistical-empirical wind-surge formulations, Dangendorf et al.
(2014) modeled the relationship between surge, wind, and sea
level pressure (SLP) at the German North Sea coast and reported
a correlation of 0.91 and RMSE of 13.9 cm for the daily
surges at the Cuxhaven tide gage. Wahl and Chambers (2016)
implemented simple and multiple linear regression models to
investigate the relationship between multidecadal extreme sea
level variation and large-scale climate variability along the
United States coastline. Cid et al. (2017) applied multiple linear
regression to provide a global storm surge database (covering
the period from 1871 to 2010) relating mean SLP and gradients
from ERA-Interim reanalysis, and using the Twentieth Century
Reanalysis (20CR) (Compo et al., 2011) to construct the database.
They reported a correlation >0.65 for the majority of the
modeling domain, which includes the open ocean. Based on
a similar methodology, Cid et al. (2018) reconstructed daily
maximum storm surges for the Southeast Asia region from 1866
to 2012. They found correlation of 0.7 or higher for 50% of
the tide gages in the region. However, lower model accuracy
was found in semi-enclosed areas and around small islands. In
addition to statistical methods, models that are based on machine
learning are becoming popular due to their low computational
cost and efficiency in linking predictor and predictand data.
This makes them possible candidates for simulating global storm
surges, since significantly more computational time would be
required to do the same analysis using dynamical numerical
methods. For example, Bezuglov et al. (2016) used artificial neural
network (ANN) models to predict storm surges along the North
Carolina coastline with a maximum mean squared error (MSE)
of 0.0175 m2 and a minimum correlation coefficient of 0.83.
French et al. (2017) combined ANNs with a 2D hydrodynamic
model to predict flood extent and damage potential at the Port
of Immingham, United Kingdom. The study showed that model
performance with ANNs (correlation of 0.94, RMSE of 0.06 m)
had higher model accuracy compared to the national numerical
tide-surge model (correlation of 0.82, RMSE of 0.09 m).

Here, we explore data-driven modeling approaches (a
combination of statistical and machine learning techniques)
to simulate global storm surges, using various predictor data
sets. Such models can be used to develop long storm surge
reanalyses (when validated against long tide gage records)
and future projections based on individual climate models,
or different model ensembles, something computationally very
expensive to implement with numerical storm surge models.
Our first objective is to train and validate two data-driven
models (statistical and machine learning based) in order to
simulate daily maximum storm surge at quasi-global scale.
This is achieved by using remotely sensed meteorological and
oceanographic variables (as predictors) with observed storm
surges (as predictand) from a large number of tide gages
distributed along the global coastline. Our second objective is
to investigate the difference in performance of the data-driven
models when using predictors from remotely sensed or climate
reanalysis products. Our third and last objective is to compare
and contrast simulation results from the data-driven models with
GTSR, derived with a state-of-the-art hydrodynamic global storm
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surge model. To allow for a direct comparison, the data-driven
models are trained, at this stage, with the same climate reanalysis
used for the hydrodynamic modeling.

DATA

Predictors
The data for this study come from several sources. Oceanographic
and meteorological predictors used for the first objective are
obtained from remotely sensed satellite products, where available.
Table 1 outlines the different data and their respective temporal
and spatial resolutions. 10 m wind speed from 1987 onward
is acquired from the Cross-Calibrated Multi-Platform (CCMP)
wind vector analysis product with a spatial resolution of
0.25 × 0.25 degrees and a temporal resolution of 6 h (Atlas
et al., 2011). Daily global sea surface temperature (SST) from
1998 onward with a 0.25 × 0.25 degree spatial resolution
is obtained from the microwave optimally interpolated SST
product. Daily global precipitation from 1996 to 2015 with a
1 × 1 degree spatial resolution is acquired from the Global
Precipitation Climatology Product (GPCP) (Huffman and Adler,
2001). SLP from 1871 to 2014 with 6 hourly temporal and
1 × 1 degree spatial resolution is obtained from the 20CRV2c
(Poli et al., 2016). This predictor is obtained from a climate
reanalysis since there is no global remote sensing product
available for SLP. Furthermore, Cid et al. (2017) showed that
the minimum SLP values during storms are more noticeable
in 20CR than in ERA-Interim. For the second and third
objective, 10 m wind speed and SLP data with a spatial
resolution of 0.75 × 0.75 degrees and 6 hourly temporal
resolution from the ERA-Interim reanalysis (Dee et al., 2011) are
used as predictors.

Predictands
Daily maximum surge is used as the predictand and derived from
two different data sets. Observed sea level data for individual
tide gages is obtained from the Global Extreme Sea Level
Analysis (GESLA-2) database (Woodworth et al., 2017) and
used to extract the daily maximum surge values (see section
“Methodology”). The spatial distribution of the tide gages and
available years of data during the 1979–2014 period are shown
in Figure 1. In addition to in situ data, daily maximum surge
values for the global coastline are obtained from GTSR (Muis
et al., 2016). The data set (covering the period 1979–2014) is
a near-coast global reanalysis of storm surges. It is obtained
by forcing a hydrodynamic model, the Global Tide and Surge
Model (GTSM) based on the Delft3D modeling suite, with
wind speed and atmospheric pressure from the ERA-Interim
reanalysis. Model outputs are provided in 16,395 locations along
the global coastline. In order to compare the performance of the
data-driven models with the hydrodynamic model, the closest
GTSR grid points (out of the 16,395 locations) for each tide gage
are identified and daily maximum surge values at those specific
grid points are extracted. These values are then compared with
daily maximum surge derived from the data-driven models and
observed daily maximum surge.

METHODOLOGY

Harmonic Analysis
Hourly sea level time series from the tide gages are de-trended
by removing the annual mean sea level (Figure 2). Following
this, the T_Tide Matlab package (Pawlowicz et al., 2002) is
used to perform a classical harmonic analysis with 67 tidal
constituents on a year-by-year basis. Predicted astronomical
tides are subtracted from the de-trended sea level time series to
separate non-tidal residuals. The UTide (Unified Tidal Analysis
and Prediction Functions) (Codiga, 2011) package has also
been tested with negligible differences in the results. Non-
tidal residuals, considered in this study as storm surges, are
used as predictands when developing and implementing the
statistical and machine learning techniques outlined below. In
some instances erroneous spikes were detected (and removed)
from the storm surge time series, resulting from phase shifts
between the predicted tide and observed water levels (see also
section “Directions for Future Research”). The effects of waves
are not included in the analysis.

Predictor Selection
After identifying the daily maximum surge values for each tide
gage, we localize meteorological and oceanographic predictors
around each tide gage. Predictors within a 10 × 10 degree grid
around the tide gages are considered for the analysis. In order
to reduce the complexity of the models and the multicollinearity
of predictor features, principal component analysis (PCA) is
implemented (as in Cid et al., 2017, 2018). PCA is a multivariate
analysis technique that reduces the dimensionality of a data set
comprised of interrelated variables, while preserving the largest
possible fraction of variability (Jolliffe, 2002). PCA transforms
the original data to a new set of variables commonly known
as principal components (PCs), which are uncorrelated and are
sorted by how much of the variance in the original dataset is
explained by each PC. Data from every grid point within the
10 × 10 degrees region around each tide gage are considered as
predictors. Hence, the total number of predictors can get as high
as 5,000. In order to reduce the large dimension, the PCs that
explain 90% of the variance in the original data are selected for
further analysis. This reduces the number of predictors to about
300–500. We also tested using all PCs that explain 95% of the
variance. This did not improve the model performance, but adds
more predictors and hence (unnecessary) model complexity.

Model Fitting
The first technique we test is based on multiple linear regression
and we follow a stepwise procedure where we iteratively add or
remove PCs of the respective predictors, only retaining those
that provide significant information (p < 0.05). This reduces the
complexity of the model while giving the best result possible. The
daily maximum surge at a specific tide gage is then computed with
the following equation:

Surge (t, d) = a+
N∑

i=1

M∑
j=1

bij × PCij(t, d)
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TABLE 1 | Description of implemented data-driven models.

Model type Model ID Predictors Source Spatial scale Temporal scale Number of predictors Simulation period Time-lagged

Linear regression LR-RS1 Wind speed (U, U2, U3, V, V2, V3)2 CCMP3 0.25◦ × 0.25◦ Daily maximum ∼50 1998–2014 X

Mean sea level pressure (SLP) 20CRV2c4 2◦ × 2◦ Daily minimum

Sea surface temperature (SST) MW OI5 0.25◦ × 0.25◦ Daily maximum

Precipitation (GPCP) GPCP6 1◦ × 1◦ Daily accumulated

LR-RS-lag Wind speed (U, U2, U3, V, V2, V3) CCMP 0.25◦ × 0.25◦ 6 hourly ∼300
√

Mean sea level pressure (SLP) 20CRV2c 2◦ × 2◦
√

Sea surface temperature (SST) MW OI 0.25◦ × 0.25◦ Daily maximum X

Precipitation (GPCP) GPCP 1◦ × 1◦ Daily accumulated X

Random Forest RF-RS-lag7 Wind speed (U, U2, U3, V, V2, V3) CCMP 0.25◦ × 0.25◦ 6 hourly ∼300
√

Mean sea level pressure (SLP) 20CRV2c 2◦ × 2◦
√

Sea surface temperature (SST) MW OI 0.25◦ × 0.25◦ Daily maximum X

Precipitation (GPCP) GPCP 1◦ × 1◦ Daily accumulated X

Linear regression LR-AR8 Wind speed (U, U2, U3, V, V2, V3) ERA-Interim 0.75◦ × 0.75◦ Daily maximum ∼50 1979–2014 X

Mean sea level pressure (SLP) Daily minimum

LR-AR-lag Wind speed (U, U2, U3, V, V2, V3) 6 hourly ∼300
√

Mean sea level pressure (SLP)

Random Forest RF-AR-lag9 Wind speed (U, U2, U3, V, V2, V3)

Mean sea level pressure (SLP)

1Linear regression model with remotely sensed predictors.
2Zonal (U) and meridional (V) wind speed; linear, quadratic, and cubic terms.
3Cross-Calibrated Multi-Platform gridded surface vector winds.
4Twentieth century reanalysis version 2c.
5Microwave optimally interpolated sea surface temperature product.
6Global Precipitation Climatology Project.
7Random Forest model with remotely sensed predictors.
8Linear regression model with atmospheric reanalysis predictors.
9Random Forest model with atmospheric reanalysis predictors.
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FIGURE 1 | Number of years available for analysis during the 1979–2014 period. Green squares and yellow diamonds represent two sets of tide gages used in
section “Results” to assess model performance in more detail: (a) St. Augustine, (b) Cuxhaven, (c, 6) Zanzibar (d) Victoria Harbor, (e) Wakkanai (f), Puerto Armuelles,
(1) Boston, (2) Goteborg-Torshamnen, (3) Mar del Plata, (4) Bluff Harbor, and (5) Kushiro.

FIGURE 2 | Framework outlining the applied methodology to develop data driven storm surge models using different predictor data sets, and comparison with
numerical model output. Key: wind speed1, zonal and meridional wind speed; SST2, sea surface temperature; GPCP3, Global Precipitation Climatology Project;
SLP4, mean sea-level pressure; PCA5, principal component analysis.

where Surge (t, d) is the maximum surge on day d at the
t-th tide gage, PCij (t, d) represents the j-th PC of the i-th
predictor on day d, whereas N and M represent the total
number of predictors and their corresponding number of
PCs, respectively. a and bij are coefficients obtained from the
regression model.

The second technique we implement and test is based
on Random Forest, a supervised machine learning algorithm
which incorporates the concepts of classification and regression

trees, and bagging (where the model is trained using bootstrap
samples of original predictor data) with some additional degree
of randomization (see for example, Tyralis et al., 2019 for a
detailed review of Random Forests). This study requires the
implementation of Random Forest regression. The prediction
of each trained regression tree is then averaged to provide
a single value (here, the value of daily maximum surge
at a tide gage location). Random Forests are (1) capable
of capturing the non-linear dependencies between predictors
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and predictands, (2) fast and easy to use, (3) not prone
to overfitting, and (4) suitable for high dimensional data
(Tyralis et al., 2019). A sensitivity analysis is carried out to
select the optimal number of regression trees for our analysis,
based on the out-of-bag error, where the MSE for samples
outside the bootstrapping set is quantified and minimized. For
each tide gage, the out-of-bag error is computed for several
numbers of bagged trees (1–200). This error is then normalized
in order to compare results across tide gages (Figure 3).
Considering the out-of-bag error behavior and the increased
computational expense with an increased number of trees,
we chose 50 as the optimal number for our analysis; beyond
that the reduction in error is small, while the computational
expense increases.

FIGURE 3 | Sensitivity analysis to find the optimal number of decision trees:
the relationship between the number of decision trees and the standardized
out-of-bag-error. Each line represents the decrement of the
standardized-out-of-bag-error of a tide gage with increase in the number of
trees.

Model Configuration
Six different model configurations (see Table 1) are set
up by varying the inputs (predictor types, either remotely
sensed or atmospheric reanalysis) and their temporal resolution
(daily and 6 hourly). Model IDs starting with LR represent
model configurations that use linear regression to fit the
model, whereas model IDs starting with RF represent model
configurations that use Random Forest. Models trained with
remotely sensed predictors have the suffix “RS” attached to
the model ID. For instance, LR-RS is the model ID that
represents models that use linear regression trained with
remotely sensed predictors. On the other hand, the suffix
“AR” is used to represent models trained with atmospheric
reanalysis, particularly ERA-Interim reanalysis. For instance,
RF-AR represents the Random Forest model trained with
atmospheric reanalysis. We trained models with atmospheric
reanalysis datasets for two reasons: the first one is to investigate
the influence of the two types of predictors (from remote
sensing and from reanalysis), on model accuracy. The second
one is to compare the performance of the data-driven models
with model outputs from GTSR, which is based on a
hydrodynamic model and also uses ERA-Interim as forcing.
As remotely sensed mean sea-level pressure is not available,
models trained with remotely sensed predictors use mean
sea-level pressure from 20CR. The period in which all the
remotely sensed predictors overlap, and hence models are
developed and tested, ranges from 1998 to 2014. Models
trained with atmospheric reanalysis have a simulation period
from 1979 to 2014.

In order to investigate the delay effects of predictors on
daily maximum surge, predictors are lagged as far back as
30 h from the time the daily maximum surge occurred
(i.e., predictors between the time of surge occurrence and

FIGURE 4 | Validation of the six model configurations (LR-RS, LR-RS-lag, RF-RS-lag, LR-AR, LR-AR-lag, and RF-AR-lag) in terms of correlation coefficient, RMSE,
and NSE.
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FIGURE 5 | Validation of Model RS in terms of (A) Pearson’s correlation coefficient – diamonds, rectangles, and squares represent the three model configurations
(LR-RS, LR-RS-lag, and RF-RS-lag) that make up Model-RS; (B) RMSE in m; and (C) relative RMSE in %.

30 h before are all used in the regression models). For
instance, LR-AR-lag represents the linear regression model
that was trained with atmospheric reanalysis predictors that

are lagged up to 30 h. Similarly, RF-RS-lag represents the
Random Forest model trained with remotely sensed predictors
that are lagged up to 30 h. Model IDs without the suffix
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FIGURE 6 | Daily maximum surge time series comparison (left), scatter plots (middle), and quantile-quantile plots (right) for observed and modeled (Model-RS)
daily maximum surge for six tide gage locations (marked in green in Figure 1).

“lag” represent models that are trained with predictors of
daily temporal resolution. Hence, for each predictor type
(remotely sensed and atmospheric reanalysis), there are three
model configurations (see Table 1). Each of these three
model configurations is evaluated by different performance
metrics (see section “Model Validation”) and the model
configuration that gives the highest performance metrics is
chosen as the best model configuration for a given tide
gage. For ease of interpretation, the collection of the best
model configurations under the remotely sensed category is
named as Model-RS. Similarly, the collection of the best

model configurations under the atmospheric reanalysis category
is named Model-AR.

Model Validation
Based on the data availability, we consider 732 tide gages for
calibration/validation of Model-RS (using predictor information
from remote sensing) and 840 tide gages for Model-AR (using
predictor information from ERA-Interim). The models are
validated using k-fold cross-validation. We follow Kohavi (1995)
in selecting k = 10-folds. The validation process starts by
randomly dividing the data set into k approximately equal groups,

Frontiers in Marine Science | www.frontiersin.org 8 April 2020 | Volume 7 | Article 260

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00260 April 24, 2020 Time: 7:57 # 9

Tadesse et al. Data-Driven Modeling of Global Storm Surges

FIGURE 7 | Validation of Model-RS performance for extreme events (surge values above the 95th percentile threshold).

or folds. The model parameters are then estimated from using
k−1 groups while the remaining group is used to test the model
performance. Finally, the full time series can be reconstructed
once all groups have been used for testing. We use the observed
and reconstructed time series to compute three commonly used
error statistics: Pearson’s correlation coefficient, Nash-Sutcliffe
efficiency (NSE), and RMSE. One shortcoming inherent to the
Pearson’s correlation coefficient (r) is that it only measures the
strength of the relationship between the compared datasets, i.e.,
it does not indicate how similar the magnitudes of the compared
time series are RMSE. On the other hand, quantifies the bias
between the compared time series, but it is not a dimensionless
metric. As a result, the modified Mielke index was proposed by
Duveiller et al. (2016) as a combination of r and RMSE. We also
derived this index (ranging from 0 for no agreement to 1 for
perfect agreement) in addition to the three other metrics outlined
above (results for the modified Mielke index are shown in the
Supplementary Material).

We also test the sensitivity of the model results to the
availability of tide gage data, by shortening the available tide gage
records (until only one year of data is left for training and testing)
and performing the same validation as outlined above.

RESULTS

Model-RS – Models Forced With
Remotely Sensed Predictors
This model category consists of three configurations, viz. LR-
RS, LR-RS-lag, and RF-RS-lag (see Table 1). All three are trained
and validated for 732 tide gages and results are compared with
corresponding observed daily maximum surge values. For any
given tide gage, the model configuration that gives the best
error statistics in terms of Pearson’s correlation, RMSE, and

NSE is selected for that specific tide gage (note that in all cases
at least two of the error statistics pointed to the same best
model configuration). In addition, the model was validated by
the modified Mielke index and the results (very similar to the
Pearson’s correlation coefficient) are shown in Supplementary
Figure 1. On average, across all tide gages, we find that models
LR-RS-lag and RF-RS-lag perform better than LR-RS (Figure 4;
the same results but for tropical and extra-tropical regions
separately are shown in Supplementary Figure 2); they are
also selected at many more sites than LR-RS (Figure 5). LR-
RS, which is forced with predictors of daily temporal resolution,
gives the best eror statistics (highest correlation coefficient,
highest NSE, and lowest RMSE) for only 12% of the tide gages
(shown by diamonds in Figure 5A). The average correlation
coefficient and RMSE are 0.64 and 7.8 cm, respectively. LR-
RS-lag, which is forced with lagged predictors with 6 hourly
temporal resolution, gives the best error statistics for most of
the tide gages, 58% in total. The average correlation coefficient
is 0.78 and average RMSE is 7.3 cm. This model configuration
is effective mostly in subtropical/extratropical regions (shown by
squares in Figure 5A; see also Supplementary Figure 8 for model
performance across different latitude bands). RF-RS-lag gives the
best error statistics for tide gages around the tropical region
(the remainder 30% of sites, shown by circles in Figure 5A)
with an average correlation coefficient of 0.5 and average RMSE
of 5.7 cm. Higher correlation coefficients (as high as 0.9) are
found in extratropical regions (30–60◦ north and south of the
equator), whereas the tropical and sub-tropical regions (0–30◦
north and south of the equator) show lower correlation, especially
along the west and north coasts of South America. The average
correlation coefficient in the extratropical regions is 0.79, whereas
in the tropical regions it drops to 0.45. The average RMSE in the
extratropical regions is 7.5 cm, and 5.3 cm in tropical regions.
These results match the ones that are reported by Cid et al.
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FIGURE 8 | Validation of Model-RS for total still water levels above the 95th percentile threshold: (A) Pearson’s correlation coefficient; (B) RMSE in m; and (C) NSE.

(2017), where average correlation in the extratropical and tropical
regions are in the order of 0.8 and 0.5, respectively. In addition,
Figure 5C displays the relative RMSE, which is the ratio of RMSE
to the maximum surge variability at each tide gage (difference

between highest and smallest daily maximum surge). In tropical
regions, the relative RMSE is higher (up to 18%) compared to the
extratropical regions. This value is also comparable with the one
reported by Cid et al. (2017), which is 20%.
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Model accuracy of LR-RS is lower than that of LR-RS-lag and
RF-RS-lag as it is relating daily min/max values of predictors
with daily maximum surge. However, the daily maximum surge
on a given day may also be affected by oceanographic and
atmospheric conditions from previous days. The lower model
accuracy for the tropical regions could be due to several
reasons. First, historical time series analysis of the predictors
shows that the variance of the most important predictors, wind
speed and SLP, in tropical/sub-tropical regions are very low
compared to extratropical regions (Supplementary Figure 3).
Second, for some tide gages in the tropics (e.g., Santana, Brazil),
river discharge may affect the tide gage measurements, adding
additional non-tidal residuals that cannot be explained by the
local predictors (the same mechanism would have a smaller effect
in higher latitudes, where storm surges are relatively higher);
rainfall may serve as a proxy to capture some of the discharge,
but not when it is remotely driven (e.g., rainfall further upstream,
or discharge from snow melt). Third, the predictors that explain
tropical cyclone induced surges (for instance at the Bay of Bengal)
are not captured well due to low temporal and spatial resolution.

Additional validation of Model-RS is shown in Figure 6. Six
tide gages (marked as green squares in Figure 1), are chosen
from different climatic regions to assess model performance for
a specific year (2007) by comparing observed and simulated
daily maximum surge time series (Figure 6, left), scatter plots
(Figure 6, middle), and quantile–quantile plots (Figure 6, right).
For tide gages in sub-tropical and extratropical regions (St.
Augustine, Cuxhaven, Victoria Harbor, and Wakkanai), the daily
maximum surge is relatively well reproduced with minimum
and maximum correlation of 0.79 and 0.91, respectively; in
some cases lowest surges are overestimated and highest surges
are slightly underestimated. However, for tide gages in tropical
regions (Zanzibar and Puerto Armuelles), the daily maximum
surge is strongly underestimated.

Figure 7 displays the performance of Model-RS in capturing
extreme surge events. Observed surge values above the 95th
percentile threshold of the daily maximum surge are selected
for the same tide gages shown in Figure 6, and compared to
corresponding surges derived from Model-RS. Again, model
performance increases from low to high latitudes. Extreme surge
events are better reproduced at Cuxhaven (r = 0.78), Victoria
Harbor (r = 0.75), and Wakkanai (r = 0.61), compared to
Zanzibar (r = −0.11) and Puerto Armuelles (r = −0.04) in the
tropics, where the model strongly underestimates the extreme
surge events (all modeled surge values are below the 1:1 reference
line). Validation of Model-RS for extreme surges globally
(Supplementary Figure 7) leads to an average correlation of
0.54 and an average RMSE of 14.5 cm in extratropical regions,
whereas in the tropics the average correlation is 0.32 and average
RMSE is 13.1 cm.

Finally, extreme total still water levels (here, defined as
events above the 95th percentile threshold) are calculated by
superimposing the corresponding daily maximum surge and
tide values for each tide gage. The observed and modeled
total still water levels have very strong agreement at the vast
majority of the tide gages [Figures 8 and Supplementary
Figure 8 (right)]; the average correlation coefficient is 0.74

and average RMSE is 9.4 cm. This overall improvement is
to be expected, as the tidal component is the same in both
the observed and modeled datasets. Tide gages in the Gulf
of Mexico, the Mediterranean Sea, and the Baltic Sea have
slightly lower correlation. The total still water level (at the
time of daily maximum surge) at these locations is dominated
by the surge while tidal contributions are small, or even
negligible. Surges at these locations are, however, also simulated
with relatively lower accuracy compared to other locations
(Figure 5C), which in turn propagates to the total still water level
results presented here.

The relative importance of predictors in Model-RS is also
investigated. Since two model fitting techniques are used (linear
regression and Random Forest), the predictor importance is
assessed for both methods separately. For the linear regression
method, important predictors would have relatively higher
regression coefficients. The level of importance of all predictors
across all tide gages according to the linear regression and
Random Forest models are shown in Figure 9. For the
Random Forest method (pertaining to RF-RS-lag), the values
of each predictor are randomly reordered (permuted) and
the change in the accuracy of Model-RS is measured in
terms of MSE. A predictor that, when randomly reordered,
affects the accuracy of RF-RS-lag significantly is considered
an important predictor. Therefore, predictors in Figure 9
are ranked based on how much they can modify results of
Model-RS. For linear regression, it is found that mean sea-
level pressure is the most important predictor for 77% of
the tide gages, followed by daily accumulated precipitation
(16%), and meridional wind speed (3%). Whereas the Random
Forest analysis shows that mean sea-level pressure is the most
important predictor for about 65% of the tide gages, followed
by meridional wind speed (12%), and SST (10%). Overall, both
models (linear regression and Random Forest) point to mean
sea-level pressure and its time-lagged components as the most
important predictors to model daily maximum surge at the
majority of the tide gages.

Model-AR – Models Forced With
Predictors From ERA-Interim Reanalysis
Under this category, three model configurations (LR-AR, LR-AR-
lag, and RF-AR-lag) are forced with wind speed and SLP from
the ERA-Interim reanalysis. This is done for two main purposes:
(1) to investigate the added value (if any) of using remotely
sensed predictors, (as in Model-RS) as compared to atmospheric
reanalysis data, and (2) to compare the performance of the
data-driven model with GTSR. Model configurations under this
category, LR-AR, LR-AR-lag, and RF-AR-lag give the best error
statistics for 4, 62, and 34% of the tide gages, respectively. Average
correlation coefficients for the three model configurations are
0.39, 0.77, and 0.46, whereas average RMSE values are 7.7, 7.6, and
5.6 cm, respectively. As in the case of Model-RS, LR-AR-lag gives
the best results for tide gages in the sub-tropical/extratropical
regions. Figure 10 displays the validation of Model-AR in
terms of Pearson’s correlation coefficient, RMSE, and relative
RMSE. Further validation results pertaining to Model-AR are
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FIGURE 9 | Percentage of the number of tide gages where individual
predictors are deemed most relevant (see text for more details) for Model-RS
for stepwise regression and Random Forest; VWND and UWND are zonal and
meridional wind speeds.

shown in Supplementary Figures 4–6. Similar to Model-RS, the
daily maximum surge from these model configurations shows
strong agreement with observed daily maximum surge in the
sub-tropical/extratropical regions, where the average correlation
coefficient is 0.75. This value drops to 0.42 in the tropical regions
for the same reasons explained in section “Model-RS – Models
Forced With Remotely Sensed Predictors”. Average RMSE is
7.8 and 5.5 cm in the sub-tropical/extratropical and tropical
regions, respectively. The highest relative RMSE is found in
the tropics (reaching up to 18% of the daily maximum surge
variability). LR-RS performs better in all three performance
statistics compared to LR-AR (see Figure 4). In addition, LR-
RS-lag and RF-RS-lag are also performing slightly better than
LR-AR-lag and RF-AR-lag. When choosing the best model
configuration for Model-RS and Model-AR the mean correlation
coefficients are 0.68 and 0.65, respectively, whereas the mean
RMSE values are 6.9 and 7 cm. It has to be noted that the
spatial resolution of the wind speed used for Model-RS is
three times higher than that of the reanalysis wind speed (see
Table 1). However, the spatial resolution of the SLP in Model-
RS (coming from 20CRV2c, as no remote sensing product is
available) is approximately three times coarser than the one
used for Model-AR.

We also used this model setup to test the sensitivity of model
accuracy with respect to data availability and found that as little
as 5 years of data is required to achieve good model accuracy
and further increase in data availability does not improve model
accuracy (see Supplementary Figure 9).

Comparison With GTSR
As described in section “Data”, the GTSR grid points closest
to the tide gages are identified and the daily maximum surge
time series at these grid points are extracted for the 1979–
2014 period. The surge values from GTSR are then compared

with observed values (for the overlapping periods) and are
validated using Pearson’s correlation coefficient and RMSE.
Average correlation and RMSE are 0.54 and 11.2 cm, respectively.
For sub-tropical/extratropical regions, average correlation and
RMSE are 0.65 and 11 cm, whereas for tropical regions average
correlation and RMSE are 0.28 and 13 cm, respectively. The
direct comparison of performance between Model-AR and GTSR
(both forced with ERA Interim reanalysis data) is shown in
Figure 11.

Figure 11A displays the spatial differences in correlation
between GTSR and Model-AR, i.e., comparing correlation
coefficients for Model-AR vs observations and correlation
coefficients for GTSR vs observations. The Fisher’s Z
transformation method is used to assess significance of the
difference between the two correlation coefficients. For a large
percentage (92%) of the tide gages, there is a significant difference
between the two correlation coefficients (Model-AR and GTSR
have no significant difference in correlation for tide gages
marked by blue stars in Figure 11A). and for 88% of these
tide gages Model-AR has higher correlation coefficients than
GTSR. Similarly, the RMSE for both models vs observations is
computed and is found to be lower for Model-AR at all tide
gages (Figure 11B).

Figure 12 illustrates a comparison of daily maximum surge
time series and scatter plots from Model-AR, GTSR, and
observations. Model results for six tide gages, which are also
shown in Muis et al. (2016) and marked as yellow diamonds
in Figure 1, are chosen for illustration. Both Model-AR and
GTSR reproduce the observed surges well in locations such
as Goteborg and Kushiro. However, Model-AR simulates the
surge events better than GTSR at Mar del Plata (GTSR
underestimates), Bluff Harbor (GTSR overestimates), and at
many other tide gages not shown here. However, both models
fail to simulate the daily maximum surge at Zanzibar, owing
to very little variance of predictors that cannot explain the
variation in the predictand. In order to test the performance
of the two models for extreme events, observed surge values
above the 95th percentile threshold are compared with their
corresponding Model-AR and GTSR values in Figure 13,
including scatter plots (left) and quantile–quantile plots (right).
Differences in model performance for extreme events are
most evident for Boston and Mar del Plata, where GTSR
underestimates the surge values, and at Bluff Harbor, where
GTSR overestimates the extreme surge values. Both models
perform poorly for Zanzibar.

Concerning extreme storm surges, Model-AR has an average
correlation of 0.51 and 0.29 in extratropical and tropical regions,
respectively. For GTSR correlation is lower, 0.44 and 0.20.
Model-AR has an average RMSE of 15 and 13 cm in extratropical
and tropical regions. For GTSR RMSE is higher, 23 and 19 cm.
Model results are also validated for specific extreme events. Three
tropical/extratropical events (Superstorm Sandy, Cyclone Xaver,
and Hurricane Katrina) are selected to test the performance of
the three models: Model-RS, Model-AR, and GTSR. Three tide
gages are chosen for each event as shown in Figure 14. Model-
RS and Model-AR show similar results for all cases, whereas
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FIGURE 10 | Validation of modeled (Model-AR) daily maximum surge in terms of (A) Pearson’s correlation coefficient – diamonds, rectangles, and squares represent
the three sub-models (LR-AR, LR-AR-lag, and RF-AR-lag) that make up Model-AR; (B) RMSE in m; and (C) relative RMSE in %.
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FIGURE 11 | Comparison of Model-AR with GTSR. (A) Difference in Pearson’s correlation coefficients of Model-AR and GTSR with observations. Red colors indicate
that Model-AR has higher correlation than GTSR, whereas blue stars denote tide gages where the difference in correlation is insignificant. (B) Reduction of RMSE in
Model-AR compared to GTSR expressed in percent. Boxplot comparison of correlation (C) and RMSE (D) for Model-AR and GTSR.

GTSR often underestimates the peak surge, e.g., at Bridgeport
during Superstorm Sandy, or for Hurricane Katrina at all three
tide gages. The surge values during Cyclone Xaver are well
captured by all models, except for a slight overestimation by
Model-RS and GTSR.

DIRECTIONS FOR FUTURE RESEARCH

Although the data-driven models show better performance than
the numerical model, a number of expansions (discussed below)
could further improve the predictive skill.
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FIGURE 12 | Daily maximum surge time series comparison between observations, Model-AR, and GTSR (left); scatter plots for Model-AR and observed surge
values (middle) and scatter plots for GTSR and observed surge values (right) for tide gages marked in yellow in Figure 1.

FIGURE 13 | Performance of Model-AR and GTSR (see y-axis labels) for extreme surge events (surge values higher than 95th percentile of observed daily maximum
surge) shown as scatterplots (left) and q–q plots (right).
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FIGURE 14 | Validation of Model-RS, Model-AR, and GTSR for individual storm events: Superstorm Sandy (top), Cyclone Xaver (middle), and Hurricane Katrina
(bottom).

The effects of wave set-up have not been incorporated in
this study. However, Tait (1972) has shown that in tropical and
sub-tropical islands, wave set-up can add more than 20% of the
incident wave height to the “tide + surge” estimation of the sea
level. Incorporating this effect (e.g., with simple approximations
as in Vousdoukas et al., 2018) using data from models akin to
the one used by Perez et al. (2017) and Camus et al. (2017)
could potentially improve the model performance, especially in
the tropics, where model accuracy of the data-driven models (but
also GTSR) is poor.

Model accuracy would also likely increase when predictors
with higher spatial and/or temporal resolution are used.
Bloemendaal et al. (2019) showed that a horizontal resolution
of 0.225◦ is adequate to simulate tropical cyclone induced storm
surges. New reanalysis products such as ECMWF re-analysis
Version 5 (ERA-5) (Hersbach et al., 2019) or The Modern-Era
Retrospective-analysis for Research and Applications, Version
2 (MERRA-2) (Bosilovich et al., 2016) have recently become
available and could be used to improve storm surge modeling
in the tropics. Furthermore, the comparison between Models-
RS and Model-AR would be more complete with the availability
of remotely sensed global SLP data. We show that SLP is the
most important predictor for modeling storm surges at many
tide gage locations, and hence further analysis would allow for
a better understanding of the value of remotely sensed and
reanalysis predictors for data-driven (but also hydrodynamic)
storm surge modeling.

In several recent studies authors opted to use skew surge,
which is the absolute difference between the maximum observed

sea level and the predicted tidal high water within a tidal cycle
(Williams et al., 2016), as an alternative measure to non-tidal
residuals (e.g., Haigh et al., 2015; Marcos and Woodworth, 2017).
This has the advantage of reducing the amount of errors in
the storm surge proxy when there are small phase shifts in
the observations or tidal predictions; those can lead to artificial
high peaks in non-tidal residuals, whereas skew surges are less
affected by such errors. Skew surges are also largely independent
of the phase of the tide, at least in regions where semi-
diurnal tides dominate. Santamaria-Aguilar and Vafeidis (2018)
showed that in mixed tidal regimes there is still dependence
between extreme skew surge events and tides. A significant
shortcoming of the skew surge concept consists in the loss of the
hydrograph information, which is essential for inundation and
risk assessments. Here, we use non-tidal residual data instead
of skew surge for the global analysis, as this allows direct
comparison with the results presented in earlier studies, such as
GTSR. We tested using skew surge at selected sites and found very
similar results compared to using non-tidal residuals in terms of
model performance.

Another area of improvement would be to include tide-surge
interaction in either the modeling of surges (or skew surges)
or when combining the surge data with tidal data to obtain
total still water levels. We use the same approach as Muis et al.
(2016), which ignores tide-surge interaction, but allows a direct
comparison of the results. Capturing tide-surge interaction in
numerical model studies requires running coupled tide-surge
simulations (Pugh and Woodworth, 2014), which increases the
computational cost significantly.
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The methodology presented here can be implemented
operationally to provide daily maximum surge forecasts at
tide gages around the globe. The data-driven models could
be forced with forecast wind speed and SLP as well as other
relevant predictors. Tidal predictions can be superimposed to
the predicted surges in order to compute the forecast total still
water level. In order to include uncertainty stemming from
predictors (captured through ensemble forecasting systems), the
modeling paradigm could shift from deterministic (implemented
in this study) to probabilistic. Such a tool could possibly
provide useful information for decision-makers, or inform other
modeling efforts, in particular in regions where no dedicated
storm surge forecasting systems are in place. Finally, surge values
derived from GTSR can also be used as predictand (instead of
surge values derived from tide gage observations) to train and
validate data-driven models with full global coverage, including
ungaged locations.

CONCLUSION

In this study, we explored the applicability of data-driven
models to simulate global storm surges. Our first objective was
to train and validate data-driven models (based on multiple
regression and Random Forest) at tide gage locations across
the globe for the purpose of simulating daily maximum surge;
models were trained and validated at more than 800 tide gages.
The predictand, daily maximum surge, is simulated well in
sub-tropical and extratropical regions with average correlation
coefficients of 0.79 and 0.75 for Model-RS and Model-AR, and
average RMSE of 7.5 and 7.8 cm, respectively. In the tropics,
model accuracy drops, mainly due to the little variance of local
predictors in the region and the coarse temporal and spatial
resolution of predictors. We find that sea-level pressure is the
most important predictor for simulating daily maximum surges
at most tide gage locations.

Our second objective was to compare performance of
the data-driven models when (1) remotely sensed predictors
and (2) reanalysis predictors are used. Model-RS, which is
trained with remotely sensed predictors, outperforms Model-
AR (trained with ERA-Interim reanalysis) overall (albeit
slightly), even when coarser SLP data is used as predictor.
Hence, remote sensing data from satellite missions is a
valuable resource for the storm surge modeling community,
especially when focusing on broad spatial (up to global)
scales. However, further analysis is required to detect the
differences between remotely sensed and reanalysis predictors
as some predictors were not available for this study for a
comprehensive comparison.

Our third and last objective was to compare the performance
of the data-driven models to the GTSR, based on a hydrodynamic
numerical model. We find that for the vast majority of the
tide gages (88%), data driven Model-AR leads to significantly
higher correlation coefficients and lower RMSE. When focusing
only on extreme surges (above the 95th percentile) average

correlation in the data driven models of 0.54 and 0.33 for extra-
tropical and tropical regions is also higher than found from
GTSR (i.e., 0.44 and 0.20 in the same regions). Furthermore,
when comparing model performance for specific storm surge
events, Model-AR captures the peak surge events equally well,
or better, than GTSR. Extreme total still water levels for the
global coastlines are also simulated by superimposing modeled
daily maximum surges on corresponding tides, leading to
average correlation of 0.74 and average RMSE of 9.4 cm.
Thus, we conclude that data-driven models provide a powerful
and computationally cheap complementary way to simulate
storm surges (in particular over long time periods and at large
spatial scales) in addition to process-based but computationally
expensive numerical models.
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