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The term “microbial control” has been used to describe the use of microbial

pathogens (bacteria, viruses, or fungi) or entomopathogenic nematodes (EPNs)

to control various insect pest populations. EPNs are among the best biocontrol

agents, and major developments in their use have occurred in recent decades,

withmany surveys having been conducted all over the world to identify EPNs that

may have potential in the management of insect pests. For nematodes, the term

“entomopathogenic” means “causing disease to insects” and is mainly used in

reference to the bacterial symbionts of Steinernema and Heterorhabditis

(Xenorhabdus and Photorhabdus, respectively), which cause EPN infectivity. A

compendium of our multiannual experiences on EPN surveys and on their

collection, identification, characterization, and use in agro-forestry ecosystems

is presented here to testify and demonstrate once again that biological control

with EPNs is possible and offers many advantages over chemicals, such as end-

user safety, minimal damage to natural enemies, and lack of environmental

pollution, which are essential conditions for an advanced IPM strategy.
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Introduction

The majority of nematodes are free-living organisms found in soil or in water. One-

quarter of all nematodes are parasites of plants or animals (1), and, among the latter, some

species are associated in various ways with insects. These relationships range from phoresy

to symbiosis, and from commensalism to facultative or obligate parasitism (2, 3), and may

involve insect parasitic nematodes (e.g., the natural parasite Hexamermis sp.) (Figure 1) or

entomopathogenic nematodes (EPNs). They are frequently found in nature, infesting their

hosts on the exoskeleton, or in the hemocoel, or nested in the reproductive, respiratory,

digestive, or excretory systems. They can induce sterility; reduce fecundity, longevity, and

the host’s ability to move; induce developmental delay; cause morphological changes; and
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ultimately host death may occur (4). Among more than 30 families

of nematodes associated with insects, the families Steinernematidae

Filipjev, 1934, and Heterorhabditidae Poinar, 1976 (order

Rhabditida), are the ones that arouse the most interest. From a

practical point of view in terms of hexapod control, nematodes

within these two families are more accurately cal led

entomopathogens because they exert their action in association

with symbiotic bacteria (5–7).
Biology and ethology of
Steinernematidae and
Heterorhabditidae

The biological cycle begins with young females laying eggs in

the substrate, but when they become older or hermaphrodite, the

eggs hatch in the mother’s uterus (endotokia matricida) (8). In both

Steinernematidae and Heterorhabditidae, it is the third stage, also

known as the infective juvenile (IJ) stage, that initiates the infection.

After reproduction and multiplication, the IJs abandon the cadaver,

retaining the cuticle of the previous stage that protects them from

dehydration, attacks from pathogenic fungi, and other forms of

stress (9). Their subsequent movement through the soil in search of

new hosts leads to the loss of this protective cuticle. Having

identified the target host, IJs penetrate its body, preferably

through natural openings (i.e., the mouth, anus, or stigmas)

(Figure 2), after drilling its tracheae or intestines (10).

Heterorhabditis spp., having a tooth in the anterior part of the

body, have a comparative advantage because they are also able to

pass through intersegmental membranes (11). The Steinernema

species, although lacking such a structure, are also able to pass

through the integument favored by the high hydrostatic pressure

characteristic of small nematodes, the size of the anterior part of

their body (ca. 8–15 mm), and the secretion of histolytic enzymes.

Thus, due to the absence of an epicuticular protective layer that

would otherwise block the action of the histolytic enzymes

produced by the IJs, Steinernema feltiae overcome the tegument

barrier of the larvae of the Diptera species Tipula paludosa Meigen
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and T. oleracea L (12). Once in the hemolymph, the IJs release the

symbiotic bacteria present in their gut: the Steinernema release

Xenorhabdus spp. and the Heterorhabditis release Photorhabdus

spp. The nematodes act like a small syringe to inject the bacteria. In

the hemolymph, these bacteria multiply rapidly and produce a wide

range of toxins and exoenzymes that kill the host, turning its tissues

into a kind of soup on which the nematodes feed to reach the adult

stage after four stages of development. Antimicrobial substances

that are also secreted promote the development of symbiotic

bacteria and nematodes (13). Additionally, the nematodes

themselves make significant contributions to killing the host (14–

19). When they reach the adult stage, Steinernema spp. mate and

produce successive generations, whereas IJs of the Heterorhabditis

spp. develop into self-fertilizing hermaphroditic females that will

produce males and females in the next generation. The cycle is

completed within a few days, and hundreds of thousands of new IJs

will emerge from the now- destroyed host in search of new victims.

Invasion of a victim by a single individual of Heterorhabditis is

enough to produce a new generation, whereas at least two IJs are

needed in the case of Steinernema, being gonochoric (20). When the

food supply becomes scarce, development stops at the IJ stage and
FIGURE 2

Infective juvenile (IJ) stage of Steinernema feltiae penetrating
through the mouth of a young Capnodis tenebrionis larva.
FIGURE 1

Hexamermis sp. (Nematoda, Mermithidae), entomoparasitic nematode predating on Thaumetopoea pityocampa larva.
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the cadaver is abandoned (Figure 3). Steinernema and

Heterorhabditis spp. parasitize a wide range of insect species, and

the duration of the biological cycle is influenced by both the

environmental temperature and the species/strain of the

nematode itself. Usually, the death of the host occurs quickly, as

48 hours is sufficient time for the bacteria to take effect.
Symbiotic bacteria

Symbiosis with bacteria is the reason why Steinernematidae and

Heterorhabditidae are more correctly called entomopathogenic

nematodes and not entomoparasites. Photorhabdus and

Xenorhabdus, symbionts of Steinernema and Heterorhabditis,

respectively, belong to the family Enterobacteriaceae and are

elongated (0.5 × 1–10 mm for the former, 0.3–2 × 2–10 mm for

the latter) asporigenous Gram-negative and facultative anaerobic

bacteria (21, 22). These entomopathogenic bacteria are obligate

symbionts of EPN species; they biosynthesize and release secondary

metabolites on artificial substrates with antibiotic activity against

Gram-positive and Gram-negative bacteria and with antifungal,

nematicidal, anti-ulcer, antiviral, and antitumor activity (23–25).

The nematode–bacterium symbiotic relationship results in the

nematode protecting the bacterium from the external

environment and introducing it into the host, with the bacterium

providing food for the nematode to develop. Xenorhabdus reside in

a special bladder located just behind the basal bulb of the esophagus

present in the infective stages of Steinernema (26), whereas

Phothorabdus are housed in the middle part of the intestine of

Heterorhabditis IJs (27). Although bacteria and nematodes can

reproduce separately, together they have high specificity (26).

However, there are some exceptions, such as X. bovienii (which is

a symbiont not only of S. affine but also of S. feltiae, S. ichnusae, S.
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kraussei, S. intermedium, and S. weiseri) and X. kozodoii (which is

associated with S. arenarium and S. apuliae) (28, 29). Among the

Photorhabdus, P. luminescens and P. luminescens laumondii are

simultaneously present in H. bacteriophora (30). Insects killed by

the bacteria take on characteristic colorations: victims of

Xenorhabdus become grayish or creamy yellow, whereas those

with Photorhabdus in their tissues are deep red, or in rare cases

greenish, and moderately luminescent in the dark (Figure 4). Both

kinds of bacteria, when multiplying on artificial substrate for a long

period of time, produce cells of the second type (or phase II), which

have altered properties compared with cells isolated from

nematodes (or phase I) and are not infectious. Phase II does not

occur naturally in nematodes. Recently, in the context of this

nematode–bacteria symbiosis, an infectious contribution has also

been demonstrated for the bacterium Pseudomonas protegens (7)

and, as a corollary of the description presented in this paragraph, it

is important to point out the significant work of updating and

deepening the field’s knowledge of EPN-associated microbiota that

has been carried out by the Gaudriault lab (31).
Attack strategies and insect reactions

The strategies used by IJs to approach their victims vary

according to the species of nematode. There are two types: the

ambush strategy and the cruiser strategy (32). Species that use the

ambush strategy include Steinernema carpocapsae and S. scapterisci,

which wait for the victim with an upright body and reach it with a

jump up to 5 mm long; their action is mainly directed against

arthropods that are present and active on the soil surface.

Heterorhabditis spp., Steinernema glaseri, and S. apuliae are more

mobile and actively search for prey in the soil (the cruiser strategy),

while S. riobrave, S. feltiae, and S. ichnusae (33) use an intermediate

strategy. The success of the attack is also influenced by the soil type,
FIGURE 3

Biological cycle of Steinernema and Heterorhabditis.
FIGURE 4

Characteristic coloring of larvae (Galleria mellonella) due to the
action of symbiotic bacteria: Photorhabdus gives the larva a red or
greenish color, Xenorhabdus a grayish or yellow-cream color.
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which may hinder or favor the movement of the nematodes in

search of a victim (34, 35). One of the most important systems of

insect defense against pests is encapsulation (36). However, this is

ineffective against microorganisms and parasites that have

developed strategies to bypass or inactivate the immune system of

the host. In other cases, the behavior of the potential victim is more

direct and tends to avoid penetration by the IJs. This behavior is

observed in the larvae of Popillia japonica Newman (Coleoptera,

Scarabaeidae), which dispose of the IJs of H. bacteriophora by

wiping their body with their legs and rubbing the posterior part

of the abdomen to avoid penetration via the anal opening (37).
EPN surveys, sampling, rearing,
and preservation

The most practical method for obtaining IJs from soil is to

collect representative soil samples rather than taking a single large

sample or using a soil probe (38, 39). This is because taking a single

sample reduces the probability of obtaining EPNs. In the laboratory,

samples weighing approximately 1 kg are then placed in plastic

bags, moistened with water as needed, and placed in a wire mesh

cage containing between two and five larvae of the lepidopteran

Galleria mellonella L. (Lepidoptera, Pyralidae) to attract nematodes.

Other researchers prefer to use wire mesh tea filters instead of cages

to prevent Galleria larvae from dispersing in the soil and being

attacked by predators (Figure 5). These filters are equipped with a

long stem and can also be inserted directly into the soil in the open

field. For in vivo nematode production, last-stage larvae of G.

mellonella are infested with suspensions of IJs in a Petri dish

containing two moist filter papers at the bottom, or alternatively,

a 2- to 3-mm-thick layer of well-washed and sterilized sea sand.

After 3 to 5 days, the dead larvae are transferred to “White traps”

(Figure 6) to promote the multiplication of EPNs, and the IJs are

subsequently collected (40). These are then washed several times in

sterile water and stored in the refrigerator. Pieces of sponge soaked

in suspensions of IJs in water are used for this purpose, consisting of

500–1,000 IJs per cm2 of sponge in a tightly sealed plastic bag to

avoid dehydration. At 5°C–10°C, the life span of the infective stages

is between 1–3 months and several years, depending on the species.

This type of preservation requires little skill and little energy, and

the nematodes are of good quality. The disadvantage is the high cost
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(approximately €1 per million nematodes) and the lack of scale

efficiency. In addition to refrigeration, entomopathogenic

nematodes can be stored indefinitely in liquid nitrogen (41).

Experiments on cryopreservation have been and are currently

being conducted in Italy, with interesting results (42, 43).

Bioreactors are used for industrial production (44), but currently

not in Italy, where there are no production centers at present,

although the country has greatly contributed to the development of

technologies for the mass production of EPNs in recent decades

(e.g., the Ecogen Europe biofactory, operative in Pantalla di Todi in

the 1980s). In EPNs, as in all other nematodes, morphological and

morphometric characters are very important for species

identification. However, the high uniformity of the blueprint of

EPNs, combined with the high intraspecific variability, makes

identification based on morphology alone very difficult. The

molecular approach involving the sequencing of specific loci,

which has recently been increasingly used in the identification of

animal and plant organisms in conjunction with morphological

studies, has now made species identification of EPNs easier and

more reliable. Under the morphological examination approach, in

both families (Steinernematidae and Heterorhabditidae), the form

primarily considered for species identification is the infectious

juvenile third stage, i.e., the IJ.

Genus Steinernema Travassos, 1927 (Steinernematidae,

Panagrolaimomorpha, and Strongyloidoidea) (Figure 7): first and

second generation of amphimictic adults. Oviparous or

ovoviviparous. The genus Neosteinernema Nguyen et Smart, 1994

(found only in America), also belongs to the same family. The genus

Steinernema currently includes 108 species. Of the Steinernema

species described, 15 have been found or reported in Europe and/or

non-European Mediterranean regions.

Genus Heterorhabditis Poinar, 1976 (Heterorhabditidae,

Rhabditomorpha, and Strongyloidea) (Figure 8): the first

generation of adults is hermaphroditic, the second generation of

adults is amphimictic. Oviparous or ovoviviparous. Fourteen

species are currently classified in the genus Heterorhabditis, four

of which have been found or reported in Europe (for details on the

systematics of EPNs, see (45).

The first data on the isolation of a strain of EPNs in Italy date

back to the early post-war period and concern the discovery of a

small number of specimens of the beet weevil Temnorhinus

mendicus Gyll. (Coleoptera, Curculionidae) infested with
FIGURE 5

Galleria mellonella larvae in a stainless steel tea filter.
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nematodes, which were described as Neoaplectana menozii

Travassos, now a species inquirenda (37). However, the first

samplings aiming to assess the spread of entomopathogenic

nemotodes in the soil, which were carried out in the Emilia-

Romagna region, date back only to 1983 (46). Subsequent

research, involving almost all Italian regions, has provided and

continues to provide very interesting data, including the discovery

of new species. To date, more than 8,000 soil samples have been

taken from different localities and biotopes. Among all sampled

areas, 50% are agricultural habitats (olive groves, vineyards,

orchards of various types, and vegetable and cereal fields), 35%

are wooded environments (pine forests, oak forests, and chestnut

forests), 10% are coastal areas, and the remaining 5% are pastures,

fallow land, salt marshes, and lakeshores. To date, a total of more

than 150 EPN strains have been isolated in Italy: 48 isolates of

Heterorhabditis bacteriophora, 1 of H. downesi, 58 of Steinernema

feltiae, 11 of S. affine, 4 of S. kraussei, 8 of S. apuliae, 4 of S. ichnusae,

12 of S. carpocapsae, 1 of S. vulcanicum, 4 of S. arenarium, and 1 of

Oscheius onirici (the genus Oscheius includes several species of

nematodes, of which only a few share similarities in parasitic action
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toward insects with EPNs). Some recently isolated strains from

Lombardy have also been identified (47, 48). Steinernema kraussei

has been isolated only in the soils of the chestnut groves of Etna,

Sicily (47); S. apuliae, S. ichnusae, S. vulcanicum, and O. onirici are

four new species presently recorded only in Italy, with the first

isolated on the Apulian coast, the second in Sardinia and Campania,

the third on the slopes of Etna in Sicily, and the fourth in Tuscany

(49). A survey of the presence and characterization of

entomopathogenic nematodes in Italy showed that EPNs were

found in all habitats studied, indicating a wide distribution of

species in different ecosystems. Steinernematidae occurred more

frequently than Heterorhabditidae, with S. feltiae and H.

bacteriophora being the most widespread species. Steinernema

feltiae was isolated in most habitats, with a preference for sandy

soils. H. bacteriophora is also a fairly common species, also found in

volcanic soils (on the volcanic island of Pantelleria) but never in

deciduous forests, showing a preference for sandy soils (58% of

strains). Aside from the two dominant species, S. feltiae and H.

bacteriophora, EPNs tended to correlate with a specific habitat: S.

kraussei and S. affine, for example, were found in forests at fairly

high altitudes; S. affine was isolated from different soil types, but

almost exclusively in deciduous forests; and S. kraussei was isolated

in chestnut forests with sandy soils on Mount Etna in Sicily (46).

Concerning habitat preferences for other species, S. apuliae was

isolated from different habitats, but always near coastal areas,

showing a clear preference for sandy soils, while S. carpocapsae

was isolated in the northern part of Apulia and in Tuscany, Emilia-

Romagna, Lombardy, and Veneto, mostly in fallow soils (47).

Sampling in Sicily revealed the first Italian strains of H. megidis

and H. downesi, indicating that all Heterorhabditidae species

reported in Europe are present in Sicily. Soil characteristics also

influence the presence of EPNs, and our survey showed a clear

correlation between EPN presence and soil texture, with EPNs

exhibiting a preference for sandy and medium-textured soils. No

strains were isolated from clay soils. This is most likely because

sandy and medium-textured soils promote EPN mobility and

survival, whereas clay-rich soils restrict nematode movement. The

importance of two natural habitats, pine forests and oak forests, is
FIGURE 7

Steinernema feltiae It-Sf-MA12 male and particularity of the spicule.
FIGURE 6

“White trap” for collecting EPNs from infested Galleria
mellonella larvae.
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suggested by this study of EPN distribution among habitats. These

two forest environments have the highest concentrations of isolated

EPN strains, with only three of the seven species found in the forests

also being found in other habitats. The data on the biodiversity of

EPNs collected thus far do not exhaustively cover all geographic

areas and habitats in Italy, but they still contribute significantly to

our understanding of the presence and geographic distribution of

EPNs in relation to the wide variety of habitats found in Italy (50).
Identification of EPN strains via
DNA analysis

Molecular approaches show particular accuracy where

morphological characterizations at the species level are not able to

discriminate between closely related species. Molecular techniques

based on PCR allow the analysis of informative DNA markers and

genes from individual nematodes. A molecular marker is any DNA

sequence that is widespread throughout the genome showing

polymorphism (51) that can be detected using molecular

techniques. Markers must also be stable, enabling their

identification in each developmental stage of nematodes (52). The

target regions used for EPN identification are nuclear, ribosomal,

and mitochondrial DNA. The cistron of ribosomal DNA contains

three highly conserved genes, 18S rRNA, 5.8S, and 28S, and highly

variable regions such as the internal transcribed spacer (ITS; ITS1

and ITS2), IGS (intergenic spacer), and ETS (external transcribed

spacer) regions. The ITS and expansion domains of the 28S gene are

the most variable regions of rDNA and, along with partial

mitochondrial genes, such as NADH dehydrogenase subunit 4

(nd4) or cytochrome oxidase (COI), and protein-coding genes,

such as cmd-1, unc-87, hsp70 (53, 54), and hsp90 (55), are very

useful markers for species differentiation. Furthermore, they allow

the detection of misidentifications in order to establish phylogenetic

relationships within and among EPNs (56–64). Recent studies by

Spiridonov and Subbotin (65) and by Dhakal et al. (64) have
Frontiers in Insect Science 06
confirmed that the ITS, the 28S rRNA gene, the COI, nuclear

cmd-1, and unc-87 sequences are useful markers for EPN

identification, confirming the occurrence of three groups within

the Heterorhabditis genus, namely, “Indica”, “Bacteriophora”, and

“Megidis”. Sequence analyses have also enabled the detection of

misidentifications in GenBank and correction of their taxonomic

status within the Heterorhabditis species. Furthermore, pairwise

analyses permit the estimation of intraspecific and interspecific

sequence variability within most of the Heterorhabditis and

Steinernema species and strains (64). For Italian EPNs

(Heterorhabditis, Steinernema, and Oscheius strains), the markers

mainly used are ITS regions, the most conserved region of the D2D3

domain (LSU) for ribosomal DNA, the cytochrome oxidase I (COI)

locus, and a partial portion of hsp90 (55, 66). Fanelli et al. (55) used

degenerate primers to obtain partial hsp90 gene sequences from

several entomopathogenic nematodes, including H. bacteriophora

andO. myriophilus, and demonstrated that phylogenetic trees based

on hsp90 sequences showed equal resolution, and in most cases

were congruent with those inferred from ribosomal markers.

Comparison of the ITS sequences among Steinernema species

has also showed higher variability than either the D2-D3 expansion

domains of the 28SrRNA gene or the partial 18S rRNA gene (61).

Analysis of partial mitochondrial COI sequences among

Steinernema species has revealed that fewer clades could be

resolved by this method than with ITS (61), despite the plurality

of informative sites available for COI sequences.

Massive sequencing techniques have produced a large number

of ITS and COI sequences for EPNs, leading to the development of

the “DNA barcoding” protocol for the rapid identification of

nematodes. This is a molecular method dedicated to the

identification of biological identity that involves testing the

variability of a relevant marker (67, 68). This approach exploits

conserved regions of these genes, comparing all sequences present

in the database in order to design universal primers that amplify

short DNA fragments to be used as a barcode, and identifying even

the cryptic nematode species (which have the same morphology but

which are genetically different) and larval stages present in a soil

sample, even in the absence of morphological identification (2, 67).

Molecular barcodes can group an unknown EPN specimen

phylogenetically into its correct position compared to known

reference sequences (Figure 9).
PCR-RFLP, RAPD, SRAP

Sequence differences in PCR products from different EPN spp.

or strains can be analyzed by digestion with restriction enzymes. Six

restriction enzymes are sufficient to differentiate almost all

nematode species. Restriction fragment length polymorphism

(RFLP) profiles of the ITS region are accurate and reproducible,

allowing characterization of Steinernema and Heterorhabditis

species (43, 69). ITS-RFLP analyses can also reveal the presence

of different strains within EPN species, thus indicating genetic

variability due to geographical origin or insect host (70, 71).

The random amplification of polymorphic DNA (RAPD)

technique enables measurement of genetic diversity in EPNs, even
FIGURE 8

Heterorhabditis bacteriophora It-Hb-LU1 female.
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if no prior sequence information is available. This technique

involves the amplification of gDNA fragments using a single

primer of 10 nucleotides with an arbitrary (random) sequence

that can bind to complementary sequences present in the DNA.

The profiles of the fragments generated are species-specific and can

be compared with those of other EPN species (72). The presence or

absence of a fragment in a sample represents a diagnostic marker,

allowing researchers to discriminate among and within Steinernema

spp. and Heterorhabditis spp (73–75).
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Several tools, such as amplified fragment length polymorphism

(AFLP), simple sequence repeats (SSR), inter-simple sequence repeats

(ISSR), single-strand conformation polymorphism (SSCP), and

sequence-related amplified polymorphism (SRAP), are also used to

characterize genetic diversity in EPN species (76–79). SRAP has been

successfully used to evaluate genetic diversity in EPN species, and a

study by Youssef et al. (80) revealed that 12 different SRAP primer

pairs can be used to differentiate among seven Steinernema species,

with this method being more accurate than RAPD.
FIGURE 9

Phylogenetic relationships of COI among different Italian strains of entomopathogenic nematodes, based on sequencing of several clones of each
strain. (Colored boxes indicate the Italian strains).
frontiersin.org

https://doi.org/10.3389/finsc.2023.1195254
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Tarasco et al. 10.3389/finsc.2023.1195254
Real-time PCR

The real-time PCR (qPCR) technique enables monitoring of the

amplification in real time and quantification of the number of

copies of a specific target region. Copy number quantification of the

target region is carried out during the exponential phase of PCR,

producing much more accurate results than the traditional PCR

“end point”. Quantification of the product is achieved by adding

fluorescent compounds that are incorporated into each copy of the

amplified product in each cycle, and fluorescence is proportional to

the quantity of the amplified product. At present, several real-time

qPCR probes are available to characterize EPN assemblages in the

field (81–84). Species-specific primers and probes have been

designed based on the ITS rDNA sequences of several

Steinernema and Heterorhabditis species, and are available to the

scientific community (82, 84, 85).

Real-time PCR (qPCR) enables not only discrimination among

different species but also exploration of the relationships and the

functions of different organisms within ecosystems (83). Thus,

qPCR and species-specific primer–probe combinations allow the

simultaneous detection, identification, and quantification of EPNs,

as well as their antagonists and competitors, in soil samples (83, 84).

Sequencing technologies, such as high-throughput sequencing

(HTS) and next-generation sequencing (NGS), are evolving rapidly,

allowing accurate EPN identification and analysis of soil nematode

communities (86). Furthermore, metagenomic analysis can explore

EPN biogeography and the factors that modulate the presence and

abundance of these organisms in soil samples (87).
Loop-mediated isothermal amplification

Recently, loop-mediated isothermal amplification (LAMP)

assay has been employed for rapid detection of Heterorhabditis

spp. and Steinernema spp. from total soil DNA (88).

LAMP was developed in 2000 (87, 88) and has been used for the

identification of animal and plant pathogens, including plant parasitic

nematodes. It combines the simplicity and rapidity of reaction setup

with ready data interpretation. The advantage of the LAMP method is

that DNA amplification reactions take place at a constant temperature.

LAMP is based on the isothermal amplification of nucleic acids by

thermostable polymerase, with “strand displacement” activity isolated

from Bacillus stearothermophilus (BSt polymerase) and on six specific

primers which recognize eight regions on the selected target DNA

(F3c, F2c, and F1c in the 3′ direction and B1, B2, and B3 in the 5′
direction). LAMP is inexpensive, fast, and reproducible, and can be

conducted even in poorly equipped laboratories (89–91).

LAMP primers for Heterorhabditis and Steinernema have been

designed by aligning sequences of the ITS region of rDNA for

Heterorhabditis spp. and the 18S rDNA sequences for Steinernema

spp. that were retrieved from GenBank. Five separate sets of LAMP

primers are available for each EPN genus (88). The LAMP

technique reduces the time and labor costs associated with the

insect-baiting technique and provides information that can be used

in the development of detection kits for the diagnosis of EPNs in the

field without the need for trained and experienced personnel.
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Biological control strategies
using EPNs

Commerc ia l products conta in ing Heterorhabdi t i s

bacteriophora, H. megidis, Steinernema feltiae, and S. carpocapsae

have been successfully used to control various species of

Heteroptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera

(50). In Italy, EPN formulations have been effectively tested and

used to control various species, including but not limited to the

following: the scolytid Tomicus piniperda (92) and the lepidopteran

Thaumetopoea pityocampa on pines (93) (Figure 10); the

lepidopterans Pammene fasciana , Cydia splendana , and

C. fagiglandana and the coleopterans Curculio elephas and

C. glandium on chestnut trees (94, 95); the lepidopteran Cydia

pomonella and the hymenoptera Hoplocampa brevis on pear trees

(95, 96); the curculionid Rhytidoderes plicatus on cabbage roots

(97); the chrysomelid Xanthogaleruca luteola on elm trees (98)

(Figure 11); the tingid Corythucha ciliata on sycamores (99)

(Figure 12); and the curculionid Otiorhynchus sulcatus on

ornamental plants (100) and on strawberries (101, 102). In the

Mediterranean region, because of the spread of exotic palm weevils,

promising experiments to contain the spread of the weevil

Rynchophorus ferrugineus with entomopathogenic EPN

nematodes have been carried out in several countries, such as

Egypt, Spain, and Italy (Figure 13). Other applications of

beneficial nematodes have been effective in controlling sciarid

dipteran in ornamental nurseries and mushroom farms, the

weevil curculionid Curculio nucum on hazels (103), the thrips

Frankliniella occidentalis (104), the lepidopteran Tuta absoluta on

tomato, the chrysomelid Diabrotica virgifera on corn (105), and

slugs and snails in horticulture, with the latter case involving the use

of the specific nematode Phasmarhabditis hermaphrodita (49).

Entomopathogenic nematodes have also been found to be

effective against xylophagous insects residing in cryptic habitats,

such as Capnodis tenebrionis, Arhopalus syriacus, Cossus cossus, and

Parahypopta caestrum (106). Recently, these biological control

agents have found broad application in integrated control

programs of the Scarab beetle Popillia japonica in large cultivated
FIGURE 10

Interior of Thaumetopoea pityocampa larva invaded by Steinernema
feltiae, Italian strain.
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and non-cultivated areas of Lombardy and Piedmont (105, 106),

and of the cossid Parahypopta caestrum in the asparagus fields of

Apulia (107).
Examples of biological control strategies
with EPNs

The larvae of Coleoptera Curculionidae of the genus

Otiorhynchus represent the classic example of a target pest of

EPNs, to the extent that this type of biological control is currently

widely tested and used around the world. The most suitable
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nematodes against Otiorhynchus larvae belong to the genus

Heterorhabditis, although satisfactory results have been achieved

with formulations based on S. feltiae and, to a lesser extent, on S.

carpocapsae (108, 109). Formulas based on H. bacteriophora are

marketed in Italy in packages containing 50 to 250 million IJs. The

doses used correspond to 200,000 to 400,000 nematodes per m2, or

25,000 to 40,000 nematodes per plant (50). The end of summer is

the best time for application, so as to target the early larval stages of

the insects, which are more sensitive and are at the beginning

of their phytophagous action, under optimum soil temperatures of

18°C –22°C (110). Spring treatments on larger overwintering larvae

and newly formed pupae are equally effective if soil temperatures

are above 15°C and a dose of 500,000 nematodes per m2 is used

(50). The crops targeted for this type of application are typically

ornamental plants in nurseries and strawberry crops in open field

and protected cultivations. Another example EPN application,

whose use has expanded in recent years to cover a surface area of

800 ha in Emilia-Romagna and approximately 1,500 ha throughout

northern Italy, is that of the autumn treatments used against

overwintering larvae of Cydia pomonella on pear and apple (50).

The nematodes used belong to the species S. feltiae and S.

carpocapsae, which are applied to the trunks and lower branches

of the trees, where the larvae overwinter in bark crevices, protected

in a light cocoon that the nematodes can perforate (49). The

application dose corresponds to 1.5 × 109 IJ diluted in 15 hL of

water per ha, distributed by the company atomizer, for which it is

necessary to close the highest nozzles and remove the filters (49).

Thorough moistening of the plants and soil before and after the

application of entomopathogenic nematodes and constant

moistening of the substrate promote good efficacy of the

biological treatment and ensure parasitization of the insect; if

water availability is limited, it is advisable to inject the EPN

suspension into the soil. Xylophagous insects, such as Lepidoptera

Cossidae (Cossus L. and Zeuzera pyrina L.), Coleoptera

Cerambycidae (Saperda carcharias L.), and Buprestidae (Capnodis

tenebrionis L.) can also be effectively controlled with injections of IJ

suspensions into the penetration holes (also with the addition of

chitosan) or by the obstruction of these openings with pieces of

sponge soaked in nematodes. EPNs are typically applied to culture

systems and substrates that are regularly treated with other

chemicals, including natural soil improvers and fertilizers.

Heterorhabditis bacteriophora, S. carpocapsae, and S. feltiae are in
FIGURE 13

Rhynchophorus ferrugineus adults infested by Heterorhabditis
bacteriophora, Italian strain.
FIGURE 12

Corythucha ciliata adults infested by Steinernema feltiae,
Italian strain.
FIGURE 11

Xanthogaleruca luteola larva infested by Steinernema feltiae,
Italian strain.
frontiersin.org

https://doi.org/10.3389/finsc.2023.1195254
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Tarasco et al. 10.3389/finsc.2023.1195254
most cases compatible with plant protection products, but can

interact with such substances, in some cases even producing

antagonistic or synergistic effects (111).

Regulation of the use of
entomopathogenic nematodes

EPNs are ubiquitous organisms that are not dangerous to higher

animals or humans and do not have any side effects for plants. Before

being used, entomopathogenic organisms should, in general, be

subject to registration screening, with the exception of ENPs, which

are generally exempted due to their pluricellular structure and

recognized specificity to insects. At the European level, Regulation

(EC) No. 1107/2009 of the European Parliament and of the Council of

21 October 2009, which repealed Commission Directive 91/414

concerning the placing on the market of plant protection products,

applies to active substances, including micro-organisms, safeners,

synergists, co-formulants, and adjuvants, that have a general or

specific action against harmful organisms. This regulation provides

for the registration of three “categories” of formulations: biocides,

microorganisms, and viruses. Nematodes and macro-organisms

(insects and auxiliary mites) are not mentioned, pursuant to the

principle of forgoing the registration process for products with low

environmental impact, based on the unequivocal interpretation of the

countries of the European Union. However, unlike those countries

that currently do not require any registration (such as Denmark,

Finland, France, Greece, Germany, Italy, Portugal, and Spain), others

do require some form of registration: Austria requires the same form

of registration as that used for chemicals; Belgium and the Netherlands

require registration only for new formulations; Poland, the Czech

Republic, and Hungary provide for a preliminary field trial; Ireland,

Switzerland, Norway, and Sweden require the registration of all

biological control agents; and in the UK, no registration is required

for indigenous ENPs, but the introduction of non-native strains in the

wild in the country is controlled by the Wildlife and Countryside Act

(112). In Japan, registration is required for ENPs as well as for

chemicals, whereas in other non-European countries (such as

Australia, Canada, and the United States), no registration is needed,

provided that the ENPs are indigenous. In New Zealand, in contrast,

native species must also be registered and are protected. All these

states have also enacted specific legislation to regulate the import and

release of non-native species. The REBECA Action (Regulation of

Biological Control Agents, 113), funded by the European Union for

the correct use and marketing of EPNs, has made several

recommendations on the use of entomopathogenic nematodes, such

as knowledge of the exact identity (specific identification) of the ENPs

and accurate identification of the symbiotic bacterium of
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Heterorhabditis indica, to exclude the presence of Photorhabdus

asymbiotica, which is harmful to humans. At the same time, it has

also been pointed out that no precautions are necessary if one uses

native EPNs and is provided with comprehensive information on the

“environmental risk assessment” (ERA) criteria used for insects and

auxiliary mites. Thus, molecular biology and phylogenetic

reconstruction play an important role in elucidating the systematics,

cospeciation, and coadaptation of entomopathogenic nematodes and

their symbiotic bacteria when new EPNs are used as biological control

agents (114–116).
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