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Coral tissues control growth and calcification processes that ultimately build coral
reefs but relatively little information is available on the effects of nutrients on polyp
tissues. The structure and organization of coral tissues were investigated using thin
(0.5–1 µm) sections of young (<3 months) radial polyps of the reef-building coral
Acropora longicyathus that had been exposed to elevated concentrations of ammonium
(‘N’) and/or phosphate (‘P’) in the ENCORE experiment at One Tree Island, southern
Great Barrier Reef. Young polyps of N-treated corals had similar porosity but significantly
decreased length of calicoblastic body wall per cross-section of the septotheca
compared with controls. Other studies using older skeletons of the same corals found
they were significantly less porous than controls and their branches had reduced
extension rates and reduced lesion-healing ability, indicating that increased calcification
occurred in the infilling process rather than during apical extension. The free body
wall epidermal tissues of P-treated polyps were significantly thicker than corals in
control conditions and their calyx walls had significantly greater length of calicoblastic
body wall per cross-section despite similar porosity to controls. This suggests that
phosphate stimulated tissue growth and apical calcification. Although other studies of
the chlorophyll content of older tissue found it was significantly increased by phosphate
treatments, more rapid extension of the branches kept Symbiodiniacean densities in
the younger polyps similar to controls. We recorded a reduction in the density of
mucous bodies in P-treated corals, which is potentially significant for the survival of
corals in polluted water because of the important roles of mucus in facilitating removal
of sediment from the coral surface and as a barrier to pathogen infection.

Keywords: ammonium, phosphate, porosity, mucus, coral tissue growth, symbiodiniaceae

INTRODUCTION

The role of nutrification (elevated concentrations of inorganic nitrogen and phospate) in the
demise of coral reef communities has been the subject of much research, particularly following
sudden shifts from coral-dominated to algal-dominated communities were documented for reefs
including Kaneohe Bay, Hawaii (Smith et al., 1981), and elsewhere (Pastorok and Bilyard, 1985;
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Tomascik and Sander, 1987; Szmant, 2002). One mechanism by
which nutrients were hypothesized to exert an effect was through
direct negative impacts on coral physiology and health. However,
while such impacts have been demonstrated in laboratory and
field experiments, their magnitude is rarely sufficient to explain
death or overgrowth of corals by other biota (Szmant, 2002).

One of the more ambitious experiments to manipulate
nutrients in an intact coral reef system was the ENCORE
project (Larkum and Steven, 1994). The project used 12 patch
reefs in One Tree Reef Lagoon on the southern Great Barrier
Reef. During 1995 concentrations of ammonium, phosphate,
or a combination of both, were elevated by 10–20 times
average lagoonal concentrations for the duration of each low
tide. A number of studies of corals translocated into the
ENCORE patch reefs have demonstrated significant impacts
on reproduction and lipid levels (Ward, 1997; Ward and
Harrison, 1997, 2000), photosynthetic processes (Takabayashi,
1996), growth and skeletal density (Hoegh-Guldberg et al., 1997;
Bucher, 2000; Bucher and Harrison, 2000), and lesion-healing
ability (Bucher, 2000) that support the hypothesis that nutrients
may reduce coral resistance and/or resiliance to other stressors
such as warm-water bleaching and physical damage. These
results were subsequently questioned by Szmant (2002) who
considered that the low abundance of acroporid corals in
the micro-lagoons may have indicated that they did not
provide a suitable natural habitat for these corals, and that
nutrient effects on this genus may have been the result of
some patch reefs being less suitable than others. However, the
ENCORE design was replicated with three micro-lagoons for
each treatment, and we had the opportunity to revisit the
ENCORE reefs in November 2017 and noted that many of the
transplanted colonies continue to thrive in the micro-lagoons
some 20 years after the experiment. In particular, the smaller
reefs to the western end of the lagoon are now almost
impassable because of the high density of acroporid corals. We
are therefore confident that the previous paucity of acroporid
corals in these habitats was not due to poor environmental
conditions. Moreover, the transplanted corals did not suffer
from effects of crowding as the micro-lagoons have since
supported a far higher density than was present during the
experiment.

As a fast-growing, diverse taxon with a wide biogeographic
distribution, the genus Acropora has been one of the groups on
which nutrient studies have been focussed (Shantz and Burkepile,
2014). The gross anatomy of Acropora has been described by
Constantz (1989), Veron (1986), and Wallace (1999). At the
apex of each branch is a single apical polyp. Polyps that bud
from the apical polyp, or which arise from the coenosarc, to
line the sides of the branch, are termed radial polyps. The
apical polyp of a rapidly extending branch, generally has very
few microalgal dinoflagellates (family Symbiodiniaceae) in its
tissues, is larger than the radial polyps around it, and its
skeletal structure is extremely porous (Oliver, 1984; Fang et al.,
1989).

The coelenteron of the axial polyp extends deep within the
branch, occupying a canal along the central axis. The coelentera
of the radial polyps also join the axial canal, and it has been

suggested that excess photosynthate produced by the abundant
symbiotic dinoflagellates in the radial polyps may be transported
along the canal to the pale branch tip (Pearse and Muscatine,
1971; Oliver et al., 1983; Fang et al., 1989). Inorganic carbon
produced by respiration of the deeper tissues may also be
transported to the rapidly calcifying tip by ciliary currents, along
with calcium ions. The unique anatomy of the Acropora colony
therefore provides apical polyps with the supply of materials
and energy they need for the rapid linear extension that is
characteristic of the genus (Wallace, 1999).

The need for translocation of materials from deeper tissue
implies that Symbiodiniaceae-free apical polyps probably require
a critical mass of dinflagellate-rich tissue beneath them in order
to maintain maximum extension rates. It therefore seems likely
that a rapidly growing apical polyp may suppress initiation of
new branches that would compete for translocated materials until
there is a sufficient biomass of photosynthetic tissue to supply
a second apical polyp. This may provide a simple model to
explain the more frequent branching observed when colonies
are transplanted into shallow water (e.g., Oliver et al., 1983),
where the higher light levels may allow an apical polyp to be
supplied by a smaller mass of dinflagellate-rich tissue. Supplies
of molecules needed for organic growth could potentially have
a similar effect. Suppression of branch initiation by the apical
polyp would also explain the rapid initiation of new branches
that occurs when an apical polyp is damaged. For this reason,
we prefer the use of large transplanted fragments of colonies for
growth experiments rather than juveniles, nubbins or branch tips
that are commonly used (Takabayashi, 1996; Renegar and Riegl,
2005).

In ‘bottlebrush’ species such as Acropora longicyathus, there
is a continuum of radial polyp shapes from sessile semicircular
cups to elongate cylinders (Figure 1). The calices of all Acropora
polyps are porous structures, consisting of skeletal elements
that are parallel (septa) and perpendicular (synapticulae) to the
polyp axis (Figure 1). Branches of the coelenteron fill the voids
between these skeletal elements. For as long as they are in contact
with the calicoblastic tissues of the coelenteron wall the skeletal
elements will continue to thicken, presumably until the voids are
no longer sufficiently interconnected to support the metabolic
requirements of coral tissue. By this process, the basal portions

FIGURE 1 | Chemically bleached calices of individual radial polyps of
Acropora longicyathus, showing the shape and the porous nature of the calyx
walls (septotheca).
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of a large Acropora skeleton may become the least porous of any
coral skeleton (Hughes, 1987).

The general features of the endoderm (gastrodermis),
mesogloea and ectoderm (epidermis and calicoblastic tissue)
of corals have been described by Barnes (1973), and the
finer structure of the tissues of Acropora muricata have been
described by Harrison (1980). Processes in living corals that
result in changes in the balance between calcification and skeletal
extension (Bucher, 2000; Bucher and Harrison, 2000), or which
alter the ability of the coral to grow and maintain itself may be
investigated further by examining the tissues of the polyps. Of
particular importance are tissues associated with the response to
irritants (mucous cells in the free body wall), skeleton production
(the calicoblastic body wall) and the energy supply of the polyp
(Symbiodiniacea).

Many studies have used light microscopy or transmission
electron microscopy to examine coral tissues for descriptive
or taxonomic purposes (see review by Chapman, 1974), or to
examine the process of skeletogenesis (Johnston, 1977, 1979; Le
Tissier, 1991). Others have described cellular changes associated
with bleaching (Glynn et al., 1985) or infection by pathogens
(Peters, 1984; Glynn et al., 1989). Very few studies have used
histological techniques to examine subtle sub-lethal changes in
parameters such as cell densities (other than Symbiodiniacean
cells) or tissue thicknesses in a manipulative experimental
setting, although Renegar et al. (2008) examined tissue and
cell ultrastructure around areas of lesion repair in Montastrea
cavernosa and Porites astreoides and identified differences in
Symbiodiniaceae distribution and condition in regenerating
tissue exposed to elevated nutrients, but this gives little guide to
impacts on undamaged tissue.

Harrison et al. (1990) examined changes in Acropora muricata
tissues when exposed to oil and oil dispersants. They described
the sequence of stress responses of coral tissue to a range
of exposure times, ranging from excessive mucus secretion,
through symbiotic dinoflagellate loss, to thinning and eventual
disintegration of the tissues. In this study, we compare
histological cross-sections of recently formed radial polyps of
A. longicyathus grown under conditions of elevated ammonium,
phosphate, and a combination of both nutrients, with those
grown in ambient conditions during the high-dose phase of the
ENCORE experiment (Larkum and Steven, 1994; Koop et al.,
2001).

MATERIALS AND METHODS

The experimental design of ENCORE has been described in detail
elsewhere (e.g., Larkum and Steven, 1994) and is only briefly
outlined here. Automated nutrient dispensing units were used
to add concentrated nutrient solution to micro-lagoons within
patch reefs in the main lagoon of One Tree Reef, Great Barrier
Reef (Lat. 23◦30’ Long. 152◦06’). Three patch reefs remained
unaltered as controls, three received ammonium (‘N-only’), three
received phosphate (‘P-only’), and both nutrients were added
to a further three patch reefs (‘N + P’). Data presented here
were collected during the ‘high-dose’ treatment period (see

Koop et al., 2001), when nutrient concentrations were elevated to
approximately 20 times background levels (20 µM NH4

+, 4 µM
PO3

2+) three times every low tide between January 1995 and
February 1996.

Sixty colonies of the branching reef coral A. longicyathus from
around the main lagoon were used to provide sub-colonies for
transplant into the micro-lagoons. Five colonies were randomly
assigned to each patch reef of which three were used for
histological study. Transplanted sub-colonies were supported on
racks made from PVC floor tiles raised on short (∼10 cm)
lengths of PVC pipe. All data sets were analyzed with nested
analyses of variance (ANOVA) and Tukey’s honestly significant
difference (HSD) multiple comparison of means. Results were
initially analyzed using a two-way orthogonal model in which
the treatments involving elevated ammonium (‘+N’: N-only and
N + P) are compared with those with ambient ammonium
(‘-N’: Controls and P-only), P-only and N + P (‘+P’) are
compared with controls and N-only (‘-P’), and the interaction
between the two nutrient factors is assessed. Where there was
a significant interaction between ammonium and phosphate
treatments a model was applied in which each of the four
treatments (Controls, N-only, P-only and N + P) were
compared individually, with the emphasis placed on comparisons
of elevated nutrient treatments with ambient controls. No
significant interaction in the orthogonal model indicates that the
effect of elevating one nutrient is independent of whether or not
the other nutrient is also elevated and renders redundant the
less-powerful linear model and post-hoc tests of multiple means.

Individual cylindrical radial polyps of A. longicyathus were
removed with a knife blade from within 1.5–2 cm of the tip of
the uppermost branches of each colony during June 1995. Linear
extension rates (Bucher and Harrison, 2000) suggest that these
polyps were no more than 5–6 months old, and had therefore
been formed during the ENCORE high-dose nutrient treatment
period (Koop et al., 2001).

All polyps were fixed immediately in cold 2.5% glutaraldehyde
for 2–3 h in Millipore-filtered seawater, buffered with 0.1 M
sodium cacodylate, and adjusted to a pH of 7.2 (after Harrison,
1980). After three rinses in the cacodylate-buffered seawater,
the polyps were stored in the final rinse for transport. The
polyps were post-fixed for 1 h in 1% OsO4 in cacodylate-buffered
seawater, rinsed three time in cacodylate-buffered seawater, and
stored refrigerated in the final rinse solution. Prior to embedding,
the polyps were decalcified in ascorbic acid according to the
method of Dietrich and Fontaine (1975) and were embedded
in Spurr’s resin (Spurr, 1969) for sectioning. Thin (0.5–1.0 µm)
sections were cut using glass knives on a Reichert OMU3
ultramicrotome. Sections were cut approximately 1 mm from
the top of the calyx wall, perpendicular to the longitudinal axis.
The sections were mounted on glass slides, stained with toluidine
blue in borax (after Harrison, 1980) and photographed with a
Panasonic CCTV digital video camera mounted on an Orion
BM-LUX-2 compound microscope.

Digital images were captured using a 5 megapixal digital
camera mounted on an Olympus compound microscope. The
images were printed at a resolution of 144 dpi, giving a printed
image size of 11 cm × 8.5 cm. All lengths and areas were
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measured from the printed images using a Wacom ArtZ II
12” × 12” digitizing tablet. Scaling factors were obtained by
photographing and digitizing 0.1 mm square haemocytometer
grids at the same magnifications as the coral polyps. Images were
obtained at three random locations on each of two polyps per
colony. At each location three images were taken for analysis as
shown in (Figure 2).

An image at x40 magnification enabled a cross-sectional view
of a segment of the polyp from the outer body wall to near the
inner margin of the mesenteries. The area of each image occupied
by skeleton (Askeleton) and the total area of calyx wall (Atotal) in
the image were digitized. Porosity of the calyx wall was then
calculated as follows:

Porosity = 100∗(Atotal − Askeleton)/Atotal

On the x100 image, the number of Symbiodiniacean cells
inside gastrodermal cells of the calicoblastic body wall were
counted, and the length of calicoblastic body wall in the image
was measured along the mesogloea.

At x400 magnification (Figure 3) the thickness of the
epidermis and the total thickness of the outer body wall could
be measured. The numbers of Symbiodiniacean cells in the
gastrodermis of the free body wall, and the numbers of mucous
bodies in the epidermis were counted and expressed as the
number of mucus bodies per length of free body wall (measured
along the mesogloea). We have followed the nomenclature of
the symbiotic dinoflagellates recommended by LaJeunesse et al.,
2018).

RESULTS

Tables 1, 2 summarize the means and results of analyses of
variance for tissue variables measured from digital images of

FIGURE 2 | Photo-mosaic cross-sections of typical polyps of A. longicyathus
showing examples of image locations at x40, x100, and x400 magnifications.
Skel, areas of decalcified skeleton.

FIGURE 3 | Example of digital video images of a polyp cross section of
Acropora longicyathus at x400 magnification, showing the tissue layers. Lining
the coelenteron (coel) is the gastrodermis (gast) containing symbiotic
dinoflagellates (zoox). The calicoblastic epithelium (cal) lines areas from which
the skeleton has been decalcified (skel) and the epithelium (epi) of the free
body wall contains mucous bodies (muc) and nematocysts (nem). Between
the gastrodermis and epithelium lies the thin acellular mesogloea (meso).

A. longicyathus polyps. Three parameters produced significant
treatment effects in the two-way orthogonal analyses of variance
(Table 2). Elevated ammonium was associated with significantly
increased Symbiodiniaceae densities in the calicoblastic body wall
(‘CBW Zoox.’) and a significantly reduced length of calicoblastic
body wall (‘CBW Length’). Elevated phosphate concentrations
were associated with significantly reduced densities of mucous
bodies in the free body wall. Significant N × P interaction terms
occurred in three analyses (‘Porosity,’ ‘FBW Zoox.’ and ‘FBW
Width’) in which the responses to the P-only treatment produced
highest values but the N + P treament produced values more
similar to controls than any other nutrient treatment. Inter-reefal
differences (within treatments) were detected in all parameters
except ‘FBW Width.’ The dispersion of treatments in different
patch reefs spread across the lagoon reduced the likelihood
of reef differences being responsible for observed treatment
effects. Significant colony effects (within reef) were detected in
‘Porosity,’ ‘CBW Length,’ ‘Mucous Bodies,’ and ‘FBW Width.’ These
significant effects were due to relatively small differences between
colonies combined with low variation between polyps of the same
colony.

Nested one-way analyses of variance and multiple
comparisons of means (Tukey’s HSD) showed that there
were significant differences between treatments and control
corals in porosity of the calyx wall (‘Porosity’), the density of
Symbiodiniaceae per unit length of calicoblastic body wall (‘CBW
Zoox’), width of the free body wall (‘FBW Width’ – due mostly
to changes in ectodermal thickness), and the density of mucous
bodies in the ectoderm of the free body wall (‘Mucous Bodies’).
P-only treated corals differed significantly from controls in
regard to Porosity (increased relative to controls), FBW Width
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TABLE 1 | Summary of tissue variables of A. longicyathus measured in images of cross-sections of polyps.

Porosity (%) CBW Length (mm) CBW Zoox (mm−1) FBW Zoox (mm−1)

-N (C, P) 71.2 ± 7.3 (99) 21.9 ± 4.5 (105) 18.7 ± 8.1 (104) 9.7 ± 11.6 (89)

+N (N, N+P) 70.3 ± 7.8 (104) 18.9 ± 4.5 (105) 22.9 ± 10.8 (105) 9.4 ± 13.3 (89)

-P(C, N) 70.6 ± 7.7 (107) 20.1 ± 4.8 (108) 21.1 ± 10.6 (108) 9.5 ± 14.2 (95)

+P (P, N+P) 70.9 ± 7.4 (96) 20.8 ± 4.6 (102) 20.5 ± 8.7 (101) 9.6 ± 10.3 (83)

Control 69.3 ± 7.3 (54) 21.7 ± 4.6 (54) 18.6 ± 8.3 (54) 7.3 ± 12.3 (49)

N-only (N) 71.3 ± 8.0 (53) 18.5 ± 4.6 (54) 23.6 ± 12.1 (54) 11.9 ± 15.7 (46)

P-only (P) 73.3 ± 6.9 (45) 22.1 ± 4.6 (51) 18.8 ± 7.9 (50) 12.7 ± 10.2 (40)

N + P 68.3 ± 7.3 (51) 19.4 ± 4.4 (51) 22.2 ± 9.2 (51) 6.7 ± 9.6 (43)

All treatments 67.4 ± 7.5 (203) 20.4 ± 4.7 (210) 20.8 ± 9.3 (209) 9.6 ± 12.5 (178)

Mucous bodies (mm−1) FBW width (cm on image)

-N (C, P) 43.8 ± 22.5 (88) 8.4 ± 1.4 (90)

+N (N, N+P) 44.2 ± 24.2 (88) 8.2 ± 0.9 (53)

-P(C, N) 50.8 ± 23.9 (93) 8.0 ± 1.1 (68)

+P (P, N+P) 36.4 ± 20.2 (83) 8.6 ± 1.3 (75)

Control 50.5 ± 22.1 (47) 7.9 ± 1.2 (50)

N-only (N) 51.0 ± 25.8 (46) 8.4 ± 0.8 (18)

P-only (P) 36.0 ± 20.6 (41) 9.1 ± 1.4 (40)

N + P 36.7 ± 20.0 (42) 8.1 ± 1.0 (35)

All treatments 44.0 ± 23.3 (176) 8.4 ± 1.2 (143)

The number of replicates (n) varies between treatments as some cross-sections were damaged during collection, fixation or mounting, preventing accurate measurement
of lengths or areas. ‘Porosity’ is the % of total polyp area in an image at x40 magnification occupied by tissue or coelenteron. ‘CBW Length’ is the length of calicoblastic
body wall in each image at x100 magnification. ‘CBW Zoox.’ is the density of symbiotic dinoflagellates per mm of calicoblastic body wall. ‘FBW Zoox.’ is the density of
symbiotic dinoflagellates per mm of free body wall. ‘Mucous Bodies’ is the density of mucous bodies per mm of free body wall. ‘FBW Width’ is the total width of the
free body wall.

TABLE 2 | Summary of analyses of variance for tissue variables of A. longicyathus measured in digital images of histological cross-sections of polyps collected in June
1995.

Porosity (%) CBW length
(mm)

CBW zoox.
(cells/mm)

FBW zoox.
(cells/mm)

Mucous
bodies (per
mm of FBW)

FBW width
(cm on image)

Orthogonal ANOVA model

Main effects

+N vs. -N . . . �↓ �↑ . . . . . . . . .

+P vs. -P . . . . . . . . . . . . �↓ . . .

Interactions

NxP � . . . . . . � . . . �

Nested terms

Reef � � � � � . . .

Colony � � . . . . . . � �

Polyp . . . . . . . . . . . . . . . . . .

Linear ANOVA model

Highest

lowest

P ] ∗

N ] ]
C ]
N + P ]

P ]
C ] ]
N + P ] ]
N ]

N ] ∗

N + P ] ]
P ] ]
C ]

P ]
N ]
C ]
N + P ]

N ]
C ]
N + P ] ∗

P ] ∗

P ] ∗

N ] ]
N + P ]
C ]

In the results of the orthogonal model indicates significant effects at p < 0.05 and arrows indicate the direction of the effects of elevated ammonium (+N) or phosphate
(+P) compared with ambient concentrations (−N or −P). In the results of the linear ANOVA model, bars link treatment means that were not significantly different (Tukeys
HSD test, p < 0.05) and ∗ emphasizes treatments that were significantly different from controls.

(increased relative to controls) and Mucous Bodies (decreased
relative to controls). The N-only treatment differed significantly
from controls in regard to ‘CBW Zoox.’ (increased relative to
controls) and had significantly lower ‘CBW Length’ relative

to P-only treated corals, but neither differed significantly from
controls. The combined (N+ P) treatment differed from controls
only in regard to the reduced density of mucous bodies in the
free body wall.
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DISCUSSION

Although elevated phosphate produced a significantly higher
porosity of the calyx wall than controls, there was a significant
interaction with ammonium because when the two were elevated
simultaneously the result was similar to controls. A similar
pattern occurred with free body wall thickness. This pattern
indicates that the ratio of nutrients may be more important
than the absolute concentrations in determining the outcomes in
these parameters. It has been demonstrated that excess nitrogen
can cause symptoms of phosphate starvation (D’Angelo and
Wiedenmann, 2014), which can be offset when phosphate is
simultaneously elevated. A similar effect of elevated phosphate
alone may be possible but a mechanism has yet to be
demonstrated.

The significant increase in porosity of the calyx wall in
phosphate treatments reported here is consistent with the
reduction of skeletal bulk density reported by Bucher and
Harrison (2000) for whole branches of the same colonies in
elevated phosphate. In elevated ammonium treatments, a high
annual rate of colony calcification and low rates of linear
extension (Bucher and Harrison, 2000) in large fragments of
the same colonies led to reduced porosity of branches, but in
the young polyps used in the present study (those near the
growing tip of the branches), this was not evident and calyx wall
porosities were similar to controls. The difference in response
to elevated ammonium between the two studies may be because
there were seasonal fluctuations of ambient nitrogen in the
lagoon causing differences in the effect of elevated nitrogen on
colony calcification (Bucher and Harrison, 2000). The young
polyps in this study may only show the effects of the rapid
summer-autumn growth prior to sampling when calcification
was similar between nitrogen-treated corals and controls (Bucher
and Harrison, 2000).

Symbiodiniaceae densities in recently formed polyps did not
correspond with the appearance and chlorophyll content of the
older branches of the same A. longicyathus colonies (Bucher
and Harrison, 2000), in which the P-only treatment produced
significantly higher values and controls the lowest. Low density
and high variability of Symbiodiniaceae in histological sections
of the free body wall of A. longicyathus meant that no nutrient
treatment produced densities that were significantly different
from controls in this study. Unlike the polyps of Acropora
muricata (Harrison, 1980), the Symbiodiniaceae of recently
formed polyps in A. longicyathus were more numerous in the
gastrodermis of the calicoblastic body wall than in the free body
wall. Ammonium-treated corals had significantly higher densities
of Symbiodiniaceae in the calicoblastic body wall. However,
significant differences in skeletal geometry between treatments
meant that in ammonium-treated corals there was less area of
calicoblastic body wall per volume of calyx wall. This difference
offset the higher density of Symbiodiniaceae and produced
almost identical counts per cross-sectional area of the calyx wall
in all treatments. While exposure to elevated inorganic nitrogen,
resulting in phosphate starvation, can increase physiological
symptoms of high-light and high-temperature stress in the
coral-Symbiodiniaceae symbiont, which can potentially lead to

increased susceptibility to bleaching and mortality (Wiedenmann
et al., 2013; Higuchi et al., 2015), the effect would be further
exacerbated by the nitrogen-exposed corals having less tissue to
house the population of symbiotic algae.

There was a significant increase in total free body wall
thickness in elevated phosphate treatments, suggesting a greater
amount of tissue per surface area of the colony. In high-light,
oligotrophic conditions Symbiodiniaceae produce excess organic
carbon compounds that they cannot use for growth because
of a shortage of either nitrogen or phosphorus (Dubinsky and
Jokiel, 1994). These energy-rich compounds are translocated
to the host coral to fuel respiration of the animal tissue. The
more photosynthate available to the coral, the more tissue it
can support. However, to make more tissue the coral needs
compounds containing nitrogen and phosphate. The animal
tissue cannot assimilate inorganic nutrients, so it must obtain
them as organic compounds such as dissolved amino acids, or
living or dead particulate matter (Anthony, 2000). In nutrient-
enriched waters the symbiotic algae are apparently able to utilize
a greater proportion of the photosynthate for their own growth
and reproduction, leaving a smaller proportion to be translocated
to the coral (Dubinsky and Jokiel, 1994). In some circumstances,
the lower rate of translocation per algal cell can be compensated
for by higher Symbiodiniacean densities (McGuire and Szmant,
1997), although this is not always the case (Scheufen et al.,
2017). In the field conditions of this experiment, the higher
rates of tissue production generally corresponded with higher
Symbiodiniaceae densities.

If sufficient organic matter is available in the water column (as
prey items, dissolved or particulate matter), then heterotrophic
uptake may allow the coral to make use of any increased
translocation of photosynthate for increased production of
animal biomass (Muscatine et al., 1989). Growth of coral tissue
could therefore increase when the concentration of the limiting
nutrient is elevated, possibly after an initial depression of growth
during the phase of rapid increase in the Symbiodiniaceae
population. Porites furcata exposed to elevated nutrients from
resident fish schools had significantly more tissue per unit
surface area than colonies without fish schools (Muscatine
et al., 1985). No significant differences in the ratio of tissue
weight:skeletal weight were observed in Stylophora pistillata in
the ENCORE project (Hoegh-Guldberg et al., 1997), although
an examination of the three data sets presented in that paper
suggests a possible increase in this ratio in the phosphate-only
treatment over time, relative to the other three treatments.
In the present study, increased tissue thickness of the free
body wall in the phosphate treatment is a possible indication
of greater tissue production. Ward (1997) demonstrated that
the same colonies of A. longicyathus used in this experiment
from the ENCORE phosphate treatments also had significantly
higher concentrations of lipids than corals at ambient phosphate
concentrations, suggesting that the phosphate-treated corals had
higher energy reserves to support growth, metabolic activity
and reproduction (Ward and Harrison, 2000). Increased tissue
production requires construction of new skeletal structures to
support the new tissue. Conversely, new skeletal elements require
new tissue to cover them, whereas infilling of existing structures
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reduces the space available for living tissue. Significantly
higher skeletal linear extension and slightly faster growth
in colony volume of fragments of the same coral colonies
used in this study (Bucher, 2000; Bucher and Harrison,
2000), together with greater skeletal porosity in the phosphate
treatment support the conclusion of faster coral tissue
production.

The reduction of mucous bodies in phosphate-treated corals
is a potentially important finding from the present study
because it may indicate a mechanism for synergistic effects
of sediment, pathogens and nutrients and may have resulted
from either increased frequency of mucus release or decreased
rates of production. One use of mucus is to slough away
sediment which settles on the coral surface (Stafford-Smith,
1993; Humanes et al., 2017). A coral may be able to remove
sediment when in nutrient-poor water or it may survive high
nutrients in otherwise clear water. However, a coral may not be
able to deal with a combination of sediment and nutrients if
nutrients reduce the coral’s ability to remove the sediment. Mucus
production has been suggested as a means by which the coral
releases carbon-rich organic matter that has been translocated
by symbiotic dinoflagellates in excess of the respiratory needs
of the coral (Crossland et al., 1980). If elevated phosphate
allowed for a greater proportion of photosynthate to be directed
toward growth of algal and coral biomass, it would leave less
excess carbon to be secreted as mucus. Alternatively, the higher
phosphate concentration may have acted as an irritant to the
coral tissue, triggering mucus release more often than in controls.
Either process would have resulted in a reduction of mucous
bodies within the tissue. Mucus may also act as a barrier to
pathogenic infection. Bruno et al. (2003) and Vega Thurber
et al. (2014) have shown that corals in areas with artificially
elevated nutrients had a higher incidence of disease than corals
from control reef areas, although whether this was due to direct
physiological impacts on the coral animal or alterations to the

composition of the microbiome or a combination of both is not
known.

The changes in the tissues of A. longicyathus revealed in this
study indicate further mechanisms by which superficially healthy
corals exposed to elevated ammonium or phosphate may be more
sensitive to other environmental impacts. When nutrients remain
the limiting factor in coral physiology, the ratio of nutrients may
be more important than the absolute concentration for some
symptoms of nutrient stress, but for others, such as reduction
of mucous bodies in the presence of elevated phosphate or
altered skeletal architecture in elevated nitrogen, the effects are
independent of the presence of other nutrients.
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