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Cyanobacteria exhibit biological rhythms as an adaptation to the daily light-dark (diel)

cycle. Light is also crucial for bacteriophages (cyanophages) that infect cyanobacteria.

As the first step of infection, the adsorption of some cyanophages to their host cells

is light-dependent. Moreover, cyanophage replication is affected by light intensity and

possibly the host cell cycle. Photosynthesis and carbon metabolism genes have been

found in cyanophage genomes. With these genes, cyanophages may affect the host

metabolic rhythm. Field studies suggest that cyanophage infection of cyanobacteria

in aquatic environments is synchronized directly or indirectly to the light-dark cycle.

These discoveries are beginning to reveal how the daily light-dark cycle shapes the

interaction of cyanophages and cyanobacteria, which eventually influences matter and

energy transformation in aquatic environments.
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INTRODUCTION

The cyanobacteria are a large and diverse group of microorganisms that are typically
oxygenic photoautotrophs. This group comprises the unicellular cyanobacteria Synechococcus and
Prochlorococcus, which are responsible for a vast majority of primary production in freshwater
and oligotrophic marine ecosystems (Scanlan and West, 2002). Bacteriophages (cyanophages)
that infect cyanobacteria are abundant in aquatic environments (Bergh et al., 1989; Proctor and
Fuhrman, 1990; Suttle et al., 1990), and 15% of marine cyanobacteria are estimated to be infected
by cyanophages at any given time (Proctor and Fuhrman, 1990). Three morphotypes of lytic
cyanophages have been found to infect Synechococcus (Suttle and Chan, 1993; Waterbury and
Valois, 1993; Wilson et al., 1993) and Prochlorococcus (Sullivan et al., 2003): T4-like myoviruses,
T7-like podoviruses, and siphoviruses. They are all double-stranded DNA viruses. Similar to
bacteriophages infecting heterotrophic bacteria, the life cycle of cyanophages consists of adsorption
to a host cell and replication, formation, and eventually release of mature progeny phages after lysis
of the infected host cells. Different from other bacteriophage groups, the life cycle of cyanophages is
influenced by light, whichmight be an adaptation to their photosynthetic host cells. The importance
of light to cyanophages was reviewed by Clokie and Mann (2006) 10 years ago, and here we
review the progress in the past 10 years with a focus on cyanophage infection of Synechococcus
and Prochlorococcus under daily light-dark (diel) cycles.

BIOLOGICAL RHYTHMS OF CYANOBACTERIA

Circadian rhythms are ∼24 h cycles of physiological processes found in most living organisms as
a fundamental adaptation to the Earth’s daily fluctuation in light and temperature (Dunlap, 1999).
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The endogenous circadian clock systems generate these ∼24 h
rhythms in constant conditions (continuous light). The
freshwater cyanobacterium Synechococcus elongatus PCC 7942
has been used as a model system to study the circadian clock of
prokaryotes (Kondo et al., 1994). The cyanobacterial circadian
clock regulates many important cellular processes, including
cell cycle, amino acid uptake, nitrogen fixation, photosynthesis,
carbohydrate synthesis, and respiration (Golden et al., 1997).
The molecular mechanism of cyanobacterial circadian clock has
been reviewed extensively (Johnson and Egli, 2014; Cohen and
Golden, 2015), and here we introduce its major components
for reference. The circadian clock of S. elongatus PCC 7942 is
composed of three proteins KaiA, KaiB, and KaiC (Ishiura et al.,
1998). KaiC is an autokinase and also an autophosphatase. KaiA
can stimulate KaiC phosphorylation, while KaiB can promote
KaiC dephosphorylation by inactivating KaiA. Interactions of
these three Kai proteins generate circadian oscillations in the
phosphorylation state of KaiC (reviewed by Dong and Golden,
2008; Johnson et al., 2008; Dong et al., 2010a). The KaiABC
circadian clock is synchronized with the light-dark cycle through
the intracellular adenosine triphosphate (ATP) (Rust et al., 2011)
and oxidized plastoquinone levels (Kim et al., 2012; Figure 1A)
that reflect photosynthetic activity. This circadian clock is
responsible for genome-wide transcriptional oscillations in S.
elongatus (Liu et al., 1995; Ito et al., 2009), with one group of
genes peaking at subjective dawn and the other group peaking at
subjective dusk (Ito et al., 2009). The response regulator RpaA
serves as the master transcriptional regulator of these clock
outputs (Markson et al., 2013).

As the most abundant photosynthetic organism in the ocean,
the unicellular cyanobacterium Prochlorococcus is responsible
for almost 50% of the total primary production in oligotrophic
regions (Partensky et al., 1999). Sequenced Prochlorococcus
strains all encode kaiB and kaiC, but lack kaiA (Holtzendorff
et al., 2008; Axmann et al., 2014), suggesting that their biological
timing system is different from that of S. elongatus (Holtzendorff
et al., 2008; Johnson and Egli, 2014). Indeed, synchronized
S. elongatus cells are able to maintain periodic oscillations
of cell cycle (Mori et al., 1996) and gene expression under
continuous light (Liu et al., 1995), while Prochlorococcus lacks
this ability (Holtzendorff et al., 2008). Therefore, Prochlorococcus
maintains a diurnal rhythm rather than a circadian rhythm.
Recombinant KaiC protein from Prochlorococcus MED4 is
constitutively phosphorylated, and dephosphorylation of KaiC
cannot be promoted by KaiB proteins from Prochlorococcus or
S. elongatus (Axmann et al., 2009). These data suggest that
Prochlorococcus may have lost the autonomous circadian clock,
but retain an hourglass-like timing system that needs a daily
resetting (Holtzendorff et al., 2008; Axmann et al., 2009).

When Prochlorococcus strain MED4 was grown under light-
dark cycles, the expression of around 80% genes showed diel
oscillations, with the majority of transcripts peaking at dawn or
dusk (Zinser et al., 2009; Waldbauer et al., 2012). Photosystem
I and II genes showed maximum expression at dawn, just
in time to harvest energy from sunlight (Zinser et al., 2009).
The Calvin cycle genes had maximum transcript abundances at
dawn, and this was thought to be an anticipatory regulation for

the immediate increase of biomass when the light energy was
captured (Zinser et al., 2009). On the other hand, the pentose
phosphate pathway genes had maximum expression at dusk,
which may prepare for glycogen catabolism at night (Zinser et al.,
2009). Diel oscillations were also observed for nearly half of
all Prochlorococcus population transcripts in the North Pacific
Subtropical Gyre (Ottesen et al., 2014), which were similar to
those of lab cultures (Zinser et al., 2009; Waldbauer et al., 2012).
Moreover, the co-occurring heterotrophic bacterioplankton
groups displayed diel periodicity in many transcripts as well,
which is probably caused by the tight metabolic coupling between
primary producers like Prochlorococcus and consumers living
in the open ocean (Ottesen et al., 2014). Since microorganisms
constitute more than 90% of the living biomass in the sea (Azam
and Malfatti, 2007), biological rhythms of marine cyanobacteria
are likely to influence matter and energy transformation in the
world’s oceans.

LIGHT-DEPENDENT AND
LIGHT-INDEPENDENT ADSORPTION OF
CYANOPHAGES ONTO THEIR HOST
CELLS

Phage adsorption to a host cell is the first step of infection.
During adsorption, phage tails recognize specific receptors on
the host cell, such as lipopolysaccharide, membrane proteins,
pili, or flagella (Labrie et al., 2010). Cyanophages infecting
freshwater (Cséke and Farkas, 1979; Kao et al., 2005) and marine
Synechococcus (Jia et al., 2010) have been used to study the
effect of light on cyanophage adsorption onto their host cells.
Cyanophage AS-1 is a myovirus that infects closely related
freshwater S. elongatus strains PCC 6301 and PCC 7942. When
S. elongatus PCC 6301 was grown under continuous light, 70% of
cyanophage AS-1 were adsorbed within 15min, and a maximum
adsorption of 80% was reached after 20min (Cséke and Farkas,
1979). When the PCC 6301 culture was moved to the dark after
infection, only 40% of cyanophage AS-1 were adsorbed after
20min (Cséke and Farkas, 1979). The adsorption of cyanophage
AS-1 to S. elongatus PCC 7942 was also lower in the dark
than that in the light (Kao et al., 2005). Jia et al. studied the
adsorption of nine different cyanophages to their host marine
Synechococcus WH7803 (Jia et al., 2010). Using unsynchronized
Synechococcus WH7803 cultures, they found that the adsorption
of myoviruses S-BnM1, S-PWM3, S-PM2, and podovirus S-BP3
was lower in the dark than that in the light (light-dependent
adsorption), while the adsorption of myoviruses S-PWM1,
S-BM3, S-MM4, S-MM1, and S-MM5 was not affected by
darkness (light-independent adsorption) (Jia et al., 2010). Light-
dependent adsorption of cyanophage S-PM2 was also seen with
synchronized Synechococcus WH7803 cells, and the percentage
of adsorbed phage did not change significantly at different times
of the day, indicating that the adsorption of cyanophage S-PM2
was not influenced by the circadian rhythm of the host cells (Jia
et al., 2010). The authors did not check whether the adsorption
of light-independent cyanophages was affected by the circadian
rhythm of the host cells. This light-dependent adsorption could
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FIGURE 1 | Cyanobacterial metabolism in the uninfected (A) and infected cells (B). (A) In the uninfected host cells, the light reactions of photosynthesis

harness energy from the sunlight (hv) to produce NADPH and ATP, which are used for carbon fixation in the Calvin cycle. The Calvin cycle is active during the daytime

and is inhibited by CP12 at night. The pentose phosphate pathway is mainly active at night. This metabolism rhythm is under the control of the circadian oscillator,

which is affected by the intracellular redox (PQ, plastoquinone) and energy (ATP/ADP) state. The reactions with higher activity during the daytime (daytime reactions)

are indicated by green color, and ones with higher activity at night (night reactions) are indicated by red color. (B) In the infected host cells, the pentose phosphate

pathway is proposed to be active during the daytime, and the Calvin cycle is proposed to be inhibited by phage-encoded CP12 (Thompson et al., 2011). The energy

(ATP) and reducing power (NADPH) from the light reactions flow to phage nucleotide synthesis. Reactions that are potentially affected by cyanophages are indicated

by blue color. The effects of phage infection on the host’s biological rhythms remain to be explored.

be explained by light-induced conformational changes in either
the phage tails or the host receptors (Jia et al., 2010), but the exact
mechanism is still unexplored.

EFFECT OF LIGHT ON CYANOPHAGE
REPLICATION IN THE HOST CELLS

A strong positive correlation between light intensity and burst
size has been shown on cyanophages infecting cyanobacteria
Plectonema boryanum (Padan et al., 1970; Sherman and
Haselkorn, 1971), Nostoc muscorum (Adolph and Haselkorn,
1972), Synechococcus (Mackenzie and Haselkorn, 1972; Sherman,
1976; Kao et al., 2005), and Prochlorococcus (Lindell et al., 2005;
Thompson et al., 2011). Similar to darkness, photosynthesis
inhibitors can also significantly reduce the burst sizes of
cyanophages (Adolph and Haselkorn, 1972; Mackenzie and
Haselkorn, 1972; Sherman, 1976; Lindell et al., 2005). When
Prochlorococcus MED4 was infected by the T4-like myovirus
P-HM2 in the dark, phage genomic DNA replication inside the
host cells stopped, and phage transcript abundances decreased
significantly (Thompson et al., 2011). These studies indicate
that cyanophage replication derives most of its energy and
certain resources from photosynthetic metabolism of the host cell
(Sherman, 1976).

The importance of light to cyanophage replication is also
revealed by phage-encoded genes for the light reactions of
photosynthesis (Mann et al., 2003; Lindell et al., 2004; Millard
et al., 2004; Sullivan et al., 2006). Cyanophages carry psbA
and psbD genes, encoding the D1 and D2 proteins of the
core of photosystem II, respectively (Mann et al., 2003). Phage
D1 protein was detected when Prochlorococcus MED4 was

infected by cyanophage P-SSP7 (Lindell et al., 2005). Phage
psbA was highly transcribed when Synechococcus WH7803 was
infected by cyanophage S-PM2 (Clokie et al., 2006a; Millard
et al., 2010). The expression of cyanophage-encoded D1 and
D2 proteins is proposed to maintain the photosynthetic activity
of the infected host cells and therefore provide energy for
cyanophage replication (Mann et al., 2003). Many genes related
to photosynthesis have also been found in cyanophage genomes
(reviewed by Clokie and Mann, 2006; Puxty et al., 2015).

CYANOPHAGE INFECTION AND THE
HOST’S CELL CYCLE

Studies on phages infecting Escherichia coli showed that the
largest burst size was achieved after the completion of host DNA
replication and immediately prior to cell division (Starka, 1962;
Storms et al., 2014). This is likely due to the increased availability
of intracellular resources for the formation of phage progeny
(Storms et al., 2014). Under light-dark cycles, S. elongatus PCC
7942 cells divide mainly during the daytime and stop dividing
early at night (Mori et al., 1996). The cell division pattern
of synchronized S. elongatus PCC 7942 cells persists under
continuous light for several days (Mori et al., 1996), and it is
controlled by the circadian clock (Mori et al., 1996; Dong et al.,
2010b). Using S. elongatus PCC 7942 and cyanophage AS-1,
Kao et al. found that the infections started between dawn and
noon resulted in larger burst sizes than the ones started in the
afternoon or at night (Kao et al., 2005). It is not clear whether
the diel infection pattern of cyanophage AS-1 is determined by
the light-dark cycle or the cell cycle, or both. Future infection
experiments using light-dark synchronized S. elongatus PCC
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7942 cells under continuous light will help distinguish the
effects of the light-dark cycle and the host cell cycle on burst
sizes. Different from S. elongatus PCC 7942, Prochlorococcus
cells replicate their DNA in the afternoon and divide at night
(Vaulot et al., 1995; Liu et al., 1997; Shalapyonok et al., 1998;
Holtzendorff et al., 2008; Zinser et al., 2009). It remains to be
studied how the cell cycle of Prochlorococcus affects cyanophage
infection.

POTENTIAL INTERACTION BETWEEN
CYANOPHAGE AND THE HOST’S TIMING
SYSTEM

For mammalian viruses, it has been shown that viral proteins
can interact with the host’s circadian clock proteins (Kalamvoki
and Roizman, 2010), and these interactions are important for
viral replication and gene expression (Kalamvoki and Roizman,
2010; Benegiamo et al., 2013). Kao et al. examined whether
mutations in the circadian clock of S. elongatus PCC 7942 affected
cyanophage AS-1 infection (Kao et al., 2005). They infected
the wild-type strain and two mutants (1kaiA and 1kaiB) with
cyanophage AS-1 under continuous light and did not see any
significant difference in burst sizes (Kao et al., 2005). They
did not examine whether the burst size of AS-1 was affected
when infecting the 1kaiA or 1kaiB mutants under light-dark
cycles.

While mutations in the circadian clock proteins of
cyanobacteria do not seem to affect cyanophage infection,
it is not clear whether cyanophage infection affects the host’s
circadian clock. In cyanobacteria, the Calvin cycle is linked to
the pentose phosphate pathway, with several reactions shared
by both pathways (Zinser et al., 2009; Figure 1A). During the
daytime, the light reactions of photosynthesis harness energy
from the sunlight and split water to produce NADPH (an
electron carrier) and ATP (an energy carrier). The Calvin
cycle consumes NADPH and ATP to fix CO2 and to produce
glucose 6-phosphate, which is stored as the branched glucose
polymer glycogen (Figure 1A). At night, the Calvin cycle is
inhibited by the Calvin cycle inhibitor CP12 (Wedel and Soll,
1998; Tamoi et al., 2005), and glycogen is mostly oxidized
in the pentose phosphate pathway (Pelroy et al., 1972) to
produce NADPH and ribose 5-phosphate (Figure 1A), which
can be used for carbon skeletons. The rhythm of glycogen
metabolism, which is controlled by the circadian clock, can
affect the cellular ATP/ADP ratio (Pattanayak et al., 2014).
Thus, the circadian clock outputs (glycogen) can feed back
through metabolism to control the circadian clock inputs (ATP)
(Figure 1A; Pattanayak et al., 2014). Cyanophage genomes
contain the pentose phosphate pathway genes (Mann et al., 2005;
Sullivan et al., 2005, 2010; Weigele et al., 2007; Clokie et al., 2010)
and the Calvin cycle inhibitor gene cp12 (Thompson et al., 2011).
Experiments with Prochlorococcus and Synechococcus phages
suggested (Thompson et al., 2011) that cyanophages can use
these auxiliary metabolic genes (Breitbart et al., 2007) to enhance
the host’s photosynthesis and pentose phosphate pathway for
the production of NADPH, ATP, and ribose 5-phosphate, which

can power nucleotide biosynthesis that is critical for phage
reproduction (Figure 1B). During the daytime, cyanophage
infection may inhibit the Calvin cycle by phage-encoded CP12
protein (Figure 1B). By reversing the host’s metabolic rhythm,
cyanophage infection might affect the cellular ATP/ADP ratio,
which can control the circadian clock of the infected host
cells.

DIEL OSCILLATIONS IN CYANOPHAGE
ABUNDANCE IN AQUATIC
ENVIRONMENTS

Several studies suggest that cyanophage infection of
cyanobacteria in aquatic environments is synchronized
directly or indirectly to the light-dark cycle. In natural aquatic
environments, virus decay has been attributed to adsorption
to heat-labile particles, inactivation by solar radiation, and
grazing by flagellates (Suttle and Chen, 1992), which may not
exist in lab cultures. Therefore, cyanophage abundances in
aquatic environments are affected by both production and decay.
Bettarel et al. (2002) measured the abundances of Synechococcus,
heterotrophic bacteria, heterotrophic nanoflagellates, and
viruses in September 2001 every 3 h for 3 days at a depth of
1m in the N.W. Mediterranean Sea. They only found apparent
diel patterns for Synechococcus and viruses: Synechococcus
was maximal at midnight, and viruses were maximal in the
late afternoon and were minimal at midnight (Bettarel et al.,
2002). Although they did not measure Synechococcus-specific
viruses, they suggested that the diel pattern of viruses was
mainly due to cyanophage production through Synechococcus
mortality since viral infection of heterotrophic bacteria was rare
(Bettarel et al., 2002). Clokie et al. used marine Synechococcus
WH7803 to measure cyanophages from seawater samples
at different depths (10, 25, and 50m) in the Indian Ocean
(Clokie et al., 2006b). With sampling every 6 h for a 24-h
period, cyanophage abundances were similar for most sampling
time-points at 10m, but showed a distinct peak shortly after
midnight (Clokie et al., 2006b). Different from the 10m sample,
cyanophage abundances at 25 and 50m did not show strong
diel variations (Clokie et al., 2006b). Using real-time PCR and
strain-specific primers, Kimura et al. measured Microcystis and
its cyanophage abundances from surface waters of a freshwater
pond in Japan (Kimura et al., 2012). They sampled every 3 h
over a period of 24 h in two different days (Kimura et al.,
2012). For both days, Microcystis abundances were highest
after midnight, which may be caused by diel vertical migration
of Microcystis (Kimura et al., 2012). The highest Microcystis
cyanophage abundances were found at dusk in one day and
about 3 h after dusk in the other day (Kimura et al., 2012).
Recently, the growth and mortality of Prochlorococcus in the
subtropical Pacific gyre was found to be synchronized to
the light-dark cycle, with the highest mortality rate at night
(Ribalet et al., 2015). This could be explained by light-dark
synchronized infection of Prochlorococcus by cyanophages,
although synchronized grazing by protists is also possible
(Ribalet et al., 2015).
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CONCLUDING REMARKS

Cyanobacteria exhibit biological rhythms as an adaptation
to the natural daily light-dark cycle, with many biological
processes connected by the circadian clock into a cellular
network (Shultzaberger et al., 2015). Light is also crucial for
cyanophage infection of cyanobacteria. It remains to be explored
how cyanophage infection affects the biological rhythms of
cyanobacteria. However, most cyanophage infection studies
have been conducted under continuous light, and the host
cells were not synchronized. Future infection experiments with
light-dark synchronized cyanobacteria are needed to reveal the
interaction between cyanophage infection and the host biological
rhythms. Additionally, more field studies should be carried
out to understand the diel infection patterns of cyanobacteria
by cyanophages in different aquatic environments. Having

coevolved with cyanobacteria under light-dark cycles for millions
of years, cyanophages will give us new insights into the biological
rhythms of their host cells. With these data, we can begin to
understand how the daily light-dark cycle shapes the interaction
of cyanophages and cyanobacteria, which eventually influences
matter and energy transformation in aquatic environments.
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