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Effectively managing human pressures on tropical seascapes (mangrove forests,

seagrass beds, and coral reefs) requires innovative approaches that go beyond

the ecosystem as the focal unit. Recent advances in scientific understanding of

long-distance connectivity via extended ecosystem engineering effects and on-going

rapid developments in monitoring and data-sharing technologies provide viable tools

for novel management approaches that use positive across-ecosystem interactions

(for example, hydrodynamics). Scientists and managers can now use this collective

knowledge to develop monitoring and restoration protocols that are specialized for cross

ecosystem fluxes (waves, sediments, nutrients) on a site-specific basis for connected

tropical seascape (mangrove forests, seagrass beds, and coral reefs).
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INTRODUCTION

Coastal zones support many people within relatively small land areas (Neumann et al., 2015) but are
highly threatened by human activities (Szabo et al., 2015; Heery et al., 2017). This is particularly true
of tropical coastal regions, where one-third of humanity is supported on 4% of the total world land
area (Barbier et al., 2008). Increased human exploitation of these coastal zones has caused declines
in the health and extent of mangrove forests (35% Valiela et al., 2001), seagrass beds (30%; Waycott
et al., 2009, and coral reefs (20%; Bellwood et al., 2004) over the last 20–40 years (Figure 1A).
The decreased area and functioning of these ecosystems implies concomitant loss of the ecosystem
services they provide, particularly coastal defense in the face of projected sea level rise (Temmerman
et al., 2013).

Observed declines in ecosystem area and functioning have led to increased, costly (Bayraktarov
et al., 2016), restoration efforts in all three ecosystems, with limited success (Figure 1B).
High failure rates indicate new strategies are needed to improve restoration success and to
prevent further degradation of the tropical seascape. Many attempts target one ecosystem
without considering interactions among many. Interactions among adjacent ecosystems and their
associated ecosystem engineers may influence local management success, but are rarely included
despite general recognition of the potential importance of seascape-scale connectivity to ecosystem-
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FIGURE 1 | Global area loss, restoration, and management efforts for the three dominant kinds of tropical coastal ecosystems: coral reefs, seagrass beds, and

mangrove forests. (A) Percentage loss in area over the last 20–40 years. Data sources: Mangrove forests (Valiela et al., 2001); seagrass beds (Waycott et al., 2009);

coral reefs (Bellwood et al., 2004). (B) Percent restoration failure calculated from the number of restoration projects (106 mangrove forests; 141 seagrass beds; 293

coral reefs) and the number judged unsuccessful (Bayraktarov et al., 2016). (C) Global distribution of regions with these ecosystem types considered most threatened

for mangrove forests (Polidoro et al., 2010; green lines), seagrass beds (Short et al., 2011; yellow lines), and coral reefs (Burke et al., 2011) (purple lines). Management

strategies: Triangles, Marine protected areas; Circles, integrated coastal zone management; Squares, restoration efforts; Star and clear Polygon, Land management

and water monitoring; respectively (Gladstone, 2009; Bayraktarov et al., 2016).

based management (McLeod and Leslie, 2009; Saunders et al.,
2014; Long et al., 2015). A review of 49 management plans
across eight coastal systems (including the Great Barrier Reef and
the Everglades) only 6% of the management objectives included
consideration of connectivity (Arkema et al., 2006). As far as we
can ascertain, such cross-ecosystem connections have not been
used in restoration efforts.

The reasons why ecosystem connectivity may not have been
central in restoration is the practical challenge of determining
the relevant energetic and material inter-connections and
their influences (Melia et al., 2016): i.e., what are the fluxes
among proximal ecosystems, what determines variation in their
magnitude and their effects, and how do you measure them?
Research in tropical coastal seascapes has revealed ecosystem
engineering species within some ecosystems (i.e., species that
physically modify the abiotic environment Jones et al., 1994) can
significantly reduce wave energy from the ocean to the land and
reduce nutrient and sediment fluxes from the land to the ocean
(Gillis et al., 2014a; Saunders et al., 2014; Koppel et al., 2015;
Guannel et al., 2016). Effects can occur over distances sufficient
to encompass and positively affect other ecosystem types lying
within the energetic and material flux paths from ocean to land
and vice versa (Gillis et al., 2014a; Saunders et al., 2014; Koppel
et al., 2015; Guannel et al., 2016). In this perspective, we will argue

that new technologies and knowledge can link together to provide
the foundations for innovative inter-ecosystem connectivity
management (monitoring and restoration). We indicate globally
where this type of management can be used to improve the
success and reduce the cost of protecting the connected tropical
seascape.

ECOSYSTEM ENGINEERING AND
ECOSYSTEM CONNECTIVITY

Ecosystem engineers physically modify environmental
conditions, thereby allowing for greater resource availability
(Jones et al., 1994). We are aware local effects can extend beyond
the ecosystem and its ecosystem engineers to affect other types
of ecosystems this can be positive (sediment buffering in turbid
waters) or negative (nutrient retention in oligotrophic areas;
Sheaves, 2009). Here, we concentrate only on how local physical
modification of the abiotic environment can have extended
spatial influence on flux exchanges among different ecosystems
within landscapes and seascapes (Gillis et al., 2014a; Koppel et al.,
2015). In tropical coastal seascapes, the physical structure of
“donor” ecosystems can affect the establishment and persistence
of “recipient” ecosystems positively, including the engineering
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FIGURE 2 | The left hand side panel 1, representatives tropical coastal seascape showing a mangrove forest, a seagrass bed, and a coral reef; energetic and

material exchanges among them; and illustrative monitoring technologies (A–E). All three ecosystem types can be both donor ecosystems (DS) and recipient

ecosystems (RS) with respect to energetic and material exchange (see text). Ecosystem engineering within each ecosystem type modifies exchanges among

ecosystems of hydrodynamic energy (blue arrows and numbered text boxes), nutrients (green arrows and numbered text boxes—N: Nitrogen. P: Phosphorus), and

sediments (brown arrows and numbered text boxes). Arrows indicate the direction of exchanges from donor to recipient ecosystems. Numbered boxes show the

connection between the donor and most proximate recipient type of ecosystem; the kind of donor ecosystem effect on a recipient ecosystem; and the known range

of this effect magnitude. A variety of monitoring techniques, often complementary, can be used to: Determine if ecosystem proximity is sufficient for connectivity;

measure energetic and material exchanges among donor and recipient ecosystems; ascertain the physical structures of donor ecosystems responsible for the

extended ecosystem engineering effects and measure the responses of recipient ecosystems (see text for details). Illustrated here are: A. Satellite detecting changes

in cover; B. Sediment trap; C. Secchi disk measuring water transparency; D. Water quality sampling; E. Acoustic Doppler Current Profiler (ADCP) measuring water

flux. The right hand side panel 2, showing a flow chart of the steps and tools that can be utilizing to integrate connectivity into tropical management. The beginning of

the flow chart (step 1) shows connected unites of mangrove forest, seagrass bed, and coral reefs from left to right. Where ecosystem-engineering reduction of fluxes

is indicated. The physical structure of the ecosystem system engineers and flux dynamics can be monitored either traditional monitoring or new technologies (step 2).

The data from monitoring can be integrated for management utilizing established tools (step 3), which in turn can be used for both intervention in the tropical coastal

seascape (i.e., restoration, step 4), or continued monitoring (step 2).

species they contain, the structures they create, and the effects of
these structures (Gillis et al., 2014a) (Figure 2, panel 1).

Coral reefs, for example, are adversely affected by high
sediment and nutrient loads (Erftemeijer et al., 2012; Rasher
et al., 2012); seagrass beds are negatively disturbed by high
sediment/nutrient loads and high wave energy (Koch, 2001;
Burkholder et al., 2007). Mangrove forests are adversely affected
by high wave energy (Balke et al., 2014). Coral reef structure can
decrease wave heights reaching seagrass beds (Figure 2, panel
1, box 1), whose structure can further reduce wave heights
encroaching on mangrove forests (Figure 2, box 2). Seagrass
beds take up nutrients and trap suspended sediments that reach
coral reefs (Figure 2, panel 1, boxes 3, 4). Mangrove forests and
their physical presence can trap nutrients and sediments that

influence seagrass beds (Figure 2, panel 1, boxes 5, 6). Donor
ecosystems positively influence recipient ecosystems whenever
an ecosystem engineer has a large effect on the magnitude of
the fluxes. The physical structures made by species in all three
kinds of ecosystems create habitats and harbor species moving
amongst them (Nagelkerken, 2009), which will have a positive
effect on adjacent ecosystems (we will not further address this as
this aspect is beyond the scope of the perspective).

Although some current management approaches reach
across landscapes to include several ecosystems (Figure 1C;
Gladstone, 2009), these management strategies do not target
connections between ecosystems and the engineers controlling
these connections (Pressey and Bottrill, 2009). This omission
may, be due to connections between ecosystems being diverse
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and seemingly complex. However, in the tropical coastal
seascapes we know the most important fluxes (waves, sediment,
and nutrients) and the ecosystem engineers with their traits
controlling these fluxes. This information can be used directly in
management via monitoring the magnitude not only on a local
scale, but at a larger scale encompassing long-distance effects.

SEASCAPE CONNECTIVE MANAGEMENT

If all three types of ecosystems are both donors and recipients,
when they are sufficiently proximate, concentrating on one
ecosystem as a single unit risks management failure especially
when interconnections influence ecosystem functioning (Lovett
et al., 2005; Koppel et al., 2015; Guannel et al., 2016). In such
cases, a seascape approach to management is needed. This
approach is not only true for natural seascapes, but for modified
seascapes with artificial structures, which affect connectivity
(Barbier et al., 2008; Bishop et al., 2017; Heery et al., 2017).

The existence of functionally significant interconnections
among the three different ecosystems and their associated
ecosystem engineers requires developing a holistic marine
management regime (Figure 2, panel 2). Firstly, identifying
ecosystems and fluxes within the seascape. Secondly acquiring
empirical data on the state of donor ecosystems/ecosystem
engineers, the flux input/ouput and their effects on fluxes
to recipient ecosystems, and prioritizing the important fluxes
between the ecosystems via monitoring (Figure 2, panel 2, step
1). If a decline is detected in a recipient ecosystem, then
from a connectivity perspective, the positive effects of donor
ecosystems/ecosystem engineers on a recipient ecosystem have
declined or been lost due to donor degradation.

Thirdly, utilizing established tools for integrating the
monitoring of connectivity into ecosystem management
(Figure 2, panel 2, step 3). Managers could, for example ensure
an integration of a variety of stakeholders via creating new
institutes with the responsibility to coordinate actions (Fowler,
2009). If this is not possible then common arenas for facilitation
(Fowler, 2009) via a specialized “knowledge broker” to serve
as a bridge between producers and users of knowledge and to
facilitate interactions between groups (Naylor et al., 2012). In-situ
data collection methods can be expensive, as the ecosystems
should be monitored continuously over time. An approach
showing increasing interest from scientists and managers is
using citizen scientists, which has many benefits not only
financially but also socially (Dickinson et al., 2012; Vermeiren
et al., 2016; Figure 2, panel 2, step 3).

Stakeholders could develop an integrated ecosystem
assessment (IEA) for all ecosystems at the landscape scale,
i.e., including fluxes (Rodriguez, 2017). This assessment should
establish evaluation criteria for example Is the reciprocal
ecosystem degraded? (Figure 2, panel 2). Where the variables
and goals are clearly defined and the IEA is adaptive so new
information and knowledge are fed back into the IEA to
facilitate evaluation and assessment (Rodriguez, 2017). Allowing
managers to develop strategies (i.e., restoration) to address
challenges (Figure 2, panel 2, step 4), implement policies and set
objectives for management of connective fluxes.

GROWING OPPORTUNITIES FOR
MONITORING ECOSYSTEM
CONNECTIVITY IN SEASCAPES

More physical processes, fluxes, and ecosystem engineering
traits are being monitored than before, but not in a way
elucidating interactions between ecosystems. Monitoring is used
to understand individual units, for example, sequestration of
carbon (McLeod et al., 2011). An important step would be
to monitor fluxes between ecosystems with new developing
techniques. High-resolution airborne Light Detection And
Ranging (LIDAR) bathymetry has already been used to estimate
wave energy dissipation over a coral reef (Figure 2; Huang
et al., 2012). A new innovative tool could be developing
LIDAR to estimate wave energy over seagrass beds and entering
mangrove forests, we could therefore monitor how wave energy
changes from one ecosystem to another in combination with
ecosystem engineering distribution. Such remote estimates can
be complemented using, sediment traps and Secchi disks for
turbidity, water quality samples for nutrients, and Acoustic
Doppler Current Profiling for water fluxes (Figure 2; Talbot
and Wilkinson, 2001). Methods are already in use for local
singular ecosystem-based monitoring but this could be expanded
to determine how changes occur between one ecosystem and
another. Remote and local data can then be integrated using
satellite maps and spatial analysis to help create spatial explicit
maps of fluxes across the seascape, which will cover mechanisms
at the level of ecosystem extrapolated to the large-scale seascape
(Brodie et al., 2010; Petus et al., 2016).

Many of the remote and local monitoring techniques can
be used to assess structural characteristics of donor ecosystems
relevant to their ecosystem engineering effects on fluxes but
currently they have not. For example, LIDAR bathymetry and
acoustic ground determination of coral reefs can estimate reef
rugosity—key to determining effects on wave energy (Walker
et al., 2008). LIDAR could quantify structural elements of
seagrass beds relevant to wave energy attenuation and sediment
trapping. A cutting edge development would be to combine
LIDAR data of (i) fluxes across ecosystems and (ii) information
on ecosystem engineers, to map connectivity across the seascape
to determine the potential controls of connectivity. Airborne
and satellite optical sensing could be utilized to establish the
extent of these ecosystems and therefore the potential connective
pathways (Dierssen et al., 2003; Paul et al., 2011; Hedley et al.,
2016). Airborne and satellite optical sensing could be utilized
to establish the extent of these ecosystems and therefore the
potential connective pathways (Dierssen et al., 2003; Paul et al.,
2011; Hedley et al., 2016). Local measures of structure could
be used to assess the extent of the ecosystem (Talbot and
Wilkinson, 2001): for example, Line/Point Intercept Transect
assessment methods for corals; quadrats for seagrasses; and
transects for mangroves (Talbot and Wilkinson, 2001). The
resulting information could be used to validate remote data and
provide information that cannot be obtained remotely (e.g., the
species contributing to the structural heterogeneity responsible
for engineering effects). When new data and knowledge are
available from monitoring (i.e., the ecosystem attributes and the

Frontiers in Marine Science | www.frontiersin.org 4 November 2017 | Volume 4 | Article 374

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Gillis et al. Seascape Management and Connectivity

fluxes), they can be fed back into for example a IEA and used to
assess the efficiency and effectiveness of the connectivity based
management programs (Figure 2, panel 2; Lovett et al., 2007).

Knowing if at least two or all three of these ecosystem
types in an area are sufficiently proximate (or were so, if lost)
requires mapping their distribution. This information can then
be combined with models that estimate effects on wave energy,
nutrients, and sediments as a function of distance and ecosystem
engineering attributes. This can serve as an effective tool for
accessing how to bring connectivity into management. While
feasible using satellite imagery and the development of models
from current data, it has yet to be done. NASA and the European
Copernicus program have developed a strategy for the global
acquisition of freely available satellite imagery for the next
decades (Skidmore et al., 2015). Combined with advancements
in sensor technology such as NASA’s Global EcosystemDynamics
Investigation (GEDI) LIDAR and the GermanAerospace Center’s
high resolution and wide spectrum satellite EnMAP (Skidmore
et al., 2015), this platform will allow a wide range of ecosystem
attributes and interactions to be monitored to an adequate
spatio-temporal resolutions. These developments facilitate cost-
efficient use of remote sensing technology, and compensate for
required resources toward specialized image processing, analysis,
validation, and interpretation.

THE NEED OF TARGETING CONNECTIVITY
IN RESTORATION ECOLOGY

If an ecosystem is in a pristine state or has a natural recovery
potential, monitoring of fluxes, and ecosystem engineering traits
should continue as long as no other stressors occur (Figure 2,
panel 2, step 2). When donor ecosystems have deteriorated
to the point and they have no positive influence on recipient
ecosystems, or when a connected ecosystem type has been
destroyed, restoration of donor ecosystems is required in order to
manage and restore recipient ecosystems (Figure 2, panel 2, step
4). We believe one should target those ecosystem-engineering
donor species that alter fluxes for the persistence or establishment
of recipient ecosystems (Figure 2). This is an essential tool for
managing and restoring connectivity fluxes between connected
ecosystems.

Current understanding can help guide restoration. Restoring
connectivity in tropical seascapes means restoring donor
ecosystems and their ecosystem engineers to the point where
there is sufficient relevant physical structure for the positive
effects on the recipient ecosystems (van der Heide et al., 2007;
Bouma et al., 2009). In some cases artificial structures may
be preventing connected fluxes between adjacent ecosystems,
however the scale and impact of artificial structures is still
relatively unknown (Bishop et al., 2017; Heery et al., 2017).
Further qualification and quantification is urgently needed in
this respect to understand how coastal modifications will affect
restoration of fluxes.

The need to rapidly restore physical structure in donor
ecosystems to prevent further deterioration in recipient
ecosystems suggests choices among native species. The
re-establishment of fast-growing stony corals can rapidly

increase reef surface roughness, therefore decreasing wave
energy that uproots seagrass beds (Yap, 2000) and erode
mangrove forests and/or prevent seedlings from establishing
(Balke et al., 2013). Other, slower-growing coral species, or
species that have little high rugosity (e.g., brain corals), may
be less appropriate initially. Replanting fast-growing seagrass
species is more likely to lead to rapid nutrient uptake and
sediment trapping that debilitates coral reefs (Yap, 2000). Fast-
growing mangrove species with extensive prop root systems (i.e.,
complex architecture at the water/sediment interface) are most
likely to rapidly re-establish the capacity to trap sediments whose
export can inhibit seagrass beds and coral reefs (Yap, 2000).

Successful establishment of ecosystem engineers will not lead
to restoration of connectivity until there is sufficient physical
structure-thus time for growth is needed.When loss of ecosystem
connectivity adversely affects establishment and growth of
the engineering species (e.g., wave erosion of mangroves and
seagrasses, Koch, 2001; Balke et al., 2014; sediment burial of
seagrasses, Cabaço et al., 2008; nutrient and sediment inhibition
of corals, Erftemeijer et al., 2012; Rasher et al., 2012), it may
be necessary to use temporary constructions whose structure
mimics engineering effects to make local conditions suitable.
For example, ecological restoration using the natural seeding
potential of mangrove forests, rather than planting seedlings, has
been successful when the hydraulic thresholds (Olds et al., 2012)
have been restored (Lewis, 2000, 2005).

TOWARD GLOBAL MANAGEMENT OF
SEASCAPE CONNECTIVITY

In areas such as the Caribbean and South-East Asia (Figure 1C),
practices already consider management at the ecosystem scale
(Figure 1C), but they do not explicitly consider connectivity.
Other areas have shown ridge-to-reef management (The
Great Barrier Reef), but without concentrating on fluxes
between ecosystems (Figure 1C). Nevertheless, in these regions,
restoration has not generally been successful for example using
inappropriate species (Yap, 2000). Combining our understanding
of connectivity and ecological restoration may be the most
efficient and effective way to successfully restore and manage
ecosystems.

We question why this approach has not yet been used more
broadly? Many of the scientific challenges of connective seascape
management and restoration have become solvable with recent
progress in science and technology such as our understanding
of long distance fluxes, satellite imagery, and data sharing.
There are, of course, many challenges to implementation e.g.,
cost, insufficient interaction between scientists and managers,
mandates of management agencies, national policies (Mumby
et al., 1999; Forst, 2009; Brodie and Waterhouse, 2012). Utilizing
local stakeholder knowledge of ecosystem connectivity, and
citizen science that helps monitor changes in connectivity, can,
with freely available satellite images (and tools for analyzing
them), be central to better seascape-level management, especially
when financial resources are limited.

Some of the most threatened mangrove forests, seagrass beds,
and corals reefs show the greatest prevalence of these ecosystems
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adjacent to each other (and therefore the highest chance of
connected ecosystems; Figure 1C). Conventional management
in these regions already exists but it does not appear to be the
most effective in stopping further degradation of ecosystems
(Figure 1C). In these regions, because of the potential high
prevalence of connected ecosystems, integrating connectivity
intomanagement at the tropical seascape level is viable. Seascape-
scale management, such as ecological restoration, could reverse
degradation in addition to restoring coastal ecosystems (as well as
their services and functions). Given the current estimates of costs
of restoration (mangrove forests 8,961, seagrass beds 106,782 and
coral reefs 165, 607 US$ ha−1; Bayraktarov et al., 2016) and
the failure rates (Figures 1A,B), developing management with
ecological restoration should be a priority.

CONCLUSION

Using specific ecosystem engineers known to develop long-
distance flux exchanges should be the focal point of restoration

and management efforts. The necessary knowledge regarding the
fluxes needed to be monitored and the ecosystem engineering
traits altering specific fluxes is now readily available. Using
ecosystem engineers, which by their own physical structure affect
landscape scale connectivity, to restore and manage tropical
coastal zones is a challenging and promising opportunity.
This approach demands integrating connectivity principles into
management strategies. Moreover, it is timely to do so, as we
are now facing a growing need for implementing nature-based
coastal protection.
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