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Malaria vaccine approaches
leveraging technologies
optimized in the COVID-19 era

Bernard N. Kanoi*, Michael Maina, Clement Likhovole,
Francis M. Kobia and Jesse Gitaka*

Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya
University, Thika, Kenya
Africa bears the greatest burden of malaria with more than 200 million clinical

cases and more than 600,000 deaths in 2020 alone. While malaria-associated

deaths dropped steadily until 2015, the decline started to falter after 2016,

highlighting the need for novel potent tools in the fight against malaria.

Currently available tools, such as antimalarial drugs and insecticides are

threatened by development of resistance by the parasite and the mosquito.

The WHO has recently approved RTS,S as the first malaria vaccine for public

health use. However, because the RTS,S vaccine has an efficacy of only 36% in

young children, there is need for more efficacious vaccines. Indeed, based on

the global goal of licensing a malaria vaccine with at least 75% efficacy by 2030,

RTS,S is unlikely to be sufficient alone. However, recent years have seen

tremendous progress in vaccine development. Although the COVID-19

pandemic impacted malaria control, the rapid progress in research towards

the development of COVID-19 vaccines indicate that harnessing funds and

technological advances can remarkably expedite vaccine development. In this

review, we highlight and discuss current and prospective trends in global efforts

to discover and develop malaria vaccines through leveraging mRNA vaccine

platforms and other systems optimized during COVID-19 vaccine studies.

KEYWORDS

malaria, P. falciparum, mRNA vaccines, Africa, COVID-19, reverse vaccinology,
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Introduction

In 2020, over 200 million clinical cases of malaria and more than 600,000 malaria

deaths were reported, with the vast majority occurring in sub-Saharan Africa (1).

Importantly, malaria, which is the leading cause of death in young children, also poses

great danger to pregnant mothers (2). The emergence of the Coronavirus disease 2019

(COVID-19) pandemic and related transmission control measures, such as social
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fitd.2022.988665/full
https://www.frontiersin.org/articles/10.3389/fitd.2022.988665/full
https://www.frontiersin.org/articles/10.3389/fitd.2022.988665/full
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fitd.2022.988665&domain=pdf&date_stamp=2022-09-08
mailto:bkanoi@mku.ac.ke
mailto:jgitaka@mku.ac.ke
https://doi.org/10.3389/fitd.2022.988665
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://doi.org/10.3389/fitd.2022.988665
https://www.frontiersin.org/journals/tropical-diseases


Kanoi et al. 10.3389/fitd.2022.988665
distancing and travel restrictions, disrupted and complicated

the implementation of previously ongoing malaria control and

intervention strategies (3). Importantly, malariology experts

have highlighted the need to develop more tools and strategies

towards achieving malaria elimination and eventual eradication

(4). It is anticipated that a highly effective malaria vaccine

might further reduce the global burden of malaria. Although

RTS,S, the recently approved circumsporozoite protein (CSP)-

based malaria vaccine has low efficacy, it has renewed hope for

the development and deployment of effective malaria

vaccines (5).

Although the number of COVID-19 cases in Africa has been

lower than predicted, its effect on other tropical diseases such as

malaria, which pose significant burdens to a significant portion

of African population cannot be underestimated (1, 3).

Nevertheless, the fast-tracked vaccine discovery efforts against

severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-

2) highlighted new opportunities for malaria vaccine

development and deployment in malaria holoendemic regions

of Africa.

Currently, several strategies are being used to develop

vaccines against various parasite developmental stages. Indeed,

in the last 10 years, there has been an exponential growth in the

number of studies aiming to develop such vaccines [as reviewed
Frontiers in Tropical Diseases 02
(6)]but these have been hampered by several challenges, some of

which can be overcome using strategies that have been used to

rapidly develop vaccines against COVID-19 (7). We believe that

such a vaccine will alleviate the current malaria related problems

in Africa that are now compounded by the emergence of the

SARS-CoV-2 virus.
Current status of malaria vaccine
studies

Plasmodium falciparum, the main causative agent of malaria,

has a complex life cycle alternating between human and

anopheles mosquitoes. Current malaria vaccine candidates

generally target pre-erythrocytic, erythrocytic and sexual stage

parasites. Some of the antigens under consideration are shown in

Figure 1 (6). Vaccines targeting the pre-erythrocytic stage

prevent infection progression to symptomatic malaria (6).

Phase III vaccine trials of the CSP-based RTS,S showed that it

modestly reduced clinical malaria episodes (by approximately

36%) in young African children and by about 26% among

infants who received four vaccine doses with statistically

significant efficacy against severe malaria in young children

(8). Pilot rollout of the RTS,S vaccine is now underway in
FIGURE 1

Plasmodium falciparum lifecycle in human and anopheles mosquitoes. In brief, infective P. falciparum sporozoites develop in liver cells and are
subsequently released as merozoites into the blood circulation. Merozoites, the asexual erythrocytic stage of the parasite, infect erythrocytes to
start the cyclic erythrocytic stage. Some of the merozoites differentiate into gametocytes in the bone marrow. Upon re-entry into the
circulation, they may be picked by feeding mosquitoes. The gametocytes undergo fertilization in mosquitoes’ mid-gut after mature male and
female gametes egresses from the erythrocytes in response to the change in temperature and environment to form zygotes. Zygotes transform
into infective ookinetes, which traverse the mosquito mid-gut epithelium before developing into oocysts. Sporozoites which emerge from the
oocysts, migrate to reach the mosquito’s salivary glands for transmission to the next human host. The steps targeted by the leading vaccine
candidates are as indicated with blue allows.
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Malawi, Ghana, and Kenya to assess protective benefits and

safety during routine use in real-life settings (9). The WHO has

recently approved the widespread deployment of the RTS,S

vaccine (5). In addition, a phase 2b trial involving CSP-based

R21 in Matrix-M adjuvant was observed to be safe and very

immunogenic with a protective efficacy of more than 74% in

children aged 5–17 months drawn from a highly seasonal

malaria transmission setting of Burkina Faso (10). Phase 3

trials in different malaria transmission settings are now

required. PfCelTOS, a micronemal secreted-protein, is the only

non-CSP based recombinant protein be evaluated in a clinical

trial (Clinicaltrials.gov NCT02174978).

Erythrocytic or blood-stage vaccines are aimed at inducing

high antibody levels targeting specific parasite antigens in order

to inhibit erythrocyte invasion by merozoites, thereby

controlling parasite replication in the host. Vaccine antigens

like Reticulocyte-binding Protein Homolog 5 (PfRh5) and

PfRh5-interacting protein (PfRipr) are very promising, with

clear functional activity (Table 1) (12, 21). PfRh5 binds to

basigin and forms an essential stable merozoite invasion

complex with PfRipr and Cysteine-Rich Protective Antigen

(PfCyRPA) (12). The three proteins elicit invasion-inhibitory

antibodies in experimental animals and naturally acquired

antibodies in humans correlate with protection from clinical

malaria (12, 21, 22). Other blood-stage antigens in the clinical

development phase include MSP3, Glutamic-acid-rich protein
Frontiers in Tropical Diseases 03
(PfGARP) and Schizont Egress Antigen 1 (PfSEA-1). A

randomized phase 2 study involving children in Burkina Faso,

Gabon, Ghana, and Uganda found that although the GMZ

vaccine, a fusion of MSP3 and GLURP, exhibited good

tolerability, immunogenicity, and some protection from

malaria infection, its efficacy was low (23). However, because

other studies have shown that MSP3 is effective, improved

formulation or the use of alternative adjuvants that may

enhance the GMZ vaccine’s immunogenicity and the duration

of protection should be explored (24, 25). PfGARP is expressed

on the exofacial surface of erythrocytes infected in the early–late

trophozoite stage. Anti-PfGARP activates programmed cell

death of parasites via caspase-like proteases and fragmentation

of parasite DNA (13). PfSEA-1 is expressed in schizont-infected

erythrocytes and anti-PfSEA-1 antibodies block parasite egress

from RBCs (14). Other promising vaccine antigens include

Serine rich antigen 5 (SERA 5) (18) and Plasmodium-encoded

Macrophage Inhibitory Factor (PMIF) (19).

On the other hand, transmission blocking vaccines (TBVs)

present an excellent path to stopping population transmission

although with no direct benefits to the vaccinee (26–28). TBVs

are based on the principle that when antibodies against a specific

antigen expressed in the sexual stages of the malaria parasite

(gametocyte, gamete, zygote and ookinete) are taken up along

with gametocytes during a blood meal, they can reduce the

number of oocysts in mosquito vectors (26). Potential TBV
TABLE 1 Potential candidates for mRNA-based malaria vaccine.

Parasite stage/target
antigen *

Function Reference

Pre-erythrocytic stage

Circumsporozoite protein (CSP) Dominant protein on the surface of sporozoites and with a critical role in the invasion of liver hepatocytes by
sporozoites

(11)

Erythrocytic stage (blood stage vaccines)

Reticulocyte-binding Protein
Homolog 5 (PfRh5)

Bind to basigin and forms a stable merozoite invasion complex with PfCyRPA and PfRipr (12)

PfRh5-interacting protein (PfRipr) Forms a stable merozoite invasion complex with PfCyRPA and PfRh5 (12)

Cysteine-Rich Protective Antigen
(PfCyRPA)

Forms a stable merozoite invasion complex with PfRh5 and PfRipr (12)

Glutamic-acid-rich protein
(PfGARP)

PfGARP is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites.
Anti-PfGARP activates programmed cell death of parasites.

(13)

Schizont Egress Antigen 1 (PfSEA-
1)

Expressed in schizont-infected erythrocytes. Antibodies to PfSEA-1 block parasite egress from RBCs (14)

Erythrocyte membrane protein 1
VAR2CSA

Involved in placental sequestration of VAR2CSA expressing infected erythrocytes by binding to Chondroitin Sulfate
A in the intervillous spaces of the placenta

(15–17)

Serine rich antigen 5 (SERA 5) Essential for parasite survival and potentially mediate parasite egress from infected erythrocytes through processing
of cellular substrates upon cleavage by the subtilisin-like serine protease subtilase 1

(18)

Plasmodium-encoded Macrophage
Inhibitory Factor (PMIF)

Enhances inflammatory cytokine production and actively interfere
with the development of immunological memory

(19)

Sexual stage (transmission blocking vaccines)

Pfs230 Forms a membrane-bound protein complex on gametes (20)

Pfs48/45 Forms a membrane-bound Pfs230-Pfs48/45 complex (20)
fro
* Presented are leading plasmodial proteins among numerous potential vaccine antigens.
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target antigens include Pfs230, Pfs48/45, Pf25, and Pfs28, which

are expressed on the surface of gametocytes, gametes, zygotes,

and ookinete (20, 28, 29). The advantages of TBVs are

summarized elsewhere and their advancement has progressed

to clinical trials (26–28, 30). While these efforts have mainly

focused on antigens like Pfs25, Pfs230, and Pfs48/45, which were

identified in the pre-genome era, new antigen discovery

approaches promise to change this (28).

In addition, whole organism vaccines, such as the radiation-

attenuated P. falciparum sporozoite (PfSPZ) vaccine have also

been pursued. For instance, the vaccine was confirmed to be safe,

well tolerated, and showed significant protection against P.

falciparum infection in Malian adults in a randomized,

double-blind phase 1 trial (31). The PfSPZ vaccine could also

induce a strain-transcending protection against homologous and

heterologous parasites in American adult (35–45 years)

volunteers enrolled in a controlled human malaria infection

(32). Similar observations were reported in a multi-arm, double-

blind, randomized, placebo-controlled trial involving 336

Kenyan infants (5–12 months) albeit with no significant

protective efficacy (33). Nonetheless, the sourcing of

sporozoites that require mosquito colonies, and the need for

aseptic cryopreserved delivery of sporozoites remains a major

problem (34). On the other hand, because the in vitro culturing

of the blood stage parasites is well-established and would allow

easy vaccine manufacturing, efforts are currently ongoing to

develop and evaluate genetically or chemically attenuated whole-

parasite blood-stage vaccines (35, 36).
Novel approaches to malaria
vaccines development

The COVID-19 vaccine discovery and development

landscape developed at an unprecedented scale. The relatively

short duration (10 months) between publication of the first

SARS-CoV-2 sequences to phase 3 trials was remarkable when

compared with the typical vaccine development timeline of 3–9

years (37, 38). The COVID-19 vaccine pipeline is made of a

broad range of technology platforms, including traditional and

novel approaches (39). Although most of these technologies,

including a mRNA and nanotechnologies, had been developed

over the previous decade, the development of COVID-19

vaccines indicate that leveraging such approaches along with

other genomic era technologies to identify effective vaccine

candidate molecules can accelerate the development of

vaccines against other tropical diseases, including malaria (40).

The mRNA-based platforms are highly flexible and quick, while

retaining the capacity to induce robust immune responses

against specific targets. This has renewed the hope of quickly

developing effective vaccines against malaria, a topic we discuss

below. Leveraging the strategies and gains made during COVID-
Frontiers in Tropical Diseases 04
19 vaccine development will significantly accelerate the

development of such promising mRNA malaria vaccines.
mRNA SARS-COV-2 vaccines

Early clinical trials showed that two doses of BNT162b2

(BioNTech/Pfizer) elicited high SARS-CoV-2 neutralizing

antibody titers and robust antigen-specific CD8+ and Th1-

type CD4+ T-cell responses (41). BNT162b2 is a lipid

nanoparticle-formulated, nucleoside-modified RNA encoding

the SARS-CoV-2 full-length spike protein modified by two

proline mutations (41). On December 11, 2020, the U.S. Food

and Drug Administration issued the first emergency use

authorization for a vaccine for the prevention of COVID-19 in

healthy individuals (7). The use of mRNA vaccine platform is

currently being tested for several strains of SARS-CoV-2 as well

as in other diseases including HIV (42).

Presently, there are two types of mRNA vaccines: conventional

mRNA vaccines and self-amplifyingmRNA vaccines (43). Both are

derived from positive strand RNA viruses. Vaccine synthesis

involves the production of mRNA, through a cell-free in-vitro

enzymatic transcription reaction that consists of a linearized

plasmid DNA template encoding the mRNA vaccine, a

recombinant RNA polymerase, and nucleoside triphosphates,

which provide essential components (43). A cap structure is

enzymatically added to the transcriptional product at the end of

the reaction or as a synthetic cap analog in a single step procedure.

Finally, a poly(A) tail forms a mature mRNA sequence.

The vaccines induce a local inflammation which induces an

infiltration of immune cells, such as neutrophils, monocytes,

myeloid and plasmacytoid dendritic cells. This is followed by a

quick uptake of the mRNA by these cells. Intracellularly, there

are two types of RNA sensors – endosomal toll-like receptors

(TLRs) and the retinoic acid-inducible gene (RIG)-I-like

receptor family (44, 45). The former set is divided into TLR-3,

TLR7, TLR8, and TLR9, which are localized in the endosomal

compartment of professional immune surveillance cells, such as

dendritic cells (DCs), macrophages and monocytes (44, 45).

TLR3 recognizes dsRNA longer than 45 base pairs, as well as

dsRNA resulting from single strand RNA (ssRNA) forming

secondary structures or derived from viral replication

intermediates (46). TLR7 and TLR8 are activated by RNAs

rich in polyuridines, guanosines and/or uridines. TLR7 can

bind both dsRNA and ssRNA, whereas TLR8 recognizes

ssRNA only. TLR7 activation can increase antigen

presentation, promote cytokine secretion and stimulate B-cell

responses (45). RIG-I preferentially recognizes ssRNA and

dsRNA bearing a 5′triphosphate, and stimulate IFN

production. Subsequently, the immune cells migrate to the

lymph nodes for clearance. It is at this point that antigen

presentation to T cells and interactions of antigen and B cells

takes place. The outcome is the formation of germinal centers,
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which results in the development of memory B cells and

antibody-producing plasma cells in the bone marrow (45).
Malaria vaccine antigen selection options
for mRNA vaccines

The mRNA revolution will make it possible to assess

multiple vaccine candidates that target proteins involved in the

pre-erythrocytic stage such as CSP, those essential in the

erythrocytic stage such as Rh5, or those involved in the

parasites sexual stage (summarized in Table 1). Indeed, the use

of RNA vaccines against malaria had been explored even prior to

the COVID-19 outbreak. A report proposing a malaria RNA

replicon-based vaccine was published in 2018 (19) and a patent

based on this technology (termed self-amplifying RNA, saRNA),

originally requested in 2014.

In a recent study, data confirmed that mice immunized with

Plasmodium-encoded Macrophage Inhibitory Factor (PMIF)

had intact splenic germinal centers (GC) architecture and

showed B cell zonal expansion, an increase in the number of

CD4 T follicular helper cells and GC B cells, and a higher anti-

Plasmodium antibody titer (19, 47) (Table 1). Adoptive transfer

of the CD4 T cells that develop in PMIF- immunized mice

during Plasmodium blood-stage infection also conferred full

protection to blood-stage infection in naive hosts (19). Upon

transfer, these CD4 T cells showed enhanced Plasmodium-

specific proliferation and IFN-g production, and reduced

exhaustion (19, 47). These findings demonstrated protection in

murine model of malaria initiated by sporozoite or blood-stage

infection thereby confirming the role of the Plasmodium-

encoded factor PMIF in actively interfering with the adaptive

immune response by a pro-inflammatory mechanism involving

engagement of the host MIF receptor to suppress the

differentiation of memory CD4 and CD8 T cell subsets (19).

Studies have revealed additional antigens that can be used as

models of malaria mRNA vaccine research. P. falciparum

glutamic-acid-rich protein (PfGARP) was recently identified as a

potential mRNA erythrocytic stage vaccine target (13). PfGARP is

expressed on the surface of infected erythrocytes where it naturally

stimulates production of antibodies capable of inducing

programmed cell death of the trophozoite-infected erythrocytes

and attenuates severe malaria (18). Other erythrocytic stage

proteins such as PfRh5, PfRipr and PfCyRPA, that form a stable

merozoite invasion complex (12), should also be considered for

mRNA vaccines. In similar vein, VAR2CSA, the major protein

involved in placental sequestration of infected erythrocytes by

binding to Chondroitin Sulfate A in the intervillous spaces of the

placenta can be targeted (15–17). Recently, immunization with

immunodominant PfCSP mRNA-LNP was observed to achieve

sterile protection against infection with two P. berghei PfCSP

transgenic parasite strains (11). Put together, protection observed

by PMIF, PfGARP and PfCSP immunization support the
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candidates, either as standalone immunogens or in combination

for adequate robust protective responses.

Nevertheless, the choice of antigens to be developed into

vaccines remains to be a major challenge due to the complexity

of the malaria parasite, lack of clear correlates of protection both

for humoral and cell-mediated immunity, difficulties in the

identification of key antigen targets of protective immunity,

polymorphisms of the known antigens and lack of robust

adjuvants (48, 49). However, recent development of more

robust antigen discovery platform such us the use of the wheat

germ cell-free system has opened a new perspective in this

direction that may help overcome these challenges (50).
Genetic diversity in malaria parasites,
lessons from SARS-CoV-2 variants and
COVID 19 vaccines

One advantage of the mRNA is the ability to quickly change

the vaccines to address new pathogen variants when compared

with conventional vaccine platforms. Indeed, numerous SARS-

CoV-2 variants have been reported globally with reduced

efficacy of the existing vaccines (51, 52). These include the

Alpha (B.1.1.7 and Q lineages), Beta (B.1.351 and descendent

lineages), Gamma (P.1 and descendent lineages), Epsilon

(B.1.427 and B.1.429), Eta (B.1.525), Iota (B.1.526), Omicron

(B.1.1.529), among others variants (52). Pharmaceutical

companies have quickly developed different types of vaccines

that have been approved for use by regulatory authorities. Phase

III clinical trials of the mRNA-based vaccine, BNT162b2 (Pfizer

and BioNTech) showed 95% efficacy 28 days after the first dose

(53), its effectiveness against the B.1.1.7 was affected by the

emergence of the E484K substitution (53). Efficacy trials revealed

that the Oxford/AstraZeneca vaccine based on a viral vector,

reached 82.4% after a second dose in individuals who received

the dose after a period of 12 weeks. Vaccine efficacy against

symptomatic PCR positive patients was similar for B.1.1.7 and

non-B.1.1.7 lineages (74.6% and 84% respectively (54). The UK

government recently approved the use of Moderna Spikevax

bivalent Original/Omicron vaccine that targets both the original

version of SARS-CoV-2 and the omicron BA.1 variant (55), a

demonstration of how multivalent may work.

Similarly, the field efficacies of leading malaria vaccine have

been significantly hampered by genetic polymorphisms in target

antigens. For instance, RTS,S the leading vaccine, has various

polymorphisms in the pfcsp gene among global P. falciparum

population which affect the effectiveness of the vaccines (56).

Genetic polymorphism has also been reported on pfrh5 gene,

with some peptides in PfRH5 identified as having high basigin

affinities than others (57). These polymorphisms may alter the

protein tertiary structures thus leading to loss of vaccine efficacy

(58). The quick re-configuration of the COVID-19 vaccine
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development platform to handle emerging mutants has

demonstrated that it may be possible to quickly configure

second-generation malaria vaccines to accommodate new or

existing parasite mutants or even combine mutants in multi-

valent vaccines. In addition, as in the case of COVID-19, use of

multivalent plasmodial immunogens containing sequences

derived from different strains may confer potent and broader

protective efficacy against circulating strains (58).
Limitations of mRNA vaccine approaches

mRNA vaccines are noninfectious and non-integrating with

all the advantages associated with nucleic acid vaccines [as

reviewed (39)]. This includes a) ease of design, relying on

understanding the genetic sequences of target genes, b) safety

since mRNA vaccines have no potential risk of infection or

insertional mutagenesis posing little risk of causing infection

while minimizing the handling of pathogens, and c) low cost-

effective production (59, 60). However, they also present many

unknowns and challenges, including the lack of data on the long-

term safety and their instability, which may lead to low

immunogenicity and the need for repeat vaccination (59, 60).

Although the rapid decline in antibody response that is seen after

mRNA vaccine administration may potentially be mitigated

using self-amplifying mRNA vaccines, there is concern that

such vaccines may induce excessive inflammation via

enhanced type I IFN activation (61). Nevertheless, the inherent

immunogenicity can be down-modulated (62).

With regard to the development of mRNA vaccines for

malaria, several challenges still remain. These include the lack

of robust criteria for the selection of the best antigen or antigen

cocktails, potential modification (such as glycosylation) of some

parasite proteins expressed in mammalian/human cells, which

may reduce their immunogenicity (63, 64). The identifying and

development of strategies for generating long-lasting malaria

mRNA vaccine-mediated protective immunity is also an

important challenge, and criteria for selecting the best malaria

mRNA adjuvant is lacking (65). Additionally, polymorphisms in

the antigens used for vaccines production may lead to immune

escape, a key problem in various candidate vaccines, including

RTS,S. Importantly, because malaria is a burden in low–middle

income countries where most people earn less than US$1 a day,

coupled with the realization of the need for local vaccine

production by many African countries, innovative approaches

are needed to improve the stability of the inherently unstable

mRNA requiring ultralow temperature freezers storage. Thus

development of a thermostable formulations such as SARS-

CoV-2 ARCoV mRNA vaccine, that require no freezer storage

will be key for mass vaccination campaigns in remote areas (66).

In summary, mRNA vaccines have the potential for rapid,

inexpensive and scalable production, primarily due to high

yields in in vitro transcription reactions.
Frontiers in Tropical Diseases 06
Alternative and supplementing
vaccine discovery and
development approaches

Strategies like the use of viral vectors, nanotechnology-

based vaccines, and machine learning designed vaccines may

offer effective alternatives or supplement mRNA vaccines. Viral

vectors are modified, harmless viruses capable of infecting

human cells and expressing an antigen of interest (67),

triggering robust immune responses (68). Their advantages

over conventional modes of vaccine delivery include; a)

capacity for large inserts, which allows delivery of any

antigen of choice, b) ability to deliver antigens with high

fidelity as they are delivered as genetic instructions, and c)

generation of potent immune reactions without need for

adjuvants by mimicking normal infection (68, 69). Despite

concerns about their recombination risk and unknown

virulence (68, 69), viral vector vaccines have been developed

for infections like Ebola (70) and COVID-19 (71). Although

animal models and human trials (6, 72) indicate that viral

vector vaccines may be efficacious against malaria, none are in

clinical use. However, given that R21, a virus-like particle

malaria vaccine that meets the ≥75% efficacy threshold

recommended by the WHO has concluded phase 2b trial,

viral vector vaccines may develop into effective alternatives to

mRNA vaccines (10). In addition, during the COVID-19

pandemic, machine learning (ML) and artificial intelligence

(AI) have been widely used (73), including in guiding the

development of universal vaccines (74), designing multi-

epitope vaccines (75), and predicting the best sites for trials

and those likely to benefit from vaccines (76, 77). These

applications highlight the potential value of ML and AI

during the development and deployment of malaria mRNA

vaccines (78, 79). Similarly, nanotechnology facilitates targeted

vaccine delivery, stability, slow release, and immunogenicity

(78, 79). The high efficacy of the COVID-19 mRNA vaccines is

attributable to the lipid nanoparticles (LNPs) used to shield the

mRNA from degradation by ribonucleases (80). This

technology has the potential to significantly benefit the

development of mRNA/nanotechnology-based malaria

vaccines. Indeed, using spontaneous nanoliposome antigen

particularization (SNAP), conjugated malaria antigens have

been stably presented in uniformly-oriented display without

covalent modification or disruption of antigen conformations

(81). Immunizing mice and rabbits with SNAP carrying

Pfs25 (a malaria transmission-blocking vaccine candidate)

was well tolerated and triggered a robust antibody response

with minimal local reactogenicity (81). Importantly,

multiplexing up to four antigens triggered strong and

balanced antibody production (81), highlighting the potential

of nanotechnology in the development of multi-antigen/multi-

stage particulate vaccines.
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Conclusion

Current data suggest that developing of a malaria vaccine

leveraging COVID-19 pipelines is a rational approach for

strengthening global health. The preclinical trials of the pre-

erythrocytic PfCSP and PMIF mRNA vaccine candidates have

showed that it may be possible to achieve malaria protection,

making this approach worth pursuing. Expanding these

platforms to other vaccine targets deserve further investigation.
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