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Non-native pests and diseases pose a risk of economic and environmental

damage to managed and natural U.S. forests and agriculture. The U.S.

Department of Agriculture (USDA) Animal and Plant Health Inspection Service

(APHIS) Plant Protection and Quarantine (PPQ) protects the health of U.S.

agriculture and natural resources against invasive pests and diseases through

efforts to prevent the entry, establishment, and spread of non-native pests and

diseases. Because each pest or disease has its own idiosyncratic characteristics,

analyzing risk is highly complex. To help PPQ better respond to pest and disease

threats, we developed the Spatial Analytic Framework for Advanced Risk

Information Systems (SAFARIS), an integrated system designed to provide a

seamless environment for producing predictive models. SAFARIS integrates

pest biology information, climate and non-climate data drivers, and predictive

models to provide users with readily accessible and easily customizable tools to

analyze pest and disease risks. The phenology prediction models, spread

forecasting models, and other climate-based analytical tools in SAFARIS help

users understand which areas are suitable for establishment, when surveys would

be most fruitful, and aid in other analyses that inform decision-making,

operational efforts, and rapid response. Here we introduce the components of

SAFARIS and provide two use cases demonstrating how pest-specific models

developed with SAFARIS tools support PPQ in its mission. Although SAFARIS is

designed to address the needs of PPQ, the flexible, web-based framework is

publicly available, allowing any user to leverage the available data and tools to

model pest and disease risks.
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Introduction

Climate and weather-driven forecast systems that incorporate

biological drivers are important tools for a wide range of

applications. Pest and production forecast systems are widely

used by farmers not only to predict suitable timing for planting,

spraying pesticides, and harvest schedules, but also to advance more

cost-effective production approaches. Regulatory agencies also use

pest forecast systems to establish early warning systems before non-

native pests arrive, help eradicate new arrivals, or manage non-

native species that are already established invaders.

In the United States, the U.S. Department of Agriculture,

Animal and Plant Health Inspection Service, Plant Protection and

Quarantine (PPQ) leads the Federal-level response to invasive

species that affect plant health. PPQ aims to protect American

agriculture and natural resources against the entry, establishment,

and spread of economically and environmentally significant plant

pests and diseases (1). Within PPQ, the Plant Pest Risk Analysis

group in Science and Technology provides risk assessments,

scientific analyses, and other information to support PPQ

regulatory decisions and activities, many of which include spatial

analyses that evaluate the likelihood and consequences of pest and

disease establishment. For example, they provide spatial analyses

that inform the Cooperative Agricultural Pest Survey (CAPS)

community of when and where to survey for targeted high

priority pest species (2). CAPS is a network of state and federal

cooperators that focuses on early detection to prevent new non-

native plant pests from becoming established. Spatial analyses help

other PPQ programs quickly address new detections, manage pest

spread, determine trade risks, and other phytosanitary issues.

A number of systems and techniques already exist to predict

suitable areas for plant pest and disease establishment based on

various factors, including climatic variables (3, 4). Nevertheless,

researching, selecting, processing, and standardizing climatic

variables from various sources to construct models is time

consuming. In addition, predicting invasive pest behavior in

natural (and often novel) environments is complex and involves

uncertainty; therefore, it is often difficult to determine which

approaches might give the most realistic and practical results.

Ensemble modeling approaches are commonly utilized in this

context, especially for newly discovered pests whose biology is not

well known (5–7). When a species is in the early stages of invasion,

the relationship between the species and the environment is

particularly difficult to understand, and capturing uncertainty can

help decision-makers understand what the potential risks may be

(8, 9).

In this paper, we describe the Spatial Analytic Framework for

Advanced Risk Information Systems (SAFARIS), a pest risk

forecasting framework developed for regulatory agencies. We

developed this framework to establish a consistent, tractable, and

comprehensive environment that supports pest models driven by

abiotic and biotic factors. These models output pest forecasts for

local, regional, national, or global phytosanitary pest and disease

management. The framework also integrates tools that specifically

address uncertainty to interpret and communicate it for policy and
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area-wide management. Establishing a common framework to run a

variety of models has numerous advantages, such as enabling valid

comparisons between different models and improving the role and

value of models for informing policy. We built SAFARIS to support

organizations responsible for sanitary and phytosanitary

management such as PPQ, although the system can be adapted

by any organization that wishes to use models driven by climatic,

weather, and biological factors. In this paper, we describe how we

built SAFARIS and demonstrate how it is used to create climate

suitability maps and pest forecasts to support PPQ programs.
Methods and materials

Components of SAFARIS

SAFARIS is a web-based spatial analytic framework and uses a

multi-compartment design focused on supporting multiple types of

models or applications, including phenology models, climate

matching models and tools, spread models, and climate-change

models. In addition to integrating relevant and adaptable pest

models, SAFARIS stores associated data drivers required to run the

models using standardized formats that feed directly into the model

tools. Thus, SAFARIS is composed of standardized, pre-processed

climate data, internal pest biology data and other non-climate data

sources, predictive models and tools, and model output visualizations

(Figure 1). Together, these components allow custom analyses on-

demand with outputs that are archived in SAFARIS and easily shared.

SAFARIS houses historical weather data that can be used to analyze

long-term trends and create forecasts based on historical weather

averages. Alternatively, real-time weather data can be used to drive

models to create more accurate within-year forecasts that are based

on current weather patterns. The framework is scalable for hosting an

unlimited number of models, but it is most advantageous for models

which can leverage the data pipeline provided by SAFARIS by using

the drivers already available and consistently formatted in the

framework. SAFARIS is open to the public and accessible via a

web-browser at https://safaris.cipm.info. Users have access to most

tools, models, and climate data; however, some are internal and only

available to registered users.

We developed SAFARIS to allow users to choose among

different climate databases and geographical target areas (e.g.,

specific area within a country, specific country, or global). The

climate databases provide 1) historical climate data, 2) short-term

weather forecasts (e.g., 7-day or 30-day forecasts) and 3) long-term

climate projections (e.g., downscaled General Circulation Model

(GCM) outputs) (Supplemental Table 1). SAFARIS selects the

climate data set appropriate for the temporal and spatial

resolution of the selected model. For example, when a user selects

the Temperature Mapping Analytic Tool to determine suitable

areas for a pest’s winter survival, the model is automatically

connected to monthly climate datasets. However, because

biological development may happen in less than one month, the

Phenology Model creates forecasts with daily minimum and

maximum temperatures to calculate developmental rates for a
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particular pest based on user-specified thresholds. The framework

supports user-selected time-step specifications to address the

associated temporal variability in models. In addition, a user can

run models using historical climate data, short-term weather

forecasts, and downscaled GCM climate data to create pest

predictions that can vary from near real-time forecasts (e.g., two-

week outlooks) to short-term (several months) and long-term

(years to decades) forecasts.
Models and analytic tools

The SAFARIS framework currently includes phenology and

spread forecasting models and many climate-based analytical tools

commonly used in phytosanitary applications. Each model or tool

has a straightforward template linked to necessary climate data

drivers that enables a user to select custom parameters. We list the

currently available web-based models and tools within SAFARIS

that are commonly used in pest risk assessments (Supplemental

Table 2). SAFARIS is frequently updated with new tools as they are

developed in-house or through collaborations with other

researchers (10, 11).

SAFARIS provides phenology models that can be used to predict

the timing of an organism’s developmental stages. For example,

environmental temperatures directly affect the rate of organism

growth and development if other resources are not limited (12).

Phenology “degree day” models calculate a standardized estimate of

heat exposure over time (heat units or degree days) for the organism

of interest. Many species require a certain amount of heat exposure to

develop from one stage to another. This required heat over time is

expressed in physiological time because each organism requires a
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different amount of heat for development, and because

environmental temperatures vary each day (12, 13). Physiological

time is calculated by multiplying cumulative developmental time by

the temperature above a declared developmental threshold and is

therefore expressed as degree-days (12, 13).

SAFARIS also provides climate analytic tools to determine the

occurrence of specific climate conditions that support pest growth

based on the historical and forecasted weather data. Outputs from

these tools are used in environmental suitability models, that

determine suitable geographic areas for pest establishment by

evaluating climatically suitable conditions for a given pest’s

growth and often add Supplemental Information such as host

species distribution, host species availability, elevations, and land

cover types (4, 14–18). Overall, an invasion ecology model underlies

this approach, which focuses on climate (environment) suitability,

host availability, and pest presence (19).
Outputs and visualization

Phenology model and analytic tool results in SAFARIS are

distributed as maps in netCDF format based on user-specified

criteria. Processing times for most results will be between a few

minutes and a few hours. The resolution and extent of the data, the

analysis process and network bandwidth may affect the timeliness of

results. To account for possible delays in server exchanges, users are

notified by email when the framework compiles requested maps. In

addition to having access to raw data drivers, users can view the

input data information and output maps on the website and can

download the output maps as rasters in netCDF format that users

can import into their own GIS systems.
FIGURE 1

SAFARIS framework environment. Commonly used input data drivers for models and analytic tools available within SAFARIS are climate data, pest
biology data, and human activity data. These datasets are connected to models and analytic tools such as phenology model, climate matching
models and tools, spread models, and climate change models. The spread model called Pest or Pathogen Spread Model (PoPS) runs externally using
data drivers within SAFARIS. These models and analytic tools are regularly used to analyze PPQ concerned pests and diseases. Some assessments are
visualized using interactive mapping systems within SAFARIS as Pest Products.
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In terms of specific outputs, the Phenology Model generates a

raster of degree-days accumulated during a user-specified time

frame based on user-specified developmental threshold

temperatures. These models depict potentially suitable areas

where enough physiological time has passed for a given species to

complete a single generation or specified developmental stages.

The Analytic Tools for evaluating weather data generate two

types of outputs: 1) a raster in which each cell value represents the

number of days that meet user specified conditions (i.e., pest growth

requirement(s) for specific consecutive days) during the study

period and 2) a raster of binary values indicating whether the

user specified conditions have been met during the study period.

The weather conditions examined can include temperature (daily

maximum, daily minimum, and daily average), and relative

humidity (daily minimum, daily maximum, and daily average).

The Precipitation Mapping Analytic Tool generates 1) accumulated

precipitation during the user specified period and 2) a raster of

binary values indicating whether the user specified conditions have

met during the specified period. Additionally, the Global Plant

Hardiness Zones tool identifies where organisms could be

established by matching zones with organisms’ distribution areas.

These analytic tools are useful to understand if areas may support

plant pest growth and to determine the likelihood of pest activity

and establishment.

Outputs from Models and Analytic Tools can be further

analyzed outside of SAFARIS. For example, the outputs from the

Temperature Mapping Analytic Tool and the Precipitation

Mapping Analytic Tool can be combined to identify areas where

both temperature and precipitation requirements meet to

determine pest suitable areas using software such as R and

ArcGIS Pro.

Since the models and input data drivers are embedded in

SAFARIS, pest forecasts can be automated and visualized within

its framework. SAFARIS produces and houses many Pest Products,

which are the outputs of other pest-specific models relevant to

current PPQ phytosanitary concerns (Figure 1). At present, this

includes map products for 41 species. The types of maps generated

for the pests vary with species and data availability; however, all

maps are intended to help users understand where pests have the

potential to establish, when to expect pest activity, and when and

where pests could have an impact within the United States. Three

types of Pest Products are currently available: PestCAST and CAPS

suitability maps, which are dynamic, interactive maps showing the

most up-to date information available, and Field Operations

Weekly Maps, which are static PDF files. These Pest Products

directly support PPQ and state field operation activities and are

easily shared to a wide audience.
Application

Use case: climate suitability maps for
pest surveillance

The Cooperative Agricultural Pest Survey (CAPS) program

conducts non-native plant pest surveys through a national network
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of cooperators and stakeholders to protect American agriculture and

natural resources (2). Since CAPS pests do not occur in the United

States, we generate climate suitability maps for CAPS pests using

SAFARIS that help support survey planning and prioritization by

showing where pests could establish in the United States. Because

CAPS surveys are tasked with early detection, these models are

designed to incorporate all areas that could potentially support pest

establishment, including marginally suitable areas, and only exclude

areas that we are certain would be unsuitable. The CAPS suitability

models are mechanistic and customized with information specific to

the biology of a pest, such as known temperature tolerances, moisture

requirements, or physiological requirements for growth. Once a

custom suitability model is developed for a pest, SAFARIS uses

historical weather data to predict where the pest could establish

and displays the result as an interactive map on the website (20, 21).

Static maps showing model results, along with a methodology

document that describes model parameters and assumptions, are

available for download on the website as PDFs, and technical users

can download the netCDF maps to use in their own spatial analyses.

These maps help CAPS coordinators prioritize which pests to survey

for in their area and coordinate survey timing.

Example: CAPS pest suitability assessment for
oak ambrosia beetle

Oak ambrosia beetle (OAB), Platypus quercivorus (Murayama,

1925), is found in temperate, subtropical, and tropical forests in

India, Indonesia, Papua New Guinea, Taiwan, and Japan. Its hosts

include many species in the Fagaceae family, but it may attack some

species within Aquifoliaceae, Lauraceae, Rosaceae, Cupressaceae

and Taxodiaceae (22, 23). It develops in the inner bark and wood of

host trees and feeds on a symbiotic fungus, Raffaelea quericivora.

This fungus is the causal agent of Japanese oak wilt, which causes

severe damage in susceptible oak species in Japan. If North

American oaks are susceptible to Japanese oak wilt, establishment

of the OAB in the United States has potential to cause significant

mortality and economic and environmental damage. Davis, French

and Venette (22) identified twenty-eight potential host species of

Quercus for OAB in the continental United States.

We reviewed scientific literature to identify climate conditions

required for pest development. The lower lethal temperature was

identified as the lowest supercooling point (-20.3°C) measured by a

lab experiment (24) minus a thermal insulation constant (1.2°C) to

account for the difference between interior tree temperatures and

ambient temperatures (25). This adjustment was necessary because

ambient temperature records were used in the assessment.

Therefore, we modeled suitable areas using the Temperature

Mapping Analytic Tool to determine the areas where daily

temperatures never reached the lower lethal threshold of -21.5°C.

To parameterize the phenology model, we used the work by Barker

and Coop (26) fromOABmonitoring data (27) and trapping data of

similar bark beetle species (28). The phenology model parameters

used were a lower developmental threshold temperature of 11.1°C,

an upper developmental threshold temperature of 38°C, and an

accumulation of 1,486 degree-days for one generation.

For each year between 2001 and 2020, areas considered suitable

for pest establishment met the climate suitability criterion of daily
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ambient temperatures above the lower lethal threshold identified

from scientific literature. We did not include the OAB phenology

requirements to complete one generation as an annual requirement.

OAB can have one or two generations throughout the year (27);
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however, some beetles may take two years to complete a life cycle

(27). Therefore, we only used the lower lethal temperature as a

suitability requirement and designated the areas where daily

ambient temperatures were never fatal as areas suitable for
FIGURE 2

Number of years with suitable conditions for oak ambrosia beetle in the contiguous United States, Hawaii, Puerto Rico, and Alaska. Suitable
condition requirements were the daily ambient temperatures were above (-21.5°C), the lower lethal temperature threshold (-20.3°C) with a tree-
interior insulation factor of 1.2°C.
FIGURE 3

Average number of generations possible per year for oak ambrosia beetle in the contiguous United States, Hawaii, Puerto Rico, and Alaska. The
development from egg to egg-laying adult requires the accumulation of 1,486 degree days.
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establishment. We then used the Phenology Model to estimate the

number of generations an area could support.

We determined the number of years with suitable conditions for

OAB in the contiguous United States, Alaska, Hawaii and Puerto

Rico using twenty years of PRISM and Daymet weather data (2001–

2020), resulting in a resolution of 4 km in the contiguous United

States and 1km in Alaska, Hawaii, and Puerto Rico (20, 21)

(Figure 2). The results indicated that the Southeast, Southwest,

the West Coast, Hawaii, and Puerto Rico have suitable climate

conditions for OAB establishment. The southern portions of

Midwest and Northeast and parts of the West have suitable

conditions for some years, so its ability to establish in those areas

is less certain. Unsuitable areas included the northern portions of

the Northeast, Midwest, and West regions. Much of the West and

Northeast regions do not experience enough annual growing degree

days to allow OAB to complete one generation a year; however, in

those areas, OAB may overwinter and complete its life cycle the

following year (Figure 3). Southern regions can support multiple

generations per year and should be considered optimal for OAB.

Since voltinism for OAB is unknown, our results indicate the

potential number of generations each year. The second generation

may or may not be successful in rearing its own brood, and

although the evidence suggests that some beetles can take more

than one year to complete their development, this has not been

conclusively shown (27).

The OAB climate suitability maps are displayed using

interactive web mapping interface within SAFARIS (https://

safaris.cipm.info/safarispestmodel/StartupServlet?caps&pid=OAB).

The interface allows users to click, pan, and zoom for further

information. Location specific information can be obtained by

clicking an area on the map, and users can toggle between

different layers to easily visualize multiple assessment results. The

web-based visualization system organizes assessment results and

modeling methods in a format that is easy to share with others,

either interactively on the website or in PDF format. The results of

these maps help survey planners decide if their area is suitable for

OAB, and if so, where they should focus their survey efforts.

Additionally, GIS users can download raster files of model results

to use in their own analyses. For example, survey planners may

combine the map of suitable areas with a map of suitable host

distribution to select the most appropriate areas to survey for a pest.
Use case: pest forecasts for plant pests and
diseases programs

PPQ regulates non-native plant pests and diseases and

safeguards agriculture and natural resources from the risk

associated with entry, establishment, or spread of non-native

species. PPQ responds to newly detected plant pests with

domestic programs designed to eradicate, suppress, or contain

pests to minimize impacts (1). To support domestic programs, we

have created a forecast system called PestCAST that indicates

current pest stages and predicts expected pest stages for the next

7 and 30 days using near real-time weather data (PRISM Climate
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Group (20)), National Oceanic and Atmospheric Administration

(NOAA) 7-day forecast weather data (National Digital Forecast

Database), and 20-year historical data. The forecasts are updated

daily using weather data obtained by SAFARIS and visualized as

interactive maps to examine conditions for specific locations and

compare pest status with historical records. We have used

PestCAST to develop near-real time phenology predictions for

seven non-native insects that are presently in the United States by

collecting and summarizing published data and field observations

from all over the world. These phenology models were validated

and modified with U.S. field observation data and can

accommodate new observation data as they become available.

Each year, we calculate the accuracy of the predictions with all

available observation data by determining whether the accumulated

degree days on the pest detection day at the locations are within the

model predictions. If not, we then further investigate the

observation data and predictions to adjust degree-day

requirements in the model. Therefore, as we incorporate multi-

year observation data, the predictions become more accurate. For

example, we use observation data to evaluate the predictive accuracy

of the model for spotted lanternfly (Lycorma delicatula), which is

now capable of predicting the timings of nymph and adult

emergence within a few days from the field observation dates.

PestCAST allows users to compare the current conditions with

conditions in previous years; therefore, users can understand if the

current conditions (this year’s conditions) occur earlier or later

than in past years. For example, users can change the forecast date

by changing the Map Date to view the forecasts from previous

days. The interactive mapping interface allows users to zoom in

and out or click on a forecasting area to obtain detailed

information on a specific location (e.g., state, county, latitude,

longitude, current condition, and forecasts). The Compare feature

generates accumulated degree days for selected years at the

selected location to compare the current year’s accumulation

with conditions in previous years and the 10-year average. This

feature helps managers to make rapid decisions and target the

timing of management actions more efficiently. The PestCAST

predictions are used to schedule for scouting specimens, treatment

applications, and public awareness when surveyors would expect

to see pests. It has been used to arrange for personnel, supplies,

and budgets to be in place earlier. Thus, PestCAST provides

early warning information for managers and decision makers

to plan for appropriate actions accordingly (G. Parra, 2023,

personal communication).

Example: development of PestCAST for
spongy moth

Spongy moth, Lymantria dispar (Linnaeus), is considered

damaging and is regulated by many countries as a quarantine

pest of concern. It was first introduced into the northeastern

United States from Europe in 1869 (29). The spongy moth has

become established and spread to 20 states and the District of

Columbia in the eastern United States (30). The spongy moth has a

wide host range, attacking over 500 species such as Quercus,

Carpinus, Alnus, Prunus, Populus, Gleditsia, Tilia, Corylus, and
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Robinia (31). It is considered a major forest pest in the United States

and Canada due to its ability to cause economic and environmental

damage (32).

To forecast the timing of spongy moth (Lymantria dispar L.) adult

emergence, we parameterized the Phenology Model based on the work

of Sheehan (33). The parameters were: start date = January 1;

accumulated degree days for the first adult emergence = 1,143;

accumulated degree days for flight period = 1143 to 1528, as

determined using developmental thresholds for egg, larvae, and

pupae (Table 1). SAFARIS runs the spongy moth adult emergence

phenology model daily to predict which spongy moth stages would be

present on a given day, and which stages would be present over the

next 7 and 30 days using near real-time weather data, 7-day weather

forecasts, and historical weather data for the contiguous United States.

SAFARIS automatically collects 4-km PRISM near real-time weather

data and 7-day weather forecasts from the National Digital Forecast

Database (20, 34) and averages daily PRISM data for the most recent 20

years to extend the forecast for another 23 days. To provide early

warning guidance for spongy moth operational decisions, we are using

PestCAST to produce 30-day forecasts for the beginning of adult

emergence and for the period after adult emergence has ended and

adults are no longer active (post–adult emergence). PestCAST

generates maps daily in PDF format for easy sharing, which are

available on the SAFARIS website.

In addition, the spongy moth PestCAST forecasts are displayed

using an interactive web mapping interface within SAFARIS (https://

safaris.cipm.info/safarispestmodel/StartupServlet?pestcast&pid=SM).

Figure 4 displays detailed information at a location in Stafford County,

Virginia as of March 13, 2023. At this location, spongy moth is

currently estimated to be the larval stage, and adult emergence is

unlikely to happen within the next 30 days. The graph indicates that the

current (2023) year’s degree-day accumulation is faster than the last

five years and the 10-year average. This means that conditions in the

current year are allowing spongy moth development to occur earlier at

this location, and adult emergence might happen earlier than the

previous time periods.
Discussion and future development

We have developed the SAFARIS framework to support pest and

disease forecasts that are useful for management and policy-level

decisionmaking. The framework enables ‘plug and play’ functionality

for weather-driven models and includes generic models that support

key applications in large-scale pest and disease management. It

enables the user to run models with tools that link to different

weather and climate data sources easily, helping the user to
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understand and minimize uncertainties associated with primary

input drivers. In addition, SAFARIS evaluates how climate can

affect pest phenology and survival on a particular date, month, and

year to understand the annual variability and trends in pest biology.

Further details on the models, tools, and data drivers, along with step-

by-step instructions on how to parametrize the models and tools, are

available in the SAFARIS User Guide (https://safaris.cipm.info/

safarispestmodel/staticfiles/safarisuserguide.pdf).

SAFARIS provides generic phenology and climate matching

models that can easily be customized for a specific pest via web-

based templates. It provides multiple ways to calculate degree-days

(e.g., single sine method with horizontal cut-off, triangular method

with vertical cut-off) that users can customize with different

temperature threshold values at each pest stage. All models and

tools within SAFARIS link to multiple weather/climate data sources

to predict pest phenology and suitability based on historical weather

conditions, near real-time weather conditions (current year), short-

term future conditions, and long-term future conditions. SAFARIS

allows users to combine outputs from multiple models and tools to

generate applied predictions and visualize uncertainty.

Other models in SAFARIS are designed to address specific

regulatory needs. The CAPS pests are not known to occur in the

United States, and survey efforts are focused on early detection.

Therefore, rather than reporting the likelihood of establishment,

our goal is to identify all areas that could potentially support

permanent establishment of CAPS pests. By designing our models

to exclude areas as unsuitable only when we are certain and showing

the variability among years, survey planners have the information

they need to prioritize their surveys. Because we use mechanistic

model approaches, CAPS pest models estimate climatic suitability

sufficiently well to provide useful scientific information for

regulatory decision making (35). The CAPS pest suitability use

case presented here identified the current climate suitability in the

United States for OAB, indicating areas suitable for OAB

establishment. To incorporate the recent weather patterns in

CAPS assessments, SAFARIS uses the most recent weather data

for analyses because SAFARIS is linked to multiple external servers,

such as NOAA’s data server and PRISM server, and automatically

updates weather and climate data within SAFARIS as new data

become available. This keeps our short-term predictions up to date.

The PestCAST products help managers and decision-makers

respond to current needs for domestic program pests in a timely

fashion based on historical, current, and short-term forecast data.

These SAFARIS map products have been developed to help PPQ

prioritize survey efforts, respond to incursions, and allocate

resources efficiently. However, SAFARIS contains global scale

information and models are validated with observation data and

literature on where particular pests occur in or outside of the United

States. The SAFARIS framework is flexible, allowing users to

construct new models quickly to address new needs as they arise.

Climate change can increase the frequency and intensity of

extreme weather events. These extreme weather conditions are

expected to significantly influence agricultural pests (36, 37). We

are currently developing new analytic approaches using long-term

projection climate models to understand the potential changes in

pest establishment and impacts under future climate change.
TABLE 1 Growing degree day requirements for each spongy moth stage
(33).

Phenology Parameter Egg Larvae Pupae

Lower development threshol 3°C 7.2°C 6.6°C

Upper development threshol 38°C 41°C 41°C

Degree-days (DD) 282 583 277
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Extreme weather events affect plant pest species differently. Some

pests may not have any noticeable impacts, while others might have

significant impacts. Projections of future weather conditions are

inherently uncertain. Therefore, SAFARIS has incorporated twenty

GCMs and two Relative Concentration Pathways (RCP), which

allows researchers to examine differences among predictions to

characterize and communicate that uncertainty. We continue to

evaluate critical information from the climate change research

community to communicate with decision-makers on how these

predictions should be used in decision-making processes.

The mission of the SAFARIS framework is to support decision-

making processes by providing critical scientific information in a

timely manner. Since PPQ often deals with pests that are not well-

studied and have a lot of unknowns (i.e., lack of knowledge of how a

non-native species would react to a new environment, or uncertainty

about how non-native species interact with native species),

understanding and quantifying uncertainty becomes important for

decision-making processes. For example, evaluating the uncertainty

associated with the CAPS products provided in SAFARIS is essential

for increasing the validity and the accuracy of the predictions (38–

40). The flexible design of SAFARIS allows users to quickly create
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alternate models to test model assumptions and see how adjustments

to model parameters can affect the outcome.

Well-documented pest forecasts are useful; however,

incorporating uncertainty information will lead to better pest

management. Yemshanov, Koch and Ducey (41) demonstrated

two approaches (mean-variance frontier concept and second-

degree stochastic dominance rule) to evaluate uncertainties that

could be incorporated into pest forecast results. These approaches

could provide decision-makers with additional guidance for

prioritizing pest control options (41). Because the tools provided

by SAFARIS use very high data granularity, the user is able to assess

variability and uncertainty associated with input data and model

outputs. We are further investigating methods to combine multiple

sources of uncertainty (e.g., natural variation, climate change

uncertainty, and model errors) that can affect pest predictions

and developing ways to effectively communicate the uncertainty

associated with spatial assessments to decision-makers.

SAFARIS will continue focusing on incremental and cooperative

improvements. We tested the framework flexibility and connectivity

by developing web-based phenology models and climate matching

tools. We have collaboratively developed stochastic spread models for
FIGURE 4

Spongy moth PestCAST: PestCAST predicts the current and the next 7- and 30-day spongy moth stages using the Phenology Model with near real-
time weather information, 7-day weather forecasts, and historical weather data. The interactive mapping system allows users to obtain detailed
information on specific locations and compare the current conditions with previous years by clicking the location on the map and selecting the
Compare tool.
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both plant pathogens and arthropods called the Pest or Pathogen

Spread (PoPS) Model that leverages SAFARIS to streamline modelling

complex spread scenarios (10, 11). The compartmentalized

framework design allows us to collaborate with others and increase

our mapping capacity to support PPQ by incorporating new models.

These models were typically developed for specific species and regions

and required the input of detailed data drivers and model

parameterization by skilled analysts. While collecting the necessary

data drivers is already a challenge, some models also involve time-

consuming tasks including collecting knowledge and conducting

multiple trials to establish the needed parameters (42). In many

cases, plant protection agencies like PPQ must quickly respond to

and develop protection plans for introductions and outbreaks of little-

known species. Therefore, our goal is to develop and incorporate

generic models with appropriately processed input drivers that can

cover a wide range of species and be easily parameterized. To

accomplish our goal, we continue to develop a framework that

integrates several model types that can address a variety of questions.
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