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In this horizon scan article, I review the emerging area of ecological epigenetics in marine

animals with studies of DNA methylation as the primary focus. Epigenetic mechanisms

such as DNA methylation have the capacity to create rapid changes in phenotypic

plasticity. Epigenetic modifications of DNA are mechanisms that modify gene expression,

and may do so in marine animals in an environmentally-induced manner. Thus, changes

in the transcriptome that are driven by DNA methylation in response to environmental

change may be one process by which marine animals can respond to anthropogenic,

environmental change. From a technical standpoint, assays to quantify levels of DNA

methylation, and next-generation sequencing approaches are opening up new avenues

of exploration, such as simultaneously profiling the transcriptome and the methylome. A

horizon scan for this topic suggests that the use of epigenomics and other methods to

quantify DNA methylation will likely reveal important mechanisms of response to rapid

environmental change in marine metazoans.

Keywords: epigenetics, mechanisms of plasticity, epigenomics and epigenetics, DNA methylation, global change

biology, global change and organismal response

INTRODUCTION

Within ocean global change biology, a critical research challenge is to understand the processes that
might support organismal resistance to environmental change. Although the level of organismal
response can vary (Reusch, 2014; Sunday et al., 2014), phenotypic plasticity has emerged as an
important area of study as it occurs on ecological rather than evolutionary time scales (i.e., more
rapidly than evolutionary adaptation). Recently, there has been an emergence of studies exploring
how epigenetic and epigenomic mechanisms might contribute to phenotypic plasticity in marine
metazoans (Roberts and Gavery, 2012; Ledón-Rettig, 2013; Schrey et al., 2013; Dixon et al., 2014;
Metzger and Schulte, 2016). Here, epigenetic modifications of DNA, such as DNA methylation,
regulate and/or change gene expression, and thus change the transcriptome without changing DNA
sequence (Szulwach and Jin, 2014). Since the transcriptome itself is a trait, it is a molecular-level
mechanism that influences phenotypic plasticity within cells and organisms, and is one process that
canmediate environmentally-induced plasticity. Overall, epigenetic processes alter gene expression
in a manner that can potentially influence plastic and compensatory responses to environmental
change in marine ecosystems such as ocean warming and ocean acidification.

With this mechanistic link in mind, I review studies that are leading the way in the area of
ecological epigenetics and epigenomics in marine metazoans (see Table 1). For this horizon scan,
I will use the definition of epigenetics (sensu Deans and Maggert, 2015), that is “the study of
phenomena and mechanisms that cause chromosome-bound, heritable changes to gene expression
that are not dependent on changes to DNA sequence” (Deans and Maggert, 2015). In order to focus
the discussion, this horizon scan will highlight studies that examined changes in DNAmethylation,
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TABLE 1 | Recent studies that assess DNA methylation in marine metazoans.

Taxon Data type Experimental/study variable/sample type Citations

MOLLUSCS

Oyster (C. gigas) Methylome Male gametes Olson and Roberts, 2014

Oyster (C. gigas) DNA methylation Gill tissue Gavery and Roberts, 2010

Oyster (C. gigas) BS-seq + RNA-seq Gill tissue Gavery and Roberts, 2013

Oyster (C. gigas) Global DNA methylation Developmental stage Riviere et al., 2013

Oyster (C. gigas) BS-seq Tissue types Wang et al., 2014

Oyster (C. gigas) F-MSAP Parent to offspring Jiang et al., 2016

Oyster (C. gigas) MSAP Adults Jiang et al., 2013

Octopus MSAP Developmental stage Díaz-Freije et al., 2014

Aplysia californica Methylome profiling + RNA-seq Neurons Moroz and Kohn, 2013

Scallops MSAP Tissue types Sun et al., 2014

Polychaetes MSAP + NGS Temperature Marsh and Pasqualone, 2014

CNIDARIANS

Acropora millepora Predicted methylation + RNA-seq Coral fragments Dixon et al., 2014

Acropora millepora MBD-seq Adult tissue and larvae Dixon et al., 2016

Six coral species Predicted methylation Adult tissue and larvae Dimond and Roberts, 2016

Global DNA methylation pCO2 Putnam et al., 2016

Sea anemone and coral Analysis of methylation Temperature Marsh et al., 2016

MARINE FISH

Sole WGBS Sex determination Shao et al., 2014

Mangrove killifish DNA methylation Sex determination Ellison et al., 2015

Sea lamprey MSAP Adult tissue and larvae Covelo-Soto et al., 2015

BS-seq, bisulfite sequencing; MSAP, methylation-sensitive amplification polymorphism; F-MSAP, Fluorescence-based MSAP; RNA-seq, RNA sequencing; NGS, next-generation

sequencing; MBD-seq, Methylation Binding Domain enrichment sequencing; WGBS, whole genome bisulfite sequencing.

a covalent modification of genomic DNA. This choice was
made because it seems at the moment to be one of the
most studied epigenetic mechanisms in marine metazoans,
and numerous technical approaches are becoming available to
support investigations in non-model marine organisms. Finally,
I highlight future directions in this emerging area of studying
organism-environment interactions in a global change context in
marine metazoans.

EPIGENETICS—A BRIEF OVERVIEW

Epigenetic mechanisms have been of interest in evolutionary
biology (Richards et al., 2010; Zhang et al., 2013; Deans
and Maggert, 2015), in the field of development (Beldade
et al., 2011), and in such specialized fields as ecotoxicology
(Vandegehuchte and Janssen, 2014). Historically, the research
community has debated how to exactly define epigenetics (Deans
and Maggert, 2015). Depending on the perspective of the
investigator, a range of potential mechanisms are recognized,
including covalent modifications of histones (Bannister and
Kouzarides, 2011), DNA methylation (Bird, 2002), and gene
regulation by a variety of non-coding RNAs (Jiao and
Slack, 2014). Some biomedical research venues exemplify this
broader definition of epigenetic mechanisms, and include
both heritable and with-in generation processes (e.g., the U.S.
National Institute of Health’s Roadmap Epigenetics project -
http://www.roadmapepigenomics.org/overview).

Epigenetic studies using non-model animals have increased
in the last few years (Perfus-Barbeoch et al., 2014; Bonasio,
2015; Metzger and Schulte, 2016; Verhoeven et al., 2016).
This emerging data has allowed investigators to assess the role
of epigenetic mechanisms in an environmental and ecological
context (Ledón-Rettig, 2013). Overall, the emergence for the
appreciation of the role of epigenetics in an ecological context has
developed in both aquatic and terrestrial systems (Bonduriansky
et al., 2012). Studies on plants have dominated the literature on
ecological epigenetics (Schrey et al., 2013; Baulcombe and Dean,
2014; Verhoeven et al., 2016), especially in response to stress
(Wang et al., 2011; Grativol et al., 2012; Al-Lawati et al., 2016). On
the marine side, epigenetic and epigenomic approaches are being
used to explore areas such as (1) sources of phenotypic plasticity,
as created by differential gene expression (Dixon et al., 2014;
Dimond and Roberts, 2016; Marsh et al., 2016), (2) mechanisms
involved in development (Riviere et al., 2013), and (3) a possible
rapid response to anthropogenic environmental change (Putnam
et al., 2016). These studies are mechanistic, but importantly also
bridge to understanding adaptive capacity of marine organisms
in response to environmental change (Calosi et al., 2016).

DNA METHYLATION

DNA methylation was one of the first epigenetic modifications
of DNA to be discovered (Bird, 2002; Deans and Maggert,
2015) and has been the subject of extensive studies in numerous
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systems. This epigenetic mark (sensu Feng et al., 2010) has
increasingly been the focus of studies in ecological epigenetics
in non-model systems and plants (Schrey et al., 2013; Bonasio,
2015; Metzger and Schulte, 2016; Verhoeven et al., 2016)
and increasingly in marine metazoans. Biochemically, DNA
methylation involves the addition of a methyl group (CH3)
to the pyrimidine ring of cytosines within CG dinucleotides
(CpGs) resulting in 5-methylcytosine (5mC). This epigenetic
modification alters transcription, and has implications for rates
of DNA sequence changes, thereby also having evolutionary
consequences in marine animals (Dixon et al., 2016). Patterns
of DNA methylation vary significantly amongst taxa, with plants
and animals showing divergent patterns (Feng et al., 2010).
Within metazoans, variation exists across taxa, with vertebrate
genomes being highly methylated and invertebrate genomes
possessing variable levels of DNA methylation (Feng et al., 2010;
Flores et al., 2013).

MEASURING DNA METHYLATION

There are several techniques that can be used to quantify
changes in DNA methylation, and excellent reviews covering
various approaches have recently appeared (Plongthongkum
et al., 2014; Metzger and Schulte, 2016). Each method has
advantages and disadvantages and vary in terms of resolution,
cost, and computational needs. In many ways, advances in
biomedical science, e.g., cancer epigenetics, have driven the
availability of resources to support studies of DNA methylation
in non-model organisms. For the purposes of this horizon
scan, I will focus on 3 basic approaches used to assess the
methylation state of DNA. These are: (1) the methylation-
sensitive amplification polymorphism (MSAP) method, (2) kit-
based quantitative tools such as ELISAs that capture global DNA
methylation patterns, and (3) full genome sequencing via bisulfite
sequencing that profiles the genomic-scale methylation patterns,
or the methylome.

The MSAP approach, a modified AFLP (amplified fragment
length polymorphism) that employs restriction enzymes and
separates fragments on a gel, has been available for decades
and, while useful to investigators (Schrey et al., 2013), the
results can be challenging to interpret. Recommendations
for scoring bands and best practices are available (Pérez-
Figueroa, 2013; Schulz et al., 2013), and this method will
likely be of use in marine systems. On the positive side,
MSAP results provide information on pattern and changes
of methylation state (e.g., changes in the environment—
see Schulz et al., 2014) and the method is well-suited for
studies with many samples, e.g., in a population-scale study,
when other methods may be too costly. The MSAP assay
is somewhat limited in its diagnostic power as it does not
provide any information regarding what functional gene might
be methylated. However, some studies have used next-generation
sequencing to examine the fragments that are obtained after the
use of restriction enzymes in the MSAP process (Marsh and
Pasqualone, 2014), thereby increasing the resolution of theMSAP
approach.

Second in the list of methods are various ELISA-like,
spectrophotometric assays that can detect the levels of
methylated cytosines in a sample of genomic DNA. These
methods are exemplar of the tools that have become
commercially available as the field of epigenetics expands
in biomedical science and have already been used in studies of
marine metazoans (Riviere et al., 2013; Putnam et al., 2016). The
limitation here is that the data are only global levels with no
information about changes in specific regions of the genome;
however again, this is an affordable and approachable method
to gain insight into changes in global patterns (e.g., tissue-wide,
or as a function of developmental stage) of DNA methylation
between discrete samples.

Lastly, bisulfite sequencing (BS or Bs), a process where
treatment of DNA with sodium bisulfite chemically converts
unmethylated cytosines to uracil, has recently been coupled
with next generation sequencing (NGS) approaches, e.g., whole
genome sequencing, (Laird, 2010; Li et al., 2010) and also with
RAD sequencing (BsRADseq) (Trucchi et al., 2016). NGS-based
approaches have greatly increased the level of resolution of
quantifying DNA methylation, and linking the patterns to the
genome and gene regulation (Marsh et al., 2016). However,
these epigenomic approaches come with the commensurate
need for bioinformatics. Fortunately, these bioinformatics tools
are increasingly available (Kishore et al., 2015). Within marine
systems, investigations combining NGS techniques with DNA
methylation screening have recently occurred in studies of the
Pacific oyster (Olson and Roberts, 2014) and scleractinian coral
(Dixon et al., 2016).

PIONEERING STUDIES

To anchor this horizon scan, it is worth calling out some
pioneering studies within marine ecological epigenetics and
epigenomics that have set the stage for future investigations in
marine metazoans. To begin, the most studied marine animal
with regard to epigenetics seems to be the Pacific oyster,
Crassostrea gigas (Table 1). Gavery and Roberts were the first to
report DNA methylation in C. gigas (Gavery and Roberts, 2010),
and continued in a second study with BS-seq analysis. In the
latter study, Gavery and Roberts correlated methylated genes in
the C. gigas methylome with high transcript abundance in the
transcriptome (Gavery and Roberts, 2013). The abundance of
publications with C. gigas as the study organism is likely due to its
economic importance in combination with the early availability
of genomic resources (Zhang et al., 2012). Oysters also featured in
some of the first studies to examine the role of DNA methylation
during development of a marine metazoan, and in early stage
marine invertebrates. Studies have been conducted on oyster
early development (Riviere et al., 2013) and gametes (Olson and
Roberts, 2014), and on early stage Octopus vulgaris (Díaz-Freije
et al., 2014).

A second pioneering advance in marine ecological epigenetics
can be found in investigations that assessed epigenetic
mechanisms in an ocean global change context. Here, two
studies stand out. Working on an Antarctic marine polychaete,
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DNAmethylation was linked to regulation of energy metabolism
in response to temperature acclimation (Marsh and Pasqualone,
2014). Using NGS in combination with computational tools,
Marsh and Pasqualone found that differential temperature
acclimation (here, +4 ◦C vs. −1.5 ◦C temperature treatments)
of adult polychaetes led to a change in the methylation state of
the worm genome. Of the epigenetic marks they identified in
the genome, 85% of the changes between the treatment groups
reflected increased DNA methylation. Overall, the technical
approach in the Marsh and Pasqualone study—the ability to map
DNA methylation patterns and assess changes on a genomic
scale—is a major step in understanding how and whether DNA
methylation changes in response to abiotic conditions. In a
second notable study in a global change context, Putnam and
colleagues measured changes in global levels of DNAmethylation
in the scleractinian coral, Pocillopora damicornis, in response to
high pCO2 levels in laboratory experiments (Putnam et al., 2016).
Using a commercially available kit (the MethylFlash kit from
Epigentek), these investigators demonstrated that global levels
of methylation increased in coral genomic DNA in response to
acclimation to low pH conditions that mimic ocean acidification.
The results are suggestive that epigenetic mechanisms could
create plasticity in corals to resist low pH in situ.

Lastly, one of themore informative advances in understanding
how DNA methylation modulates gene expression, and thus
phenotypic plasticity in marine animals, combines comparative
transcriptomics with field studies in the natural habitat of the
study organism. A study on the coral, Acropora millepora is
exemplar of this approach (Dixon et al., 2014). Using samples
generated in a reciprocal transplant experiment conducted
in the field on the Great Barrier Reef, these investigators
identified correlations of differential gene expression and DNA
methylation in corals across populations, and between the
outplant environments that varied in abiotic conditions. In
addition to assessing the relationship of gene expression to
gene methylation, the study also revealed a pattern where
weak methylation increased the flexibility, or plasticity of gene
expression, in response to environmental cues, something that
had been proposed earlier by other investigators (Roberts
and Gavery, 2012). Studies such as that conducted by
Dixon and colleagues will begin to reveal how and whether
epigenetic mechanisms operate in natural populations to support
phenotypic plasticity.

FUTURE STUDIES

The use of epigenomic tools will generate new insights into
the response of marine organisms to changing environments.
Further, these advancing applications of epigenetics tools will
shed light on a critical mechanism, the role of phenotypic
plasticity in response to global change, with influences extending
into management (Marshall et al., 2016). At the moment, there
are emerging lines of investigation that indicate epigenetic
mechanisms are either at work, or merit investigation. For
example, in marine metazoans, there is abundant evidence that
physiological plasticity created by transgenerational plasticity

(TGP) are “first response” options for organisms to adjust to
rapid environmental change. In marine ecosystems, evidence is
accruing that environmental stress can be buffered by TGP, a
situation where the environmental experience of the adults can
influence the phenotype of the progeny (Salinas and Munch,
2012; Munday, 2014), with maternal effects being a prime
example (Marshall, 2008). Notably, TGP has been documented
in marine organisms in response to variable pH and/or elevated
pCO2 conditions in an ocean acidification context, for example
(see Table 2). Studies such as these all point to the possibility
that epigenetic mechanisms may modulate the environment-
organism interaction.

Ecological epigenetics field studies stand to advance our
knowledge of the role of the epigenome in modulating the G ×

E (Gene × Environment) interaction and thereby altering gene
expression patterns. To what extent does the methylome and
variable DNA methylation mediate rapid response to variable
abiotic conditions? Are these mechanisms a source of “soft
inheritance” in an environmental change context? Such work
has been highlighted in plant molecular ecology (Bossdorf and
Zhang, 2011; Herrera and Bazaga, 2011) and will likely begin
to appear in marine ecology as more epigenomic tools are
utilized in different systems. Notably, epigenomic mechanisms
could be operating in organisms that experience routine variation
in abiotic factors (e.g., intertidal invertebrates or vertically
migrating zooplankton), or in animals that are sessile and do not
have behavioral mechanisms to escape changes in their physical
environment (e.g., corals or intertidal mussels). Interesting field
studies here would be to examine patterns across environmental
temperature gradients, e.g., comparing high intertidal to low
intertidal mussels, or comparing corals found across similar
local-scale thermal gradients (Palumbi et al., 2014).

One of the most promising areas for advancement in
marine ecological epigenetics is the use of NGS technology
and bioinformatics approaches. With the advent of combined

TABLE 2 | Recent studies reporting transgenerational plasticity in a global

change context.

Taxon Response

variable

Experimental

variable

Citations

Oyster Development, growth Variable pCO2 Parker et al., 2015

Copepod Fecundity, metabolic rate Variable pCO2 Thor and Dupont, 2015

Copepod Transcriptome Variable pCO2 De Wit et al., 2016

Polychaete Growth Variable pCO2 Lane et al., 2015

Polychaete Thermal tolerance Temperature Massamba-N’siala

et al., 2014

Coral Larval size, respiration Variable pCO2 Putnam and Gates,

2015

Fish Survivorship, growth Variable pH

in situ

Murray et al., 2014

Fish Growth Temperature Shama et al., 2014

Fish Mitochondrial respiration

and gene expression

Temperature Shama et al., 2016

Fish* Reproduction Warming Donelson et al., 2016

*See also reviews: Munday (2014), Metzger and Schulte (2016).

Frontiers in Marine Science | www.frontiersin.org 4 January 2017 | Volume 4 | Article 4

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Hofmann Epigenetics in Marine Animals

RNA-seq and RAD-seq datasets with bisulfite sequencing data,
new insights into environmentally relevant gene expression will
likely emerge (Olson and Roberts, 2014; Dixon et al., 2016) along
with population-level differences in DNA methylation in natural
populations (Trucchi et al., 2016).

SUMMARY

Within the “genome to phenome” pathway, epigenomic
processes alter the manner in which DNA is transcribed into
mRNA without altering DNA sequence, and thus contributes to
physiological plasticity of the organism in an intergenerational
or intragenerational context (Burggren, 2014, 2015). In general,
ecological epigenomics is under-studied in marine systems.
However, examining function at this level will likely reveal
important mechanisms of response to rapid environmental
change, something this is important as epigenomic-driven
changes in organism tolerance occur on ecological, and not
evolutionary, time scales. These targeted mechanisms are
highly relevant in a global change context as they allow rapid
adjustment of physiological tolerances and performance.

Epigenomic mechanisms, in addition to other changes such
as changes in the transcriptome, may together act as powerful
mechanisms in species that experience variable conditions
in nature. Although some of the techniques are nascent
and some of the early results may be correlational, it seems
these approaches are worthwhile and serve as a “first-cut”
analysis of mechanisms that drive phenotypic plasticity in a
global change context (Calosi et al., 2016; Verhoeven et al.,
2016).
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