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The impending danger of climate change and pollution can now be seen on the world
panorama. The concentration of CO2, the most important Green House Gas (GHG),
has reached to formidable levels. Although carbon capture and storage (CCS) methods
have been largely worked upon, they are cumbersome in terms of economy and
their long term environmental safety raises a concern. Alternatively, bio-sequestration
of CO2 using microalgal cell factories has emerged as a promising way of recycling
CO2 into biomass via photosynthesis which in turn could be used for the production of
bioenergy and other value-added products. Despite enormous potential, the production
of microalgae for low-value bulk products and bulk products such as biofuels, is
heretofore, not feasible. To achieve economic viability and sustainability, major hurdles
in both, the upstream and downstream processes have to be overcome. Recent
technoeconomic analyses and life-cycle assessments of microalgae-based production
systems have suggested that the only possible way for scaling up the production is to
completely use the biomass in an integrated biorefinery set-up wherein every valuable
component is extracted, processed and valorized. This article provides a brief yet
comprehensive review of the present carbon sequestration and utilization technologies,
focusing primarily on biological CO2 capture by microalgae in the context of bio-refinery.
The paper discusses various products of microalgal biorefinery and aims to assess
the opportunities, challenges and current state-of-the-art of microalgae-based CO2

bioconversion, which are essential to the sustainability of this approach in terms of the
environment as well as the economy.

Keywords: microalgae, biorefinery, carbon capture, bio-sequestration, CO2 mitigation, biofuel

INTRODUCTION

The increased concentration of Green House Gases (GHGs) are causing dramatic climatic changes
(rise in temperature, changes in the distribution, intensity and pattern of rainfall, rising sea levels,
floods, droughts and increased occurrence of extreme climatic phenomena) as a result of well-
known phenomenon “Global Warming” (Alexander et al., 2006; Church and White, 2006; Rignot
and Kanagaratnam, 2006; Meinshausen et al., 2009; Rockstrom et al., 2009; Solomon et al., 2009;
Dawson et al., 2011). The temperature of the planet has risen by 0.85◦C from 1880 to 2012 and
it has been forecasted that by the end of this century, a rise of 1.4–5.8◦C would be witnessed

Frontiers in Marine Science | www.frontiersin.org 1 February 2019 | Volume 6 | Article 29

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2019.00029
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2019.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2019.00029&domain=pdf&date_stamp=2019-02-05
https://www.frontiersin.org/articles/10.3389/fmars.2019.00029/full
http://loop.frontiersin.org/people/523080/overview
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00029 February 2, 2019 Time: 18:16 # 2

Singh and Dhar Microalgal Biorefinery for Carbon Capture

(De Silva et al., 2015). The concentration of CO2, the most
important GHG and the major contributor to global warming,
has reached to formidable levels. Corresponding to a 32%
increase, from around 280 ppm to 400 ppm, since the industrial
revolution (De Silva et al., 2015). The primary causes being
irrational use of fossil fuels and change in land use pattern
(Goldemberg, 2007; Atsumi et al., 2009). Not merely global
warming, the increased CO2 concentration in the atmosphere
has also led to a 30% increase in the ocean acidity, which in
turn is affecting the biodiversity adversely (Doney et al., 2009;
Hofmann and Schellnhuber, 2010; Farrelly et al., 2013). The
Kyoto Protocol and the Paris Agreement (2015), have set a
number of policy actions for participating countries to curb
climate change impact. The major requirement being reduced
CO2 emissions by reduced fossil fuel utilization and increased
carbon capture and sequestration (Cheah et al., 2016; Pires, 2017).
This minireview aims to discuss briefly yet comprehensively the
various CCS methodologies, focusing mainly on the potential of
microalgae mediated carbon capture within the framework of a
biorefinery approach: bioconversion and valorization of captured
CO2, current state of the technology, recent developments,
challenges and future prospects.

CO2 CAPTURE AND STORAGE
METHODS

Currently there are many physico-chemical carbon capture
and sequestration strategies that are combinedly categorized as
carbon capture and storage (CCS) methodologies. CCS operate
over 3 major steps: CO2 capture, CO2 transportation and
CO2 storage. CO2 capture is done from large point sources
such as power plants and cement manufacturing plants. The
separation and capture of CO2 from other exhaust components
is usually done via following methods: (i) chemical absorption;
(ii) physical adsorption; (iii) membrane separation; and (iv)
cryogenic distillation (Figueroa et al., 2008; Pires et al., 2011,
2012). This highly concentrated CO2 is then compressed and
transported to storage points via pipelines or ship (Svensson
et al., 2004; McCoy and Rubin, 2008). Next, the captured CO2
is stored into reservoirs, viz. geological storage, oceanic storage
wherein the CO2 is directly injected deep into the ocean, saline
formations, aquifers or depleted oil/gas wells (Lackner, 2003).
Despite remarkable storage potential of the aforementioned CCS,
considerable drawbacks remain, including expensive operation
and transportation, environmental threat of long term CO2
leakage and other uncertainties (Lam et al., 2012; De Silva
et al., 2015). Moreover, physico-chemical CCS methods are
practically successful only for capturing CO2 from point sources
producing high concentrations of CO2 i.e., diffused, non-point
emissions and low concentrations of CO2 cannot be captured
(Nouha et al., 2015). Table 1 briefly illustrates the various CCS
methodologies, their mechanisms, merits and limitations with
respective references. Aside to physical and chemical CCS, the
biological route can be taken for capturing CO2 via natural sinks:
(i) forestation; afforestation, reforestation, and the farming of
crops and livestock, the biomass can be further valorized (Farrelly

et al., 2013; Cheah et al., 2016). (ii) ocean fertilization; fertilizing
oceans with iron and other nutrients prompting increased carbon
dioxide uptake by the phytoplanktons (Williamson et al., 2012)
(iii) microalgae cultivation (Lam et al., 2012; Cheah et al., 2016;
Yadav and Sen, 2017; Zhou et al., 2017).

CO2 Capture by Microalgae
The term “microalgae” is generally used for both prokaryotic
blue green algae (cyanobacteria) and eukaryotic microalgae
including green algae, red algae, and diatoms. Microalgae are
being sought as alluring biofactories for the sequestration of CO2
and simultaneous production of renewable biofuels, food, animal
and aquaculture feed products and other value-added products
such as cosmetics, nutraceuticals, pharmaceuticals, bio-fertilizers,
bioactive substances (Ryan, 2009; Harun et al., 2010). Microalgae
possess strategies, well known as CO2 concentrating mechanism
(CCM) for efficiently photosynthesizing by acquiring inorganic
carbon even from very low atmospheric CO2 concentrations
(Whitton, 2012). These microorganisms surpass other feedstocks
in terms of their abilities to flourish in extreme environments and
simple yet versatile nutritional requirements. Microalgae do not
require arable land and are capable of surviving well in places
that other crop plants cannot inhabit, such as saline-alkaline
water, land and wastewater (Searchinger et al., 2008; Wang et al.,
2008). Furthermore, microalgae can be fed with notorious waste
gasses such as CO2 and NOx, SOx from flue gas, inorganic and
organic carbon, N, P and other pollutants from agricultural,
industrial and sewage wastewater sources so as to provide us
with opportunities to transform them into bioenergy, valuable
products and forms that cause least harm to the environment
(Chisti, 2007; Hu et al., 2008; Pires et al., 2012; Singh and Thakur,
2015). The uncomplicated cellular structures and rapid growth of
microalgae endow them with CO2 fixation efficiency as higher as
10–50 folds than terrestrial plants (Li Y. et al., 2008; Khan et al.,
2009).

Recently, many research studies have come up showing the
positive impact of growing microalgae under high concentrations
of Ci in the form of pure gaseous CO2, real or simulated flue gas,
or soluble carbonate (bicarbonate), reporting increased carbon
bio-fixation and biomass productivity (Ho et al., 2010; Sydney
et al., 2010; Yoo et al., 2010; Tang et al., 2011; Singh et al., 2014;
Aslam et al., 2017; Kuo et al., 2017). Detailed information can
be found in elaborated reviews by Lam et al. (2012); Cheah et al.
(2015); Thomas et al. (2016); Vuppaladadiyam et al. (2018). The
fate of the supplied carbon can end up in making skeleton for
lipids, proteins, sugars and pigments (Sydney et al., 2010). Despite
such remarkable potential, the production of microalgae for low-
value bulk products, such as proteins for food/feed applications,
fatty acids for nutraceuticals or bulk products such as biofuels,
is heretofore, not economically feasible (Williams and Laurens,
2010; Zhou et al., 2017). Recent technoeconomic analyses and
life-cycle assessments of microalgae-based production systems
have suggested that the only possible way of realizing the
potential production is to completely use the biomass in an
integrated biorefinery set-up wherein every valuable component
is extracted, processed and valorized (Chew et al., 2017).
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TABLE 1 | Comparative description of different carbon capture technologies.

Method Mechanisms Advantages Shortcomings References

CO2 capture

Adsorption CO2 capture using solid
adsorbent such as activated
carbon, zeolite, Na2CO3, CaO,
etc.

• Low waste generation • Energy inefficient
• Flue gas pre-treatment necessary before

channeling to adsorber due to high
moisture content and presence of
contaminants (e.g., SOx and NOx)

Li G. et al., 2008; Hunt
et al., 2010; Pires et al.,
2011; Wang et al., 2011;
Lam et al., 2012

CO2 capture using metal–organic
frameworks (MOFs)

• High porosity crystallinity
and high surface area

• Powdered MOFs have low mechanical
strength and difficult handling

Lin et al., 2016; Nandasiri
et al., 2016; Trickett et al.,
2017

Chemical
absorption

Based on chemical absorption
and desorption. CO2

dissolved/captured chemical
solvents, such as
monoethanolamine (MEA), amine
and potassium hydroxide (KOH)

• High CO2 solubility
• Thermally stable

• High solvent loss due to evaporation
• React with components other than CO2,

like SO2 resulting in irreversible
degeneration of solvent
• High energy consumption for solvent

regeneration
• Thermally unstable
• Equipment corrosion

Kittel et al., 2009; Cole
et al., 2011; Pires et al.,
2011

Ionic liquid for CO2 absorption • Environmentally safer as
substitute the use of
hazardous solvents

• Cost intensive
• Difficult to scale-up ionic liquids

Ziobrowski et al., 2016

Membrane
technology

Separation of CO2 from the main
stream by passing through a
membrane that acts as a filter
with selective permeability.
Usually polymeric membranes are
used

• High separation efficiency
and packing density due to
the small installation
requirements

• Energy intensive as cooling of hot flue gas is
essential
• High moisture content in the flue gas affects

membrane performance due to competitive
sorption and plasticisation of the polymer
• High membrane cost, fouling of membrane

and high membrane surface area
requirement

Scholes et al., 2009; Pires
et al., 2011; Lam et al.,
2012

Cryogenic
separation

Consecutive refrigeration and
condensation of gas mixture at
different condensation
temperatures to separate CO2

• High capture efficiency (up
to 99.9%)

• High energy requirement for refrigeration
• Flue gas moisture removal is required before

cooling to avoid plugging by ice formation
• Solidified CO2 is continuously built up on

the heat-exchanger surfaces and needs to
be removed.

Tuinier et al., 2010; Lam
et al., 2012

CO2 storage

Geological
sequestration

Injection of CO2 into deep
geological reservoirs, depleted
oil/gas wells, and coal seams

• Huge storage capacity and
use of saline formations,
barren spaces
• Replenish depleted oil/gas

reserves

• High operational cost
• Risk of CO2 leakage and environmental

damage
• Specific geomorphic structure requirement

White et al., 2003; Kovscek
and Cakici, 2005; De Silva
et al., 2015

Oceanic injection Injection of CO2 into deep ocean • Huge CO2 storage capacity • Cost intensive
• Potential threat to marine life

Kita and Ohsumi, 2004;
Zhou et al., 2017

Biological CO2 capture

Forestation Afforestation, reforestation, and
the farming of crops and livestock

• No hazards of chemicals • Long time requirement
• Large area requirement
• Can affect biological diversity
• Compete with food crops for arable land

Farrelly et al., 2013; Cheah
et al., 2016

Oceanic fertilization Fertilizing oceans with iron and
other nutrients prompting
increased carbon dioxide uptake
by the phytoplanktons

• Significant potential for CO2

capture
• Cost intensive
• May have uncertain and unintended

impacts
• May affect marine biodiversity

Williamson et al., 2012

Microalgae-based
carbon capture and
utilization

Bioconversion CO2 into biofuels
and other valuable products via
photosynthesis

• Highly efficient in a wide
range of CO2 concentration
• Faster growth rate than

plants
• No requirement for arable

land
• Co-production of food,

feed, biofuel and
value-added products

• Economically cumbersome culture systems
and downstream processing mainly
harvesting
• Sensitive to other flue gas components

(NOx, SOx), predation, contamination and
extreme culture conditions (pH,
temperature, salinity etc)

Ryan, 2009; Harun et al.,
2010; Kao et al., 2014;
Singh et al., 2014;
Varshney et al., 2014
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FIGURE 1 | A simplistic representation of microalgal based biorefinery system.

BIOREFINERY CONCEPT OF
MICROALGAL BIOMASS

The concept of valorization of a raw material into marketable
products is well known in fossil fuel refinery, similarly biorefinery
concept refers to the conversion of biomass into multiple
commercially valuable products and fuels (Pérez et al., 2017).
Figure 1 depicts a simplistic microalgal based biorefinery system.
The various high value and low value marketable products that
can be produced in an integrated biorefinery system are discussed
in the following sections.

Biofuels
Rising CO2, resultant global warming and depleting oil reserves
are fueling the search for more eco-friendly forms of alternative
energy. The microalgal biomass majorly constituted of lipids (7–
23%), proteins (6–71%) and carbohydrates (5–64%), depending
upon the microalgal specie and culture conditions (Brown,
1991; Becker, 2007; Mata et al., 2010). Microalgae have received
great attention as feedstocks for production of biodiesel, biogas,
biohydrogen, bioethanol, biobutanol. Biofuels from microalgae,
production system, conversion technologies, life cycle analyses
have been extensively reviewed, hence detailed description is not
presented in this review.

Biodiesel
Microalgae are known to accumulate remarkable amount of lipid.
As reviewed by Mata et al. (2010), the lipid content of common
microalgae such as Chlorella, Dunaliella, Isochrysis, Nannochloris,
Nannochloropsis, Neochloris, Phaeodactylum, Porphyridium, and
Schizochytrium, varies between 20 and 50% of cell dry weight,
that can be augmented to higher levels by manipulating
environmental and other growth factors, process optimization
and genetic modifications of the production strain. Nitrogen
starvation and salinity stress are known to induce an increase in

TAG (triacylglycerol) accumulation and relative content of oleic
acid in most of the microalgal species (Choi et al., 2011). The
fatty acid composition of most of the microalgae is dominated by
C14:0, C16:0, C18:1, C18:2, and C18:3 fatty acids, yet the relative
composition varies from species to species (Gouveia and Oliveira,
2009). Also, the role of HCO3

− in inducing TAG accumulation
has been widely illustrated recently (Gardner et al., 2012, 2013;
Lam et al., 2012; White et al., 2013). The lipids can be converted
into FAMEs (fatty acid methyl esters) via transesterification for
biodiesel production. The major by-product- glycerol also finds
enormous industrial application opportunities. Furthermore, the
residual de-oiled microalgal biomass can be used for animal feed.

Biogas
Microalgal biomass can be efficiently used for the production
of biogas, including methane, hydrogen, and biohythane
(combination of methane and 5–25% hydrogen gas) (Ghimire
et al., 2017). The resistance of cell wall to enzyme hydrolysis is one
of the prime bottleneck in the Anaerobic digestion (AD) process.
The overall economic feasibility of the process depends on the
factors affecting AD, microalgal strain, biomass pretreatment,
and culture methods (Jankowska et al., 2017). Lately, to make
the system economically viable and environmentally sustainable,
a closed-loop production scheme is being adopted wherein AD
effluents are recycled and used as an input in the first step of
AD. Jankowska et al. (2017) have presented a detailed review
microalgae’s cultivation, harvesting and pretreatment for AD for
biogas production.

Bioethanol
The carbohydrate part (mainly glucose, starch, cellulose, and
hemicellulose) of the microalgal dry biomass can be used
for transforming into bioethanol via fermentation. Although,
microalgae accumulate relatively low quantities of sugars,
the absence of lignin from microalgal structure makes them
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advantageous over other feedstock such as corn, sugarcane, and
lignocellulosic biomass (Odjadjare et al., 2015; Jambo et al.,
2016). Isochrysis galbana, Porphyridium cruentum, Spirogyra
sp., Nannochloropsis oculate, Chlorella sp., are mainly exploited
microalgae for the production of carbohydrates (Markou and
Nerantzis, 2013).

Biobutanol
The green residual after microalgae oil extraction can be utilized
for the production of biobutanol. The higher energy density
of biobutanol and its molecular similarity to gasoline makes it
more suitable than biomethanol or bioethanol as biofuel. Aside
to being a biofuel, it can also be used as a solvent for industrial
purposes (Yeong et al., 2018). Despite having notable significance,
limited number of studies have reported laboratory stage work
on the fermentation of microalgae biomass to butanol (Cheng
et al., 2015; Gao et al., 2016; Wang et al., 2016). Microalgal
strains with high starch and convertible sugars concentrations
would be ideal for biobutanol production research. Tetraselmis
subcordiformis, Chlorella vulgaris, Chlorella reinhardtii, and
Scenedesmus obliquus could be among the potential candidates
(Yeong et al., 2018).

Value-Added Products
In the context of biorefinery approach, intracellular compounds
and metabolites have gained immense importance owing to their
high monetary value. Microalgal pigments: chlorophyll a and
b, lutein, astaxanthin, β-carotene, phycobilins, C- phycocyanin
have found wide application in dyes, cosmetics, food and
feed additives, nutraceuticals and pharmaceuticals, as natural
colors, bioactive components, anti-oxidants, nutritive and neuro-
protective agents (Koller et al., 2014; Begum et al., 2016).
Microalgae are also exploited as rich source of amino acids
(leucine, asparagine, glutamine, cysteine, arginine, aspartate,
alanine, glycine, lysine, and valine), Carbohydrates (β1–3-
glucan, amylose, starch, cellulose, and alginates), Vitamins and
minerals (vitamin B1, B2, B6, B12, C, and E; biotin, folic
acid, magnesium, calcium, phosphate, iodine) that are widely
used in Food additives, health supplements and medicine.
Microalgae, such as Nannochloropsis, Tetraselmis, and Isochrysis
are used for extraction of long chain fatty acids popularly
known as the omega fatty acids such as DHA (Docosahexaenoic
Acid) and EPA (Eicosapentaenoic Acid), have lately gained
prime attention as essential for human brain development
and health. Other than these, microalgae are also used for
production of Extracellular Polymeric Substances (EPSs) which
have many industrial applications and Polyhydroxyalkanoates
(PHAs). PHAs can be used for manufacturing bioplastics that are
very sought after because of their biodegradability (Markou and
Nerantzis, 2013; Koller et al., 2014).

State-of-the-Art
Although many have reported successful utilization of microalgal
biomass for the production of bioproducts within a biorefinery
framework, the economic feasibility is unrealized and the
microalgae biorefinery is way much expensive (’t Lam et al.,
2017; Zhou et al., 2017). To attain feasibility and sustainability,

both upstream processing (USP) and downstream processing
(DSP) need to be efficiently simplified and integrated. The
efficiency of the USP is determined by microalgal strain
selection, nutrient supply (CO2, N, and P) and culture
conditions (temperature, light intensity) (Vanthoor-Koopmans
et al., 2013). Whereas, the constraints at the DSP level are mainly
characterized by harvesting, cell disruption, and extraction
methods. DSP, specifically harvesting accounts for 20–40% of the
total production costs and for a multi-product biorefinery, the
cost increases to 50–60% (’t Lam et al., 2017).

Bioprospecting suitable microalgae is a crucial but time
intensive step, high throughput screening techniques like 96-
well microplate swivel system (M96SS) have made processing
upto 768 microalgal samples at the same time, possible
(Han et al., 2012; Zhou et al., 2017). Microalgal production
strains can be improved by induced acclimation through
manipulation of various environmental stresses (Chen et al.,
2017; Schüler et al., 2017). Aslam et al. (2017) showed
that mixed diverse community of microalgae, dominated by
Desmodesmus spp., could be adapted over a time of many
months to survive in 100% flue gas from an unfiltered coal-
fired power plant containing 11% CO2. Carbohydrate and starch
accumulation in Chlorella sp. AE10 was improved by a two
staged process wherein the CO2 concentration, light intensity,
nitrogen concentration was changed drastically and cells were
diluted at onset of 2nd stage resulting in a 42% increase
in carbohydrate accumulation (Cheng et al., 2017). Besides
stress manipulation and acclimatization, desirable traits of the
microalgal strains can be effectively improved by genetic and
metabolic engineering/synthetic biology. Lately, genome editing
tools such as Clustered Regularly Interspaced Short Palindromic
Repeats – CRISPR associated protein 9 (CRISPR-Cas9) and
Transcription Activator-Like (TAL) Effector Nucleases (TALEN)
are being used in microalgal gene alterations. Moreover, gene-
interfering tools, such as CRISPR-dCas9, micro RNA (miRNA),
and silence RNA (siRNA) are being explored to alter the gene
expression unlike gene modification. Synthetic biology engages
the use of “biobricks” to create artificial regulatory pathways
that can control a desired cellular trait by modifying the
metabolism. Interchangeable units such as promoters, ribosome-
binding sites (RBS), terminators, trans-elements and regulatory
molecules serve as the biobricks. Recent developments in
microalgal genetic and metabolic engineering can be found
in detailed reviews by Ng et al. (2017) and Jagadevan et al.
(2018). Recently, Yang et al. (2017), genetically engineered the
calvin cycle of Chlorella vulgaris enhancing its photosynthetic
capacity by∼1.2-fold, by introducing the cyanobacterial fructose
1,6-bisphosphate aldolase, guided by a plastid transit peptide.
Kuo et al. (2017), screened an alkali-tolerant, Chlorella sp. AT1
mutant strain by NTG (N-methyl-N′-nitro-N-nitrosoguanidine)
mutagenesis that survived well 10% CO2 for prospective CO2
sequestration.

Large scale microalgal cultivation and nutrient supply pose
huge economic burden. In this context emphasis is being
laid on biofilm based attached cultivation rather than aqua-
suspend methods that have massive water requirement, low
biomass productivity, energy intensive and cannot be easily
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scaled up (Kesaano and Sims, 2014; Wang et al., 2017).
Microalgal production using wastewater from industrial,
agricultural and sewage sources is a promising way to reduce
the ecological footprints substantially (Pires et al., 2012;
Singh and Thakur, 2015). Digestates, effluents from biogas
production units and AD (containing concentrated nutrients
including nitrogen in the form of ammonia, potassium,
phosphorous, sulfur, and recalcitrant organic substances),
are also being used in microalgal cultivation systems.
A recent elaborated review has been done by Koutra et al.
(2018).

The main DSP unit operations are harvesting, cell disruption
and extraction. Centrifugation is the most efficient (>95%
efficiency) method for harvesting microalgae. However, being
very cost intensive, it is not suitable for large scale systems.
Flocculation is a low-cost alternative. Cationic chemical
flocculants and polymeric flocculants are generally used
(Brennan and Owende, 2010), but can negatively affect the
toxicity of the biomass and output water (Ryan, 2009). Zhou
et al. (2012) reported a novel fungi assisted bioflocculation
technique, in which a filamentous fungal spores were added to
the algal culture under optimized conditions and the pellets were
formed after 2 days that can be harvested by simple filtration.
Attached culture can also make harvesting simple (Wang et al.,
2017). Conventional disruption methods like bead beating,
homogenizers, heating, applying high pressure and chemicals
or enzymes for lysis is costly and pose risk of loss of desired
multi products in biorefinery concept. Physical disruption by
pulsed electric field (PEF) is a promising alternative technology
as it is a low-shear technology that operates on low temperature
and can aid the extraction of hydrophobic constituents of the
biomass (Goettel et al., 2013; ’t Lam et al., 2017). In the case
of extraction technologies, ionic liquids (ILs) appear to be
promising as they are advantageous over conventional solvents.
ILs are organic salts that are non-volatile at room temperature.
Also, they can be used for extraction of hydrophilic proteins.
Imidazolium-based ILs have been successfully used for cell

disruption for lipid extraction from microalgal biomass (Orr and
Rehmann, 2016).

CONCLUDING REMARKS

Microalgae based carbon capture technologies are certainly
promising but their successful implementation is still to be
realized. Recent advances and breakthroughs in bioprospecting
new strains, innovation in culture strategies and process
optimization are certainly making us optimistic about the
future of microalgal biorefinery. But, the prospects of successful
commercial deployment lie in unsophisticated innovations in
DSP, particularly harvesting, cell disruption and extraction, which
can actually cut down the costs at a biorefinery level, along
with process integration. Lastly, the vast data gathered through
omics and labeling analysis needs to critically and holistically
studied to gain in depth knowledge of the microalgal CCM,
biosynthetic pathways and stress mediated responses ensuing
the creation avant-garde strains and metabolic circuits via
genetic/metabolic engineering approaches, that can revolutionize
the whole microalgal biorefinery concept.
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