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Background: Programmed Cell death (PCD) encompasses a spectrum of

genetically regulated cell death processes and plays a double-edged sword

role in neoplastic progression and therapeutic resistance of Triple-Negative

Breast Cancer(TNBC)through the tumor microenvironment (TME). However,

the specific mechanisms by which PCD mediates microenvironmental

dysregulation remain elusive.

Methods: Analyzing nine samples of TNBC through single-cell RNA sequencing

(scRNA-seq), this study employed nonnegative matrix factorization (NMF) to

assess genes associated with 13 PCD modes. Single-cell regulatory network

inference and clustering (SCENIC), Monocle, CellChat, and scMetabolism were

used for pseudotime analysis, intercellular communication mapping,

determination of transcription factor activities (TFs), and immune infiltration of

PCD-related cell clusters in TME. A robust prognostic model and drug resistance

analysis were constructed using gene set enrichment analysis (GSEA), Kaplan-

Meier survival analysis, and multivariable Cox regression. Finally, hub genes and

critical PCD-related cell clusters were validated in the clinical breast cancer

samples and the TNBC model mice.

Results: This investigation demonstrated that PCD significantly modulated the

functional and phenotypic diversity of fibroblasts, macrophages, T cells, and B

cells in the TME of TNBC. Furthermore, this study revealed that PCD-regulated

CEBPB-positive cancer-associated fibroblast (CAF) populations are a key

determinant of the TNBC immune Microenvironment heterogeneity and poor

prognosis. Notably, CellChat analysis unveiled diverse and extensive interactions

between PCD-related cell clusters and tumor immune cells, highlighting the

CEBPB+ CAF subtype as a signaling ligand communicated with other immune

cell clusters through the Midkine (MDK)-Nucleolin (NCL) signaling axis.

Moreover, the TIDE analysis verified that CEBPB+ CAF is a predictor of poor

prognosis in Immunotherapy. The ex vivo analyses of tumor specimens from

both TNBC patients and syngeneic murine models were performed by

quantitative reverse-transcription PCR (qRT-PCR), immunoblotting,
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immunohistochemical staining, and multiplexed immunofluorescence co-

localization assays. They confirmed differential expression of the PCD-related

prognostic genes and the presence of CEBPB+ CAFs.

Conclusion: In summary, our study provides a comprehensive molecular

framework to understand the role of PCD-mediated TME dysregulation in

TNBC pathogenesis. This study also offers new insights into the underlying

mechanisms of immune therapy resistance in TNBC and identifies promising

therapeutic targets for enhancing treatment efficacy and patient outcomes.
KEYWORDS

programmed cell death, triple-negative breast cancer, immune microenvironment,
prognostic model, fibroblasts, drug resistance
1 Introduction

Breast cancer (BC) is one of the most common malignant tumors

among women. It accounts for approximately 31% of new cancer

cases and is the second leading cause of cancer-related deaths among

women Triple-negative breast cancer (TNBC) demonstrates

significantly higher invasive and metastatic abilities than the other

types of BC. The high recurrence rates of TNBC are associated with

its increased propensity for vascular invasion. Therefore, patients

with TNBC have the poorest prognosis among the various BC types

(1). Furthermore, because of the lack of ER, PR, and HER2

expression, the efficacy of conventional treatments such as

endocrine and targeted therapies is limited, and advanced patients

with TNBC have a median survival of less than 24 months (2). In

recent years, immunotherapy targeting the tumor microenvironment

(TME) has shown higher clinical efficacy in patients with TNBC. The

cell types within the TME of TNBC patients play contradictory roles

in tumor growth and progression. Some cell types promote TNBC

progression by secreting and expressing factors that enhance tumor

cell proliferation and suppress anti-tumor immune responses.

However, other cell types in the TME of TNBC patients suppress

tumor growth by promoting adaptive immunity (1, 3). In the phase I

KEYNOTE-012 clinical trial, PD-1 inhibition via pembrolizumab

monotherapy demonstrated sustained antineoplastic activity in both

early-stage and advanced PD-L1-positive TNBC patients (Combined

Positive Score [CPS] ≥ 1), but a subset of TNBC patients exhibited

primary resistance to this immunotherapeutic intervention (4).

Zhang et al. stratified TNBC into two distinct immunological

subtypes, namely, macrophage-enrichment subtype and neutrophil-

enrichment subtype, and identified differential mechanisms of

immunotherapy resistance across myeloid cell populations in

TNBC (5). The underlying mechanisms of immunotherapeutic

resistance in TNBC are complex because of significant TME

heterogeneity and intricate cellular crosstalk between the neoplastic

cells and the diverse stromal cell populations within the TME.

Consequently, an in-depth analysis of the TME-mediated
02
immunotherapy resistance mechanisms is necessary to improve the

therapeutic outcomes and enhance the prognostic indicators for

TNBC patients.

Immunological heterogeneity within the tumor microenvironment

is associated with differential outcomes of treatment modalities

targeting the programmed cell death (PCD) mechanisms in the

cancer cells (6). PCD encompasses a spectrum of genetically

regulated cell death processes that are orchestrated by distinct

molecular cascades and signal transduction pathways. PCD plays a

pivotal role in neoplastic progression, therapeutic resistance, and

immunological escape mechanisms. It is currently known that the

PCD spectrum comprises 13 distinct modalities, including

macroautophagy, type I PCD (apoptosis), RIPK1/RIPK3-mediated

necroptosis, inflammatory caspase-dependent pyroptosis, copper-

induced cuproptosis, and iron-dependent ferroptosis (7, 8).

Neoplastic cells undergoing multimodal PCD modulate the immune

system by secreting a wide array of cytokines, which facilitate

chemotactic recruitment of diverse immune cell populations and

phenotypic transformation of tumor-infiltrating lymphocytes and

resident immune cells into immunosuppressive phenotypes. This

facilitates TME remodeling and promotes immune evasion and

therapeutic refractoriness (9). Conversely, PCD mechanisms facilitate

conventional dendritic cell (cDC) trafficking to the tumor-draining

lymph nodes (tdLNs) and potentiate adaptive immune responses by

releasing damage-associated molecular patterns and proinflammatory

mediators, thereby suppressing tumor growth and enhancing

immunotherapeutic efficacy (10). This functional dichotomy has

established PCD as a critical homeostatic regulator within the TME.

Therefore, PCD has emerged as a central focus in immuno-oncological

research. Previous studies have reported that PCD mechanisms are

dysregulated in TNBC (11). Novel pharmacological agents targeting

the PCD pathways have demonstrated significant therapeutic potential

in TNBC. Chen et al. reported that phloretin (Ph), a dihydrochalcone

flavonoid derivative, suppressed the proliferation of TNBC cells by

downregulating the mTOR/ULK1 signaling pathway and suppressing

autophagy (12). Spirooxindole 6e induced PCD in the MDA-MB-231
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cells by modulating the intrinsic apoptotic pathway through

downregulation of Bcl-2, upregulation of Bax, and activation of

caspase-3 (13). The current research paradigms focus on individual

PCD mechanisms in TNBC. However, sustained modulation of

individual PCD pathways may induce therapeutic resistance.

Furthermore, the bidirectional effects of PCD represent significant

challenges in developing precision-targeted therapeutics for TNBC (8).

The exponential expansion of public genomic repositories and

revolutionary advances in single-cell analytical methods have

facilitated multi-omics approaches to identify novel tumor

pathogenetic mechanisms and therapeutic targets.

This study comprehensively analyzed data derived from Next

Generation Sequencing to unravel novel cellular phenotypes and

molecular signatures mediated by PCD-related prognostic genes in

TME of TNBC. Applying nonnegative matrix factorization (NMF),

single-cell regulatory network inference and clustering (SCENIC),

gene set enrichment analysis (GSEA) and CellChat, this study aimed

to explore signaling pathways, functional enrichments, intricate

interplay, transcriptional features, immune characteristics, various

developmental roles and prognostic implications within these distinct

subgroups of CAFs, macrophages, T cells, and B cells in the TME,

providing a robust framework for developing highly effective targeted

therapeutics for TNBC. In summary, this study sheds light on the

potential role of PCD-related prognostic genes in the dysregulated

immune microenvironment in Triple-Negative Breast Cancer, and

provides a robust framework for developing highly effective targeted

therapeutics for TNBC.
2 Materials and methods

2.1 Single-cell data processing

We downloaded the single-cell RNA sequencing dataset

GSE176078 (14)from the Gene Expression Omnibus (GEO)

database (www.ncbi.nlm.nih.gov/geo) and extracted nine single-

cell samples of triple-negative breast cancer (TNBC). We calculated

and filtered cells that expressed more than 300 genes using the

PercentageFeatureSet function, with mitochondrial gene expression

below 15%, and red blood cell gene proportion less than 1%. The

merged ScRNA-seq data were normalized, and the top 2000 highly

variable genes were identified using the FindVariableFeatures

function. We then dimensionality reduction on the selected top

2000 highly variable genes using the ScaleData function and

the RunPCA function. Batch correction was performed using

the Harmony algorithm. Cells were clustered using the

‘FindNeighbors’ and ‘FindClusters’ functions (resolution=0.3) to

identify cell clusters, and further dimensionality reduction was

carried out using the UMAP method. Finally, the FindAllMarkers

function was used to screen for marker genes in six subgroups,

which were annotated and visualized using references and the

CellMarker 2.0 database (15). After the inferCNV package was

employed for tumor cell identification, we used the Monocle2

package (16) for pseudotime analysis of the subgroups.
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Additionally, we obtained transcriptome data of 121 TNBC

patients with survival information and normal patients from the

University of California Santa Cruz (UCSC) Xena Browser (https://

xenabrowser.net/). We also downloaded datasets GSE58812 and

GSE21653 from the GEO database for subsequent transcriptome-

level validation. All data required for this study are publicly

accessible, and we provide all the codes in the attached materials

(Supplementary Code Data Package). Differential gene expression

between TNBC and normal groups was calculated using the limma

package (17), with a selection criterion of p-value < 0.05.
2.2 Programmed death prognostic
gene selection

The programmed death gene set encompasses 13 distinct modes

of cell death (18), including apoptosis, pyroptosis, ferroptosis,

autophagy, entotic cell death, cuproptosis, parthanatos, netotic cell

death, alkaliptosis, lysosome-dependent cell death, and oxeiptosis, as

well as disulfidptosis (Supplementary Table S1). We intersected this

gene set with the differentially expressed genes (DEGs) identified in

triple-negative breast cancer (TNBC). Subsequently, a univariate Cox

regression analysis was performed on the intersected genes, resulting

in the selection of 37 prognostic genes with a p-value < 0.05 for

further analysis (Supplementary Table S2).
2.3 Programmed death gene non-negative
matrix factorization

We employed non-negative matrix factorization (NMF) to

decompose the gene expression matrix and extract biologically

meaningful patterns (19). To explore the effects of selected

programmed death genes on the tumor microenvironment

(TME), we specifically extracted cells from tumor patients. We

then applied dimensionality reduction using the NMF R package

(version 0.20.6) to analyze the expression of 37 prognostic genes

associated with programmed death within the TME. Following this

analysis, distinct cell subtypes were identified based on the single-

cell RNA (scRNA) expression matrix.
2.4 Identification of programmed death
gene cell subtypes in the
tumor microenvironment

We utilized the FindAllMarkers function to identify marker

genes associated with each non-negative matrix factorization

(NMF) subtype within the TME. The NMF-derived cell

subgroups were characterized based on the following criteria: (1)

marker genes exhibited an absolute log2 fold change (Log2FC)

greater than 1 and a p-value less than 0.05; (2) each subgroup was

named after the gene with the highest Log2FC among the 37

programmed death genes; if no gene met the criteria within an

NMF subgroup, it was designated as ‘none’. We then employed the
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Add ModuleScore function to compute the signature scores of

differentially expressed genes (DEGs) for these NMF subgroups.

The FeaturePlot function was applied to visualize the distribution of

these DEGs. A list of marker genes for each cluster is provided in

Supplementary Table S3.
2.5 SCENIC analysis for NMF
PCD−related subtypes

We utilized the SCENIC package, version R3.1.4, to dissect the

regulatory network of transcription factors (TFs) within Triple-

Negative Breast Cancer. For enrichment analysis, we leveraged

gene-motif rankings from the RcisTarget database, focusing on

the hg19-tss-centered-10kb track, to elucidate the regulatory

network linked to transcription start sites (TSS) in TNBC.

Visualization of the derived regulatory networks was facilitated by

the pheatmap package.
2.6 Cell–cell communication analysis for
PCD−related subtypes

CellChat enables the quantitative inference and analysis of

intercellular communication networks from single-cell RNA

sequencing (scRNA-seq) data (20). We utilized CellChat to assess

the communication processes between all cells and tumor cells

within the tumor microenvironment (TME), as well as the

interactions between PCD-related cell clusters and malignant

epithelial cell subpopulations. The strengths of cell-cell

communication networks among all NMF clusters were visualized

using the netVisualCircle function.
2.7 Functional enrichment analysis of NMF
PCD-related subtypes

We utilized the cluster Profiler R package (21) to perform Gene

Ontology (GO) annotation and Genes and Genomes (KEGG) pathway

enrichment analysis on differentially expressed genes, considering a

false discovery rate (FDR) threshold of p < 0.05 as statistically

significant. Moreover, we employed the scMetabolism package (22)

to assess the metabolic activity of macrophage NMF subtypes,

encompassing 85 KEGG pathways and 82 REACTOME metabolic

pathways. Additionally, we used the PROGENy R package (23)to

calculate the activity of 13 cancer-related pathways (EGFR, MAPK,

WNT, PI3K, VEGF, JAK-STAT, TGFb, TNFa, NFkB, Hypoxia,

Estrogen, p53, and Trail) across each NMF PCD-related subtype.
2.8 Survival analysis of NMF PCD-
related subtypes

We classified the NMF PCD-related subtypes based on marker

genes identified using the FindAllMarkers function in the TCGA
Frontiers in Immunology 04
database. Meanwhile, we conducted univariate Cox proportional

hazards regression analysis to identify subtypes with prognostic

significance. Subsequently, the survminer R package was employed

to generate survival curves for the high- and low-risk groups

stratified by these subtypes. Consistent with this approach, we

also processed the GSE58812 and GSE21653 datasets.
2.9 Selection and model construction of
prognostic genes in clusters

We identified PCD-related clusters that exhibit high expression

in tumors and possess prognostic significance, selecting one

particular cluster for further analysis. We determined the

prognostic genes by intersecting the markers of this cluster with

the differentially expressed genes between TNBC and normal

tissues, followed by univariate Cox regression analysis of

genes with a p-value < 0.05, resulting in 14 identified genes

(Supplementary Table S4).

To develop a consensus Immune-Related Landscape Score

(IRLS) with high precision and reliability, we integrated 10

machine learning algorithms to form 97 distinct algorithmic

combinations. The algorithms included Random Survival Forest

(RSF), Elastic Net (Enet), Lasso, Ridge, Stepwise Cox, CoxBoost,

Partial Least Squares Regression for Cox (plsRcox), Supervised

Principal Component (SuperPC), and Support Vector Machine

for survival (survival-SVM). The signature generation process

included the following steps: (a) Univariate Cox regression

identified differential genes in the TCGA-TNBC cohort; (b) We

then applied 101 algorithmic combinations to fit predictive models

within leave-one-out cross-validation (LOOCV) framework specific

to the TCGA-TNBC cohort; (c) Each model was independently

validated using two external datasets (GSE58812, GSE21653); (d)

For each model, Harrell’s Concordance Index (C-index) was

calculated across all validation datasets, and the model

demonstrating the highest average C-index was deemed optimal.
2.10 Association of key genes with
immunity and pathways

We utilized the ESTIMATE algorithm to assess the levels of

stromal and immune cells in malignant tumor tissues based on

expression data. The algorithm, obtained from the public website

(https://sourceforge.net/projects/estimateproject/), estimates

stromal and immune scores based on specific biomarkers

associated with stromal and immune cell infiltration in tumor

samples. These scores were analyzed separately to predict the

levels of stromal and immune cells in tumor tissues.

We calculated the StromalScore and ImmuneScore for each

sample and then determined the correlation of key genes with

these scores.

We employed the MCP-counter method (24), which robustly

quantifies the absolute abundance of eight immune cell types and

two stromal cell populations from transcriptome data (T cells,
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CD8T cells, Cytotoxic lymphocytes, B lineage, NK cells, Monocytic

lineage, Myeloid dendritic cells, Neutrophils). Subsequently, we

calculated the correlation of key genes with these populations.

Then, we used the ssGSEA method from the Gene Set Variation

Analysis (GSVA) R package to identify genes associated with 28

immune cell types, as reported in the literature (25).

Additionally, we obtained the 50 HALLMARK pathways from

the h.all.v7.5.symbols.gmt file at the GSEA website and used

the ssGSEA method to calculate pathway scores for samples.

We fianally determined the correlation of key genes with

these pathways.
2.11 Cell culture

The MDA-MB-231 (SCSP-5043) and 4T1 (SCSP-5056) were

purchased from the National Collection of Authenticated Cell

Cultures. All cell lines were cultured in appropriate culture media

supplemented with 1% Penicillin/Streptomycin and 10% fetal

bovine serum (Gibco), and maintained at 37 °C and 5% CO2. The

cell lines have been STR-authenticated and were routinely tested for

mycoplasma-free.
2.12 Animal study

Female BALB/c mice (6 weeks old) were purchased from

Pengyue Experimental Animal Breeding Co, LTD (Jinan, China)

and bred in animal facilities under specific pathogen-free

conditions. All mouse procedures and experiments for this study

were approved by the Animal Care and Utilization Committee of

960 Hospital. 4T1 cells in the exponential growth phase were

digested with trypsin and washed three times with cold PBS.

After centrifugation, cells were resuspended in cold PBS. 100 ml
cold PBS containing 1×106 4T1 cells was orthotopically inoculated

on the right flank of the fourth pair of mammary fat pads of mice.

Tumor growth was monitored with a caliper and volume was

calculated as (length × width2)/2. According to the experimental

plan, tumor cells were sampled on the 7th, 14th, and 21st days after

injection, all tumor volumes did not exceed 1500 mm3.
2.13 RT-PCR assay

Total RNA was extracted by using the PARKeasy Tissue/Cell

RNA Rapid Extraction Kit (SPARKjade, AC0202, Shandong,

China). The cDNA was synthesized using a cDNA synthesis kit

(RR037A; Takara, Kyoto, Japan). The primers (Shanghai

Bioengineering, Stable 1.), cDNA, TB Green® Premix Ex Taq™ II

(Takara, RR820A, Kyoto, Japan), and non-RNase dH2O were

thoroughly mixed and then placed into a real-time PCR detection

system, as instructed by the manufacturer. Real-time PCR mixture

samples were detected by use of the SLAN-96P Real-Time PCR

Detection System (SLAN-96P, Hongshi, Shanghai, China) the

thermo-cycling conditions were initiated at 95°C for 30 s,
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followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. Relative

gene expression was calculated using the 2−DDct method.
2.14 Western blotting

Breast tumor tissues were frozen in liquid nitrogen and ground

into a powder in a mortar. Powdered breast tumor tissues were

lysed in RIPA buffer containing protease and phosphatase

inhibitors (Selleck), and protein quantification was performed

using the BCA Protein Assay kit (Solarbio). Next, proteins were

isolated using 10% sodium dodecyl sulphate–polyacrylamide gel

electrophoresis (SDS-PAGE gel, Solarbio) and transferred to a 0.45-

mm polyvinylidene fluoride (PVDF) membrane (Merck Millipore,

Billerica, MA, USA). After blocking in 5%(M/V) skim milk for 1 h,

the samples were incubated with primary antibody at 4°Covernight.

The membranes were then incubated with goat anti-rabbit/mouse

IgG-HRP (Santa Cruz) at 37°C in 1:5000 dilution for 1h. Active

bands were identified using an enhanced chemiluminescence (ECL)

kit (Merck Millipore, Billerica, MA, USA).
2.15 Immunohistochemistry

Breast tumor tissues were collected and fixed in 4%

paraformaldehyde, after which the tissues were then embedded in

paraffin. 4mm thick formalin-fixed, paraffin-embedded tissue

sections were used to perform immunohistochemical staining.

After the deparaffinization and rehydration process, sections were

heated in a pressure cooker in Tris-EDTA buffer for antigen

retrieval and then were blocked by peroxidase endogenous

blocking solution for 15 min and protein block for 1h. Sections

were incubated with primary antibodies against CEBPB

(proteintech, 23431-1-AP), and a-SMA (proteintech, 14395-1-

AP) overnight at 4°C in a humid chamber. After washing with

PBS, sections were incubated with HRP-conjugated Goat Anti-

Rabbit/Mouse secondary antibody at room temperature for 1h,

followed with DAB for 3–5 min under the microscope. Nuclei were

counterstained with hematoxylin. Finally, sections were dehydrated

in a series of alcohols and mounted in neutral gum. The specimens

were observed using a confocal laser scanning microscope (CLSM;

Olympus, Tokyo, Japan), and the area of staining was quantified

using ImageJ software.
3 Results

3.1 PCD is associated with the tumor
immune microenvironment in TNBC

We performed single-cell RNA sequencing analysis of nine

TNBC samples from the GEO TNBC dataset GSE176078. We

identified T cells, B cells, myeloid cells, epithelial cells, fibroblasts,

and endothelial cells as the main cell types in the TME (Figure 1A).

Subsequently, the ClusterGVis package was used to visualize the
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marker genes for each cell type and the GO and KEGG pathway

analyses were performed to identify the pathways enriched in each

cell type. The results were consistent with the biological functions

of the corresponding cell types (Figure 1B). Our data showed that

all the epithelial cells in the TNBC samples exhibited copy number

variations. Therefore, we concluded that the epithelial cells in

the TNBC samples were all malignant. This finding was also

consistent with their biological characteristics (Supplementary

Figure S1). Next, to determine the differences in the immune

microenvironment between the TNBC and normal tissues, we

used the “ssGSEA” and “ImmuneCellA” packages to analyze and

compare the immune cell populations in the TME between 121

TNBC patients with survival information and normal patients from

the UCSC database (Supplementary Table S5). The results

demonstrated that several immune cell types, including cytotoxic

immune cells such as CD8+ T cells, CD4+ T cells, and NK cells, as

well as B cells, macrophages, and fibroblasts were significantly

increased in the TNBC tissues compared to the normal breast

tissues, thereby indicating significantly altered immune

microenvironment in TNBC (Figures 1C, D). In the subsequent

analyses, we focused primarily on the CD8+T cells, CD4+T cells,

NK cells, Tregs, B cells, macrophages, and fibroblasts. We also

performed analysis to identify differentially expressed genes

between TNBC and normal breast tissues. After intersecting these

genes with a set of 13 PCD genes, we performed univariate Cox
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regression analysis to identify 37 PCD-related prognostic genes

(Supplementary Table S2). We analyzed the expression levels of

these prognostic genes at the single-cell level and found that the 37

PCD-related prognostic genes were highly expressed across various

cell types (Figure 1E). This suggested that the 37 PCD-related

prognostic genes played a key role in multiple biological functions

of TNBC.
3.2 PCD regulates functional and
phenotypic diversity of cell types in
the TME

We extracted the stromal cells and identified subpopulations of

macrophages through dimensionality reduction and annotation. Next,

based on the PCD-related prognostic genes, non-NMF clustering was

performed and four distinct cell clusters, namely, HMOX1-Mac-C1,

NUPR1-Mac-C2, CEBPB-Mac-C3, andNon-Mac-C4, were identified.

Pseudotime analysis demonstrated that different PCD-related

prognostic genes were differentially expressed during various

developmental phases of macrophages. Moreover, the HMOX1-

Mac-C1 and Non-Mac-C4 clusters were located at the initial part of

the developmental pseudotime trajectory and the NUPR1-Mac-C2

cluster was positioned at the terminal end of the trajectory

(Figures 2A, B). Cell communication analysis suggested that
FIGURE 1

PCD-related prognostic genes in the transcriptome and single-cell landscape of TNBC. (A) GSE176078 single-cell UMAP plot; (B) Heatmap of marker
genes for various cell types; (C) ssGSEA analysis comparing immune cell differences between TNBC and Normal; (D) ImmuneCellA analysis
comparing immune cell differences between TNBC and Normal; (E) Expression levels of 37 PCD-related prognostic genes at the single-cell level. *p
< 0.05, **p < 0.01, ***p < 0.001.
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NUPR1-Mac-C2 acted as a communication receptor and participated

in the intercellular communication with the malignant epithelial cells

through the MDK-(ITGA6+ITGB1), SPP1-CD44, and TNF-

TNFRSF1A pathways (Figure 2C). SCENIC analysis identified

differences in the transcriptional activity between various clusters.
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Specifically, the NUPR1-Mac-C2 cluster showed high expression of

transcription factors such as STAT1, STAT2, and IRF7, whereas the

CEBPB-Mac-C3 cluster showed high expression of transcription

factors such as JUND, CEBPB, JUNB, and FOSB (Figure 2D). Based

on the metabolic analysis, the NUPR1-Mac-C2 cluster exhibited high
FIGURE 2

Functional differences of PCD-related genes in macrophages. (A) Pseudotime sequence analysis of PCD-related risk genes; (B) Pseudotime
trajectory analysis of PCD-related clusters; (C) Cellular communication between PCD-related clusters and malignant epithelial cells; (D) SCENIC
analysis of PCD-related clusters; (E) Metabolic activity analysis of PCD-related clusters; (F) Differential correlation of tumor-related pathways in
PCD-related clusters.
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metabolic activity because of high expression of genes involved the

TCA cycle and other pro-tumorigenic pathways (Figure 2E), thereby

suggesting a close association with tumor growth. Progeny analysis

demonstrated associations between the NUPR1-Mac-C2 cluster and

pathways such as JAK-STAT, NF-kB, and TNF-a, thereby further

substantiating its role in promoting oncogenesis (Figure 2F).

Based on secondary dimensionality reduction and clustering of

the immune cells, we identified the following cell types: NK cells,

CD8+ T cells, CD4+ T cells, regulatory T cells, naive T cells, and B

cells (Figure 3A). Subsequently, we performed cell subtyping

analysis to assess the functional profiles of each cluster and found

that the VDAC3-CD8-C1, GZMB-CD8-C2, and IRF2-Treg-C1

clusters exhibited exhausted T cell phenotype, whereas the

GZMB-NK-C3 and LAMTOR1-Treg-C2 clusters displayed

cytotoxic phenotype. Furthermore, the GZMB-CD4-C1 cluster

demonstrated both cytotoxic and exhausted T cell phenotypes,

thereby suggesting functional differences among distinct PCD

genes between various cell types (Figure 3B). To elucidate

differences in the transcriptional activities between these cell

clusters, we performed the SCENIC analysis and found that the

clusters enriched for the cytotoxic cell or exhausted T cell functions
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exhibited robust transcriptional activity; among these, GZMB-CD4-

C1 cluster showed the highest transcriptional activity (Figure 3C).

Furthermore, there were differences in the transcription factor

profiles between distinct T cell clusters with different functions

(Figure 3C). Subsequent progeny analysis demonstrated that

oncogenic pathways were significantly inhibited in subpopulations

of cells with low transcriptional activity (Figure 3H). These findings

were consistent with the SCENIC analysis. Among the B cells, the

IRF2-B-C4 cluster exhibited highest level of transcriptional activity

(Figure 3D). Cellular communication analysis demonstrated

varying degrees of cellular communication between different T

and B cell clusters and the epithelial cells (Figure 3E). Moreover,

functional gene set analysis demonstrated functional differences in

T cell activity among various subpopulations (Figure 3F).

Pseudotime analysis demonstrated that the PCD-related

prognostic genes played distinct roles at different time points

across various cell types and influenced cluster differentiation

(Supplementary Figure S2). Cellular communication analysis

demonstrated that the immune cell subsets exhibited varied

intensities of signaling output, primarily through the IL-6, CCL,

and EGF pathways. When the immune cell subsets acted
FIGURE 3

Functional differences of PCD-related T/B cells in the tumor immune microenvironment. (A) Dimensionality reduction clustering umap plot of T cells;
(B) PCD-related T cell clusters in T cell exhaustion and cytotoxicity scoring; (C) Transcriptional differences of PCD-related T cell clusters;
(D) Transcriptional activity differences of PCD-related B cell clusters; (E) Communication between PCD-related T/B cell clusters and malignant epithelial
cells; (F) Expression differences of T cell functional gene sets in PCD-related T cell clusters; (G) Heatmap of communication pathways between
PCD-related T/B cell clusters and malignant epithelial cells; (H) Differences in tumor-related pathway associations of PCD-related T/B cell clusters.
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assignaling receptors, the pathways related to MIF and CXCL

showed differing strengths, thereby indicating functional

disparities (Figure 3G).
3.3 PCD-regulated CEBPB+ CAF subtype is
a key determinant of the TNBC
Microenvironment heterogeneity and
poor prognosis

Pseudotime analysis results demonstrated that different PCD-

related prognostic genes exerted their effects in the fibroblasts at

distinct time points (Figure 4A). Subsequent NMF clustering

categorized fibroblasts into the following six clusters: VDAC3-

CAF-C1, NUPR1-CAF-C2, CEBPB-CAF-C3, LAMTOR1-CAF-

C4, ITM2C-CAF-C5, and Non-CAF-C6. According to

pseudotime analysis, VDAC3-CAF-C1 represented a stable

subpopulation of fibroblasts throughout the developmental and

differentiation process; Non-CAF-C6 cluster was positioned at the

initiation of development; and CEBPB-CAF-C3 was located at the

midpoint and represented a cluster that differentiated toward

subsequent diverse subpopulations (Figure 4E). These results

suggested a regulatory role for the PCD-related prognostic genes

during fibroblast development and differentiation (Figure 4E).

To further elucidate the roles of different subpopulations, we

assessed the biological functions of each subpopulation of

fibroblasts (27). CEBPB-CAF-C3 exhibited biological functions

associated with both pan-pCAF and pan-myCAF gene signatures

that were characterized by genes related with smooth muscle

generation and vascular wound healing, as well as, pan-dCAF and

pan-iCAF-2 gene signatures that were related with genes related

with the inflammation-related pathways and extracellular matrix

(ECM) remodeling. The central location of CEBPB-CAF-C3 in the

developmental branch also explains its diverse biological functions.

And the CEBPB-CAF-C3 cluster was enriched in transcription

factors such as JUND and ZC3H11A (Figure 4C). In contrast,

VDAC3-CAF-C1 and ITM2C-CAF-C5 were significantly enriched

in pathways associated with tumor-related inflammatory responses

(Figure 4B). The SCENIC analysis demonstrated that the VDAC3-

CAF-C1 cluster was enriched in transcription factors such as JUND,

FOS, ATF3, and other transcription factors associated with the

inflammatory pathways and was consistent with the classification.

Further progeny analysis demonstrated that the CEBPB-CAF-C3

cluster was significantly associated with the PI3K-AKT pathway.

This suggested that the CEBPB-CAF-C3 cluster may play a role in

the occurrence and development of tumors through the PI3K-AKT

pathway (Figure 4D). To further analyze the relationships between

different clusters, we used the cell communication analysis and

found that VDAC3-CAF-C1 was closely associated with malignant

epithelial cells and various pro-oncogenic pathways (Figure 4F).

Subsequently, based on the genes related to the tumor

microenvironment (TME), we performed functional enrichment

analysis of PCD-related fibroblasts. Genes associated with ECM,

MMPs, TGF-b , and proinflammatory pathways showed

significantly high expression in the CEBPB-CAF-C3 cluster,
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whereas proinflammatory-related genes were highly expressed in

the VDAC3-CAF-C1 cluster (Figure 4G). These results aligned

accurately with the classification of the CAF subtypes.

Transcriptomic analysis was performed to determine the

prognostic significance of the PCD-related clusters. First, we

validated the differential expression of PCD-related prognostic

genes between the TNBC and normal breast tissues and found that

the prognostic genes were significantly upregulated in the TNBC

tissues (p < 0.001) (Figure 5A). We then performed Gene Set

Variation Analysis (GSVA) using marker genes for each cluster to

compare the transcriptomic differences and found that CEBPB-CAF-

C3, IM2C-CAF-C5, VDAC3-CD8-C1, GZMB-CD8-C2, LAMTOR1-

CD8-C4, ITM2C-CD8-C5, GZMB-CD4-C1, IRF2-Treg-C1, ITM2C-

B-C1, IR2-B-C4, and NUPR1-Mac-C2 were all highly expressed in

the TNBC tissues (Figure 5B). Prognostic analysis further

demonstrated that the differential expression of CEBPB-CAF-C3

exhibited a consistent pattern. This suggested that CEBPB-CAF-C3

potentially represented a key oncogenic subgroup that impacted

patient prognosis (Figures 5C–H). Further validation in the

GSE58812 dataset confirmed that CEBPB-CAF-C3 was associated

with poor prognosis and served as a risk factor subgroup (Figure 5I).

We identified a set of CEBPB-CAF-C3-specific marker genes and

intersected them with the DEGs in the TNBC tissues compared with

the normal breast tissues. Univariate Cox regression analysis was

used to screen the PCD-related prognostic genes and 14 prognostic

genes were identified (Supplementary Table S4). A prognostic model

was constructed with these genes using an integrative approach based

onmachine learning. In the TCGA dataset, 97 predictive models were

fitted using the Leave-One-Out Cross-Validation method and the

concordance index (c-index) was calculated for each model across all

the validation datasets (Figure 6A).

The model using a combination of Lasso and Stepwise Cox

regression with backward elimination was the most optimal with

the highest average concordance index (c-index) of 0.748. Among the

14 prognostic genes analyzed, we identified seven key genes, namely,

CEBPB, TANK, MAT2B, TMEM165, CCDC167, CYFIP1, and COX17.

Subsequently, the prognostic model was evaluated with the TCGA-

TNBC dataset. The survival outcomes were poorer for the high-risk

TNBC group compared to the low-risk TNBC group. Moreover, the

prognostic model showed excellent prognostic prediction

performance with area under the curve values of 0.92, 0.91, and

0.91 for 1-, 3-, and 5-year overall survival, respectively (Figures 6B, C).

The prognostic model was further validated in the GSE58812 and

GSE21653 datasets, which also showed poorer survival outcomes for

patients in the high-risk group (Figures 6D, E). This demonstrated

good predictive power for the prognostic model.
3.4 Immunosuppressive mechanism and
immunotherapeutic relevance of the
CEPBB-CA-C3 subtype in the TME
of TNBC

To further elucidate the differences in immune infiltration within

the model, we used Cibersort, EPIC, MCPcounter, and Timer
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algorithms to analyze and assess the prognostic differences between

high- and low-risk groups. Our data showed significant immune

suppression and depletion of various immune cell types across all four

algorithms in the high-risk group compared with the low-risk group

(Figure 7A). We then assessed the differences in immune infiltration

based on the seven hub genes and found that the risk genes (HR > 1)

also demonstrated a degree of immune suppression (Supplementary
Frontiers in Immunology 10
Figure S3). Furthermore, we downloaded the HALLMARK pathway

files (h.all.v7.5.symbols.gmt) comprising 50 pathways from the GSEA

website and used ssGSEA to evaluate the scores of each pathway in the

TCGA-TNBC dataset (26). We then calculated the Pearson

correlation co-efficients to assess the relationship between the seven

key genes and the pathway scores and visualized the results. Our

results showed significant differences in the gene function enrichment
FIGURE 4

Heterogeneity of PCD-related genes in fibroblasts. (A) Distribution of PCD prognostic genes in the pseudo time sequence of PCD-related
fibroblasts; (B) Typing of PCD-related fibroblasts; (C) Differential analysis of transcription factors in PCD-related fibroblasts; (D) Analysis of the
correlation between PCD-related fibroblasts and oncogenic pathways; (E) Differentiation trajectory of PCD-related fibroblast clusters; (F) Cellular
communication between PCD-related fibroblasts and malignant epithelial cells; (G) Differential expression in the tumor microenvironment (TME) of
PCD-related fibroblasts.
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and the risk genes were enriched in the STAT pathway and TNF-a-
related pathways (Figure 7B).

We performed a subtype communication analysis to further

investigate the differences in communication between immune cell

types (T cells, B cells, and myeloid cells) and the CAF subtypes. The

results demonstrated that CEBPB-CAF-C3 communicated with the

T cells, B cells, and myeloid cells (Figure 8A). Furthermore, CEBPB-

CAF-C3 as a signaling ligand communicated with the T cells

through the MDK-(ITGA4+ITGB1) and MDK-NCL receptor-

ligand pathways, and through MDK-SDC1 receptor-ligand

interactions with the B cells, and through multiple pathways,

including ANXA1-FPR1, MDK-(ITGA4+ITGB1), MDK-LRP1,

MDK-NCL, and RARRES2-CMKLR1 with the myeloid cells

(Figure 8B). However, when CEBPB-CAF-C3 was used as a

signaling receptor, we did not observe any communication with

the immune cells (Figure 8C).
Frontiers in Immunology 11
To further characterize the immunotherapy outcomes between

the high- and low-risk groups, we performed Tumor Immune

Dysfunction and Exclusion (TIDE) analysis to compare the

immunotherapy responses across different clusters. Patients in the

high CEBPB-CAF-C3 group showed significantly poorer responses

to immunotherapy compared to other groups (Figure 9A). This

demonstrated functional disparities of various genes within distinct

cell types. Subsequently, we used the IMvigor210 dataset to validate

the efficacy of the prognostic model in predicting immunotherapy

outcomes. The high-risk group in the IMvigor210 dataset

was associated with a significantly lower response rate and

poorer therapeutic outcomes than the low-risk group (Figures 9B,

C). Furthermore, patients in the high-risk group from the

IMvigor210 dataset showed significantly worse prognosis

(p<0.001) based on the Kaplan-Meier survival analysis and the

log-rank test (Figure 9D). This demonstrated the broad clinical
FIGURE 5

Transcriptomic Prognostic Analysis of PCD-Related Clusters. (A) Differential expression of PCD-related prognostic genes between tumor and normal
tissues; (B) Differential expression of various PCD-related clusters at the transcriptomic level; (C-H) Prognostic analysis of subgroups; (I) Validation of
risk factors for each subgroup in the GSE58812 dataset. p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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applicability of the prognostic model. Finally, we performed a TIDE

analysis of data from the GSE58812 dataset to validate the

immunotherapy prognosis and showed that the CEBPB-CAF-C3

group was associated with a poorer prognosis than other groups

(Figure 9E). This further substantiated the immunosuppressive role

of CEBPB-CAF-C3 in TNBC.
3.5 PCD-regulated CEBPB+ CAF subtype is
a key determinant of TNBC progression

To validate the above findings, we established three different

stages of BC progression in a mouse model of TNBC, specifically

on days 7, 14, and 21 post-tumor implantation, and assessed

the expression levels of the fibroblast marker proteins, a-SMA
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and CEBPB. The results from immunohistochemistry (IHC)

(Figure 10A), western blotting (Figure 10B), and multiple

immunofluorescence (Figure 10C) experiments confirmed the

presence of the CEBPB+CAF subtype in the TNBC mouse model.

Subsequently, we performed quantitative reverse-transcription

polymerase chain reaction (qRT-PCR) to examine the expression

levels of the seven key prognostic genes—CEBPB, TANK, MAT2B,

TMEM165, CCDC167, CYFIP1, and COX17—in the CEBPB+CAF

prognostic model in the tumor tissues. The seven key prognostic

genes were highly expressed in the murine BC model (Figure 10D).

This suggested a positive correlation of the prognostic genes with

the occurrence of TNBC. We further investigated the CEBPB+ CAF

subtype in the TNBC patient tissues and included both cancerous

and adjacent normal tissues. QRT-PCR (Figure 10E), Western

blotting (Figure 10F), IHC (Figure 10G), and multiple
FIGURE 6

Construction of Prognostic Models. (A) Using 97 machine learning algorithms for the construction of prognostic models; (B) Prognostic survival
analysis in the TCGA-TNBC dataset; (C) Area Under the Curve (AUC) analysis; (D) Prognostic survival analysis in the GSE58812 dataset; (E) Prognostic
survival analysis in the GSE21653 dataset.
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FIGURE 7

Model and Hub Gene Immune Infiltration Analysis. (A) Immune infiltration analysis of model genes; (B) Correlation of key genes with pathways in the
TCGA; indicates * p<0.05, ** indicates p<0.01, *** indicates p<0.001.
FIGURE 8

The correlation between CEBPB-CAF-C3 and immune cells. (A) Cell communication network diagram; (B) Cell communication interaction map with
CEBPB-CAF-C3 as a ligand; (C) Cell communication interaction map with CEBPB-CAF-C3 as a receptor.
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immunofluorescence (Figure 10H) experiments confirmed the high

expression of the CEBPB+ CAF subtype in the BC tissues.

These results demonstrated the presence of the CEBPB+ CAF

subtype in TNBC and its association with tumor progression.

Therefore, the CEBPB+CAF subtype may serve as a valuable

prognostic predictor for TNBC.
4 Discussion

PCD is associated with the progression and treatment of various

human cancers. The different forms of PCD not only determine the fate

of tumor cells but also significantly influence the dynamic balance in the

tumor microenvironment (TME), immune evasion, and the treatment

response (27). Previous studies have focused on the disruption of the

balance in the TME by different modes of PCD. In this study, we

systematically investigated the association of PCD-related prognostic

genes with different tumor cell subtypes and the status of the TME in

TNBC. In this investigation, we used the single-sample GSEA (ssGSEA)

and ImmuneCellAI computational methods to quantitatively assess

differences in the cellular compositions between TNBC and adjacent

non-neoplastic mammary tissues. Our analysis demonstrated statistically

significant alterations in the TME, specifically in the proportions of a-
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smooth muscle actin-positive (a-SMA+) CAFs, CD68+ tumor-

associated macrophages (TAMs), CD19+ B lymphocytes, and distinct

T lymphocyte subpopulations (CD4+, CD8+, and FOXP3+ regulatory T

cells). Multiparametric analyses of the PCD-associated phenotypic

signatures across distinct cell populations demonstrated that the

CCAAT/enhancer-binding protein beta-positive (CEBPB+) CAFs

exhibited the strongest negative correlation with the survival outcomes

of TNBC. Comprehensive analyses of intercellular signaling networks,

immune infiltration patterns, and immunotherapeutic response

signatures resulted in the identification of molecular mechanisms

through which the CEBPB+ CAFs modulate the immunosuppressive

microenvironment and promote resistance against immune checkpoint

inhibitor treatment in TNBC. To validate these findings, we performed

ex vivo analyses of tumor specimens from both TNBC patients and

syngeneic murine models by quantitative reverse-transcription PCR

(qRT-PCR), immunoblotting, immunohistochemical staining, and

multiplexed immunofluorescence co-localization assays, and confirmed

differential expression of the PCD-related prognostic genes and the

presence of CEBPB+ CAFs. Our results demonstrate that PCD-

associated pathways are intricately linked to the immunological

landscape of TNBC and specific tumor cell phenotypes function as

critical modulators of the immune response and therapeutic resistance.

These findings suggest that PCD-related mechanisms regulate TME
FIGURE 9

Immunotherapy Prediction. (A) Differences in immunotherapy scores among various clusters; (B, C) Prediction of immunotherapy response in the
high-risk group from the IMvigor210 dataset; (D) Prognostic analysis using the risk model in the IMvigor210 dataset; (E) Validation of immunotherapy
scores in the GSE58812 dataset; Statistical significance is indicated as follows: *p<0.05, **p<0.01, ***p<0.001.
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FIGURE 10

The CEBPB+CAF subtype exists in TNBC and is closely related to tumor progression. (A) Immunohistochemical staining to detect the expression
differences of a-SMA and CEBPB proteins in normal mouse mammary tissues and TNBC orthotopic tumor-bearing mouse mammary tissues at 7, 14,
and 21 days; scale bar: 50 µm; (B) Western blot analysis to detect the expression differences of a-SMA and CEBPB proteins in normal mouse
mammary tissues and TNBC orthotopic tumor-bearing mouse mammary tissues at 7, 14, and 21 days; (C) Multiplex immunofluorescence to detect
the expression and localization of a-SMA and CEBPB in mouse mammary cancer tissues; scale bar: 100 µm (whole view), 50 µm (magnified view);
(D) Quantitative real-time PCR experiment to detect the expression of CEBPB, TANK, MAT2B, TMEM165, CCDC167, CYFIP1, and COX17 in mouse
mammary cancer tissues; (E) Quantitative real-time PCR experiment to detect the expression of CEBPB, TANK, MAT2B, TMEM165, CCDC167,
CYFIP1, and COX17 in human TNBC breast cancer tissues; (F) Western blot analysis to detect the expression differences of a-SMA and CEBPB
proteins in human TNBC breast cancer tissues and adjacent normal tissues; (G) Hematoxylin-eosin (HE) staining showing the structure of human
TNBC breast cancer tissues, and immunohistochemical staining to detect the expression differences of a-SMA and CEBPB proteins in human TNBC
breast cancer tissues; scale bar: 100 µm; (H) Multiplex immunofluorescence to detect the expression and localization of a-SMA and CEBPB in
human TNBC breast cancer tissues; scale bar: scale bar: 200 µm (whole view), 20 µm (magnified view). **p < 0.0021, ***p < 0.0002, ****p < 0.0001.
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composition and immunotherapy efficacy and have significant

implications for disease progression and clinical outcomes in patients

with TNBC.

Previous studies have demonstrated the pivotal role of PCD

pathways in neoplastic progression and targeted therapeutic

interventions through modulation of the TME (28). Through

comprehensive transcriptomic analyses, we identified 37 PCD-

associated prognostic gene signatures that were significantly

upregulated across diverse cellular subpopulations within the

TME, thereby establishing a robust correlation between PCD-

mediated processes and the architectural and functional dynamics

of the TNBC microenvironment. Previous investigations have

demonstrated that the TAMs function as primary immunological

effector cells that orchestrate diverse immune responses within the

TME and as critical modulators of tumor progression and

immunosuppressive mechanisms (29). Single-cell RNA

sequencing analysis in this study demonstrated differential

expression patterns of the PCD-related genes across four distinct

TAM subpopulations, each of which demonstrated unique

transcriptional profiles and functional characteristics. These

findings suggested that the PCD-associated pathways functioned

as primary determinants of macrophage phenotypic plasticity

within the TME. Beyond the myeloid compartment, variations in

the PCD-related signaling cascades contributed to distinct

phenotypic and functional heterogeneity among the diverse

lymphoid populations within the TME. Furthermore, tumor-
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infiltrating T lymphocytes exhibited dichotomous phenotypes: (1)

an exhausted state characterized by elevated inhibitory receptor

expression associated with immunosuppression and poor clinical

outcomes; and (2) a cytotoxic phenotype characterized by enhanced

effector functions that augment anti-tumor immunity and

immunotherapeutic responses (30, 31). Our computational

analyses demonstrated that the immune cell clusters associated

with T cell exhaustion signatures exhibited high transcriptional

activity and enhanced malignant epithelial cell communication

networks, whereas the clusters characterized by cytotoxic T cell

signatures displayed attenuated transcriptional profiles. This

phenomenon corresponded to established mechanisms that

dysregulate the TME and contribute to TNBC progression and

therapeutic resistance. We identified a distinct cellular subset,

designated as GZMB-CD4-C1, which exhibited significant

correlation with both exhausted T cells and cytotoxic T cell

signatures while maintaining high transcriptional activity.

Granzyme B (GZMB), encoded by the GZMB locus is a crucial

cytolytic effector molecule in T cell-mediated cytotoxicity. Li et al.

demonstrated that the human type 2 innate lymphoid cells (ILC2s)

secreted GZMB, which facilitated direct tumor cell lysis through the

induction of PCD mechanisms such as pyroptosis and apoptosis

(32). The GZMB-CD4-C1 cellular phenotype is characterized by

GZMB as a key regulatory gene and exhibits both exhaustion and

cytotoxic characteristics. It also potentially represents a critical

cellular subset that regulates immune dysregulation in the of
FIGURE 11

Flowchart of our study process.
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TNBC. The dual functionality of the GZMB-CD4-C1 cellular

phenotype is potentially regulated by the PCD-associated

pathways, but further investigations are necessary to determine

the underlying molecular mechanisms.

PCDmodulates the phenotypic and functional characteristics of

tumor-associated fibroblasts within the tumor microenvironment

via multiple molecular mechanisms. Single-cell RNA sequencing

analysis in this study identified six distinct CAF subpopulations.

Among these, the CEBPB-expressing CAFs (CEBPB-CAF-C3)

occupied a central position in the pseudotemporal developmental

trajectory. These CEBPB-CAF-C3 cells exhibited upregulated

expression of genes associated with proinflammatory cytokine

signaling, ECM reorganization, and neoplastic progression. The

CEBPB locus encodes the pleiotropic transcription factor CCAAT/

enhancer-binding protein beta (C/EBPb), which functions as a

master regulator of cellular bioenergetics, immunomodulation,

and inflammatory cascades, and is implicated in the pathogenesis

of numerous malignancies (33). Recent molecular studies have

reported that aberrant tumor glycolysis regulates the CEBPB

signaling axis and modulates the tumor-associated Myeloid-

Derived Suppressor Cells through interconnected autophagy and

pyroptosis pathways, thereby maintaining the immunosuppressive

phenotype within the TME (34). However, the cell type-specific

regulatory role of CEBPB in tumor development and progression

and immunosuppression in the TME remains to be fully elucidated.

Computational analyses using GSVA and multivariate Cox

proportional hazards modeling demonstrated that the differential

expression patterns of the CEBPB-CAF-C3 cells exhibited superior

prognostic value for the TNBC patients compared to other cellular

constituents in the TME. Furthermore, we used the in vivo

syngeneic orthotopic murine models and clinical specimens to

verify the presence of the CEBPB+ CAF subpopulation and the

increased expression of its signature genes in TNBC using RT-

qPCR, immunoblotting, immunohistochemistry, and multiplex

immunofluorescence microscopy. This is the first investigation to

demonstrate the regulation of elevated CEBPB expression in the

CAFs by the PCD-dependent molecular pathways. Therefore, we

identified a critical phenotypic determinant associated with poor

clinical outcomes in TNBC.

CAFs demonstrate heterogeneous immunomodulatory

properties. They exhibit dual functionality including chemokine/

cytokine-mediated recruitment of adaptive and innate immune cell

populations to TME as well as immunosuppression by promoting

M2-like macrophage polarization and attenuating dendritic cell

(DC)-mediated antigen presentation and T cell activation (3).

Based on the analysis using the TIDE algorithm, patients with

elevated CEBPB-CAF-C3 signatures demonstrated significantly

reduced responses to immune checkpoint blockade therapy,

thereby confirming the immunosuppressive phenotype of this

distinct CAF subpopulation. The CEBPB-CAF-C3 cells

orchestrated TME remodeling by secreting immunomodulatory

cytokines through activation of autocrine Signal Transducer and

Activator of Transcription (STAT) and Tumor Necrosis Factor-

alpha (TNF-a) signaling cascades. Simultaneously, CEBPB-CAF-

C3 cells also regulate the infiltration dynamics and functional
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heterogeneity of the B lymphocytes, T lymphocytes, and myeloid-

lineage cells through the Midkine (MDK)-Nucleolin (NCL)

signaling axis. Dose-dependent upregulation of intratumoral

MDK in response to gemcitabine administration decreases

chemotherapeutic efficacy and enhances neoplastic progression

and therapeutic resistance (35). Membrane-associated NCL is a

critical mediator of chemotherapeutic resistance because it

functions as a pleiotropic regulator of multiple oncogenic

processes, including epithelial-mesenchymal transition, anti-

apoptotic protein stabilization, and pathological angiogenesis/

lymphangiogenesis (36). However, the molecular mechanisms

through which CAFs modulate immune cell function via MDK

signaling is not fully characterized, and the functional interaction

with NCL requires further investigation. Our study provides the

first experimental evidence for CEBPB-overexpressing CAFs

orchestrating immune cell function through the MDK-NCL

signaling axis, thereby promoting TME immunosuppression.

Therefore, it represents a potential therapeutic target for

overcoming resistance to immune checkpoint blockade therapy.

This study has several limitations. First, further experimental

validation through clinical and functional assays is necessary for the

distinct immunophenotypic profiles and functional characteristics

identified in this study for the tumor-infiltrating myeloid cells, CD4+

and CD8+ T lymphocyte subsets, and B lymphocyte populations.

Second, the intricate molecular mechanisms through which CEBPB-

CAF-C3 orchestrate TME dysregulation, including cytokine

networks and metabolic reprogramming, require in-depth

mechanistic investigation and prospective clinical validation.

Furthermore, the technical constraints inherent to single-cell RNA

sequencing methodologies such as transcript dropout events and

stochastic variation across heterogeneous datasets necessitate careful

interpretation. Consequently, further studies are necessary to validate

our findings and elucidate the underlying molecular mechanisms.
5 Conclusion

In this study, we demonstrated that distinct PCD modalities

significantly influenced the cellular and molecular architecture of the

TME in TNBC patients through systematic computational analyses

of high-dimensional transcriptomic data. We used unbiased

clustering algorithms to analyze the immune cell and stromal

fibroblast populations and established the regulatory mechanisms

through which the PCD-associated gene networks modulate the

phenotypic plasticity of the tumor-infiltrating immune cells within

the TME. We also identified and validated the existence of a distinct

CAF subpopulation characterized by elevated CEBPB expression

through mult iple orthogonal approaches . Funct ional

characterization of the CEBPB-CAF-C3 cell type demonstrated its

crucial role in tumor progression and therapeutic resistance through

activation of drug resistance pathways and immunomodulatory

mechanisms. Therefore, the CEBPB-CAF-C3 cell type was

associated with adverse clinical outcomes in TNBC patients

(Figure 11). This investigation provides a comprehensive molecular

framework for understanding PCD-mediated TME dysregulation in
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TNBC pathogenesis. Moreover, our study also highlights novel

mechanistic insights and potential therapeutic targets for

circumventing immunotherapy resistance in TNBC.
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Pseudotemporal analysis of T cell subsets. (A) CD8+T cell PCD−related
clusters pseudotemporal analysis; (B) CD4+T cell PCD−related clusters

pseudotemporal analysis;(C) NK cell PCD−related clusters pseudotemporal
analysis; (D) Treg cell PCD−related clusters pseudotemporal analysis.
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**p<0.01, ***p<0.001.
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