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Purpose: To investigate the impact of preoperative contrast-enhanced CT-

based radiomics model on PD-1 prediction in hepatocellular carcinoma

(HCC) patients.

Methods: The study included 105 HCC patients (training cohort: 72; validation

cohort: 33) who underwent preoperative contrast-enhanced CT and received

systemic sorafenib treatment after surgery. Radiomics score was built for each

patient and was integrated with independent clinic radiologic predictors into the

radiomics model using multivariable logistic regression analysis.

Results: Seventeen radiomics features were finally selected to construct the

radiomics score. In multivariate analysis, serum creatine and peritumoral

enhancement were significant independent factors for PD-1 prediction. The

radiomics model integrated radiomics signature with serum creatine and

peritumoral enhancement showed good discriminative performance (AUC of

0.897 and 0.794 in the training and validation cohort). Overall survival (OS) was

significantly different between the radiomics-predicted PD-1-positive and PD-1-

negative groups (OS: 29.66 months, CI:16.03-44.40 vs. 31.04 months, CI: 17.10-

44.07, P<0.001). Radiomics-predicted PD-1 was an independent predictor of OS

of patients treated with sorafenib after surgery. (Hazard ratio [HR]: 1.61 [1.23-

2.1], P<0.001).

Conclusion: The proposed model based on radiomic signature helps to evaluate

PD-1 status of HCC patients and may be used for evaluating patients most likely

to benefit from sorafenib as a potentially combination therapy regimen with

immune checkpoint therapies.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

hepatic malignant tumors and the third leading cause of cancer-

related death worldwide (1). Surgical resection and liver

transplantation are potentially curative but are greatly hampered

by high recurrence rates (2). The overall outcomes remain

unsatisfactory due to its highly heterogeneous malignancy at the

genomic, molecular, and histologic levels (3, 4).

Emerging treatments targeting immune checkpoint or

multikinases have shown promising efficiency against this devastating

disease both in pre-operation and post-operation (5, 6).

Immunotherapy via programmed cell death protein 1 (PD-1) and

programmed death ligand 1 (PD-L1) checkpoint blockade, reactivating

T cell–mediated antitumor immunity by blocking the interaction

between PD-1 and PD-L1, have shown encouraging clinical results

(7). Anti-PD-1 blockade immunotherapy helps to increase the

objective response rates of sorafenib-pretreated patients with HCC to

15%~20%, three times greater than that of the sorafenib-only treatment

(5, 8, 9). Despite the remarkable improvement in clinical benefit, PD-1

or PD-L1 blockades so far still benefit only a minority of patients with

HCC and the durable response rate to anti-PD-1 therapy remains

relatively low, approximately 15%–20%, in patients with HCC (5, 10).

A appropriate approach to discriminate patients who can drive utmost

benefits from PD-1 blockade therapy is urgently needed. A

preoperative noninvasive way to predict PD-1 status may help to

guide individualized HCC treatment and better estimate

tumor outcome.

Radiomics is a new computerized format that converts medical

images into quantitative data. Furthermore, based on the premise

that radiomics data can better reflect the microenvironment of

tumors, thus, the high-dimensional data provides a deep and

comprehensive characterization of tumor heterogeneity, allowing

for more personalized and accurate classification of tumor

immunophenotypes (11, 12). Previous studies have revealed that

MRI-based radiomics features show significantly correlations with

HCC immuno-oncological characteristics and potentially with

outcome (13). Specifically, the favorable predictive value of

radiomics analysis for HCC molecular status have also been

reported, Wang et al. have reported the radiomics characteristics

of gadoxetic acid–enhanced MRI as biomarkers for predicting

cytokeratin19 status in HCCs, separating a subtype of hepatic

progenitor cell origin HCCs (14),Gong et al. suggest that a

radiomics model based on multisequence MRI has the potential

to predict the preoperative expression of PD-1 and PD-L1 in HCC,

which could become an imaging biomarker for immune checkpoint

inhibitor (ICI)-based treatment (15).However, to our knowledge,

no study before has investigated whether the contrast-enhanced

CT-based radiomics feature can be used to predict the PD-1

expression status and further illustrate its prognostic value of HCC.

This study aims to determine whether preoperative radiomics

based on contrast-enhanced computed tomography (CECT)

imaging may help identify the PD-1 positive patients with HCC

and further investigate its correlation with prognosis in patients

using sorafenib after surgery.
Frontiers in Immunology 02
Materials and methods

Patient cohort

This study was approved by the institutional ethical review

board of our institution and complied with the Declaration of

Helsinki. The informed consent was waived owing to the

retrospective study design. The study cohort was collected from

our institutional radiology and pathology database between June

2012 and October 2017. A total of 167 patients who had

histologically proven HCC and received systemic treatment with

sorafenib at standard recommended daily dose of 800 mg (400 mg

twice daily) after surgery were included. The inclusion criteria were

as follows: (1) age ≥18 years; (2) primary pathologically confirmed

HCC; (3) interval between CECT examination and surgery less

than four weeks; (4) no local-regional therapy before CECT

such as transcatheter arterial chemoembolization (TACE)

or radiofrequency ablation (RFA). Then, 62 patients were

excluded for the following exclusion criteria: (1) the CT images

were incomplete or had poor image quality (n=15); (2) no

formalin-fixed, paraffin-embedded tissue samples available for

immunohistochemical staining(n=12); (3) incomplete clinical

information(n=16); and (4) sorafenib treatment was interrupted

for longer than 48 hours between the initiation of sorafenib and the

first follow-up time point (n=19). Therefore, 105 patients were

finally enrolled in this study and patients who underwent surgery

between June 2012 and April 2016 constituted the training cohort

(n=72), and the subsequent patients who underwent surgery from

May 2016 to October 2017 constituted the validation cohort(n=33)

(Figure 1). Data on demographics, laboratory tests, tumor

pathology and clinical conditions were derived from the patients’

medical records.
Patient follow-up

After resection, patients were followed up and was screened by

means of serum a-fetoprotein level, liver function tests, and

contrast-enhanced CT or MRI of the chest and abdomen every 3

months during the first 2 years and then every 6 months thereafter.

The data were censored on December 15, 2021. Overall survival

(OS) was measured as the interval from the date of surgery to the

date of death from a disease-related cause or the latest follow-up.
Immunohistochemistry staining

The paraffin tissue from surgically resected specimens were cut

into 4 mm-thick sections, dewaxed, hydrated, and then antigen

retrieval. Then, tissue slides were incubated with primary antibodies

using rabbit anti-human PD-1 polyclonal antibody (5 mg/ml, cat #

PA5-20351; Invitrogen; Thermo Fisher Scientific, Inc., Waltham,

MA, USA.) at 4°C overnight, followed by incubation with secondary

antibody (cat # K5007; Dako). PD-1 staining was performed with

3,3’-diaminobenzidine and counterstained with hematoxylin. Two
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senior pathologists independently selected five non-overlapping

and discontinuous regions to calculate the mean for statistical

analysis. The numbers of PD-1 cells were quantified at ×400

(0.0484 mm2) and the cut-off values for PD-1 overexpression

were determined by x-tile software based on the current study.

Cases with expression greater than 5% were considered as PD-1-

positive (16, 17).
CT examination

The CT images was obtained in the multidetector CT scanners

(Revolution, GE Healthcare, Milwaukee, USA; SOMATOM

definition, Siemens Healthcare, Erlangen, Germany). Triple-phase

CT examinations were conducted, i.e., non-enhanced, arterial, and

portal vein phases. The arterial phase and portal venous phase were

obtained at 25-30 s and 60-70 s after contrast injection. The detailed

scanning parameters are listed as follows: tube voltage, 100-120

kVp; tube current, 450 mA; slice thickness, 0.625 mm; pitch,

0.992:1; rotation speed: 0.5 s/rot; and ASIR-V: 30%. All patients

received an intravenous, non-ionic contrast agent (iodine

concentration, 300-370 mg/mL; volume, 1.5–2.0 ml/kg of body

weight; contrast type, iopromide injection, Bayer Pharma

AG) injection.
CT analysis

Two board-certified radiologists (reader 1 and reader 2 with 17 and

8 years of experience in abdominal imaging, respectively), who were

blinded to the clinicopathology and follow-up results, independently
Frontiers in Immunology 03
reviewed all CT images. The following imaging features were evaluated:

1) tumor size was measured as the maximum tumor diameter on the

axial CT image; 2) ill border, defined as non-smooth margin with

budding portion protruding into the liver parenchyma or infiltrative

appearance at the tumor periphery, otherwise as smooth margin; 3)

pseudo-capsule, defined as complete capsule when observing a uniform

border around most or all of the tumor, unequivocally thicker or more

conspicuous than fibrotic tissue around background nodules, otherwise

as incomplete integrity or not applicable; 4) multifocality; 5) arterial

phase(AP) hyperenhancement; 6) portal venous phase (PVP)

hypoenhancement; 7) radiologic evidence of necrosis; 8) peritumoral

enhancement was defined as a detectable portion enhanced in the

arterial phase adjacent to the tumor border, later turning isoattenuation

in the equilibrium phase; and 9) portal vein tumor thrombosis

invasion. After the first independent image analysis, interobserver

agreement for the assessment of the CT imaging features was

evaluated. The two reviewers then met to discuss final conclusions

by consensus on discordant results. All examinations were performed

using a workstation and recorded on a picture archiving and

communication system (Syngo-Imaging, version VB36A; Siemens

Medical Solutions).
Radiomic feature extraction and selection

Using ITK-SNAP software (version 3.6.0), a region of interest

(ROI) was manually drawn around the contour of the tumor slice to

exclude tumor necrosis and calcification by reader3 and reader4 (with 5

and 6 years of experience in abdominal imaging, respectively).

Radiomic features were generated from the images using Internal

Scientific 3D Analysis software (Analysis Suite, version V3.0.0). R, GE
FIGURE 1

Flow diagram of this study.
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Healthcare). Two resource extraction methods are extracted. Raw

feature class and 14 filtered classes (boxmean, additivegaussiannoise,

binomialblurimage, curvatureflow, boxsigmaimage, log, wavelet,

normalize, laplaciansharpening, discretegaussian, mean, specklenoise,

recursivegaussian and shotnoise). A total of 2,600 radioactive elements

were identified for further analysis. The training suite feature selection

process consists of three steps: Firstly, variance analysis. Secondly, we

performed Spearman’s correlation test and features with the

coefficients greater than 0.95 were excluded due to the redundancy.

Then, we applied LASSO method with a 10-fold cross validation

applied to select the most powerful features in the training set. And

the features were standardized with replacingmissing values by median

and Z-score normalization.

The established multivariate logistic regression model was used

to calculate the radiomics score for each patient. Reader 3 and

reader 4 repeated the feature extraction twice during a 1-week

period to evaluate the intra-observer reliability. The inter-observer

reliability and intra-observer reliability were assessed by obtaining

the intraclass correlation coefficient (ICC). Features with ICC values

>0.75 were selected for subsequent investigation.
Model development and validation

The radscore was computed for each patient by a linear

combination of selected features weighted by their respective

coefficients. Clinical-radiological characteristics and radiomics

features significantly associated with PD-1 in the univariate

analyses were included in the multivariate logistic analysis to

identify significant predictors based on a backward stepwise

selection process with the Akaike information criterion. The

radiomics model was formulated based on the results of

multivariate regression. Correspondingly, one clinical model was

generated on the basis of semantic features and clinical parameters.

The radiomics model is based on proportionally converting each

regression coefficient in multivariate logistic regression to a 0- to

100-point scale. The effect of the variable with the highest b

coefficient (absolute value) is assigned 100 points. The points are

added across independent variables to derive total points, which are

converted to predicted probabilities (Pi).
Frontiers in Immunology 04
Statistical analysis

Continuous and categorical variables were compared using t-test

and the chi-square test, respectively. After analyzing potential factors

in univariate logistic regression analysis, a multivariable regression

analysis was performed to select the independent risk factors of PD-1

expression. The discrimination performance of the prediction models

was quantified by the area under the curve (AUC) of receiver

operator characteristic curve (ROC) value in the training and

validation cohorts. Model fitness was assessed by calibration curves

with the Hosmer-Lemeshow test. Additionally, the decision curve

analysis was performed to evaluate the clinical usefulness and net

benefits of the developed prediction models, which estimates the net

benefit of a model as the difference between the true-positive and

false-positive rates, weighted by the odds of the selected threshold

probability of risk. Survival curves of OS were generated according to

the Kaplan-Meier method and compared using the log-rank test.

Univariate analyses with Cox proportional hazards regression

determined the predictors of mortality. The inter-observer

agreement was applied to assess the reliability of imaging analysis

using the Kappa test; 0–0.2 represents slight, 0.21–0.40: fair, 0.41–

0.60: moderate, 0.61–0.80: substantial, 0.81–1: excellent.

Statistical analysis was conducted with R software (version

3.4.2, http://www.R-project.org) and SPSS software (version 22.0,

IBM). A two-sided P values < 0.05 was indicative of a statistically

significant difference.
Results

Patient characteristics

The characteristics of the patients are summarized in Table 1.

Out of 105 patients included (male/female: 92/13; mean age, 51.17 ±

12.23 years, range 21 to 78 years), PD-1 was identified in 51 (48.6%)

patients (Figure 2). According to the Kaplan-Meier analysis, PD-1-

negative patients lived longer than PD-1-positive patients (OS:

25.57 months; 95% confidence interval [CI]:15.75-41.84 vs. 31.23

months; CI: 16.51-45.42; P<0.05).
TABLE 1 Baseline characteristics of patients in the training and validation cohorts.

Baseline
variables

Training cohort
(n=72) P value

Validation cohort
(n=33) P value

PD-1-positive (37) PD-1-negative (35) PD-1-positive (17) PD-1-negative (16)

Gender (Male, %) 33 (89.2) 29 (82.9) 0.663 16 (94.11) 14 (87.5) 0.601

Age (mean ±
SD,years)

53.46 ± 11.80 51.09 ± 11.67 0.394 50.88 ± 11.70 46.38 ± 14.52 0.332

HBV (+; %) 33 (89.19) 32 (91.43) 0.938 16 (94.12) 14 (87.5) 0.601

ALT (>40IU/L, %) 6 (16.22) 7 (20) 0.677 4 (23.53) 1 (6.25) 0.335

AST (>35IU/L, %) 27 (73.0) 24 (68.6) 0.681 6 (35.29) 8 (50.) 0.491

AFP (>400ng/ml, %) 24 (64.86) 23 (65.71) 0.94 8 (47.06) 12 (75.)

(Continued)
fro
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As of December 2021, 92/105 (87.7%) had completed the OS

follow-up, of which 81 patients 77.1%) died of progression of HCC

and 11 patients died of other cause (10.5%). Univariable Cox

regression analysis showed that histologic PD-1 (hazard ratio [HR],

4.1; 95% CI: 1.79,9.39; P<0.001) and the radiomics model Pi (HR,

1.61; 95% CI: 1.23-2.1; P<0.001) were independent predictors of

disease-specific mortality. The median OS was 25.57(15.75-41.84)

months for those with PD-1 positive, and 31.23 (16.51-45.42) months

for those with PD-1 negative (log-rank test,P<0.05.) The median OS

was 29.66 (16.03-44.40) months for those with RR-predicted PD-1

negative and 31.04 (17.10-44.07) months for those with RR-predicted

PD-1 positive (log-rank test, P<0.001) (Figure 3).
Frontiers in Immunology 05
Radscore construction

Among 2600 radiomic features, 358 features with high

correlation were identified for univariable logistic regression

analysis. Variables with P<0.05 in the univariable logistic regression

analysis were included in the multivariable regression model with

backward stepwise selection using the Akaike information criterion.

Eventually, 17 radiomic features related to PD-1 expression were

selected to construct radscore (Supplementary Data Sheet 1). The

radiomics signature indicated favorable prediction of PD-1 status

with an AUC of 0.852 (95% confidence interval [CI]: 0.76, 0.94) in the

training cohort and 0.79 (95% CI: 0.63-0.95) in the validation cohort.
TABLE 1 Continued

Baseline
variables

Training cohort
(n=72) P value

Validation cohort
(n=33) P value

PD-1-positive (37) PD-1-negative (35) PD-1-positive (17) PD-1-negative (16)

CEA (>3.4ng/ml, %) 2 (5.41) 4 (11.43) 0.619 3 (17.65) 1 (6.25) 0.601

TBIL (umol/L; IQR) 15 (11.79, 20.05) 17.2 (11.3, 23.16) 0.834 14.8 (10.67, 19.41) 18.2 (10.48, 22.63) 0.449

PLT (×10^9/L; IQR) 149 (113.4, 210.2) 135 (84, 166.4) 0.152 144.5 (120.7, 211.3) 154 (111.95, 186.7) 0.943

Creatinine (u/L; IQR) 80 (67.8, 88.9) 67 (59, 78.2) 0.004 76.9 (65.91, 89.3) 69.5 (61.8, 81.65) 0.214

ALB (g/L; IQR) 43.2 (38.11, 46) 43.7 (40.94, 47.2) 0.201 44.2 (39.73, 47.56) 44 (41.47, 47.02) 0.692

GGT (u/L; IQR) 50 (33.1, 102.3) 60 (26, 101) 0.991 75 (50, 138.3) 77 (40.05, 147.9) 0.857

MVI (+; %) 3 (8.11) 1 (2.86) 0.647 8 (47.06) 9 (56.25) 0.732

Differentiation
(poor, %)

21 (56.76) 23 (65.71) 0.436 6 (35.29) 10 (62.5) 0.169

BCLC (%)

0-A 4 (10.8) 10 (28.6) 0.324 1 (5.9) 4 (25.0) 0.313

B 22 (59.5) 15 (42.9) 9 (52.9) 7 (43.8)

C 11 (29.73) 10 (28.6) 7 (41.2) 5 (31.3)

Imaging findings

Tumour size
(>5cm; %)

19 (51.35) 19 (54.29) 0.803 10 (58.82) 11 (68.75) 0.721

Multifocality (%) 11 (29.73) 10 (28.57) 0.914 4 (23.5) 1 (6.3) 0.335

Ill border (%) 16 (43.2) 17 (48.6) 0.65 9 (52.9) 10 (62.5) 0.728

Portal invasion (%) 18 (48.7) 12 (34.3) 0.217 8 (47.1) 9 (56.3) 0.732

Pseudo–capsule (%) 19 (51.4) 14 (40.0) 0.334 9 (52.9) 7 (43.8) 0.732

AP
hyperenhancement
(%)

34 (91.9) 33 (94.3) 0.949 14 (82.35) 15 (93.8) 0.601

PVP
hypoenhancement (%)

34 (91.9) 33 (94.3) 0.949 16 (94.11) 14 (87.5) 0.601

Radiologic evidence of
necrosis (%)

27 (77) 23 (65.7) 0.504 10 (58.8) 11 (68.8) 0.721

Peritumoral
enhancement (%)

18 (48.7) 12 (34.3) 0.217 7 (41.2) 9 (56.3) 0.494
fro
Unless otherwise indicated, data are the number of patients. HBV, hepatitis B surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AFP, alpha-fetoprotein; CEA,
carcinoembryonic antigen; TBIL, total bilirubin; PLT, platelet count; ALB, albumin; GGT, g-glutamyl transpeptidase; MVI, microvascular invasion; BCLC, Barcelona Clinic Liver Cancer; SD,
standard deviation; AP, arterial phase; PVP, portal venous phase.
ntiersin.org

https://doi.org/10.3389/fimmu.2025.1435668
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hapaer et al. 10.3389/fimmu.2025.1435668
Prediction model for identifying PD-1

Univariable logistic regression analysis showed that radscore

(odds ratio (OR), 3.412; 95% confidence interval (CI), 1.562 to

7.453, P = 0.002), ALT level (OR, 0.159; 95% CI, 0.038 to 0.673, P <
Frontiers in Immunology 06
0.012), tumor size (OR, 0.243; 95% CI, 0.059 to 1.003, P = 0.05)

and tumor margin (OR, 0.170; 95% CI, 0.044 to 0.664, P = 0.011)

were independently vulnerable to histologic PD-1, and these

significant factors were then selected into a multivariate logistic

regression, and at the multivariate analysis, serum creatinine
FIGURE 2

Representative images of different phases of CECT and PD-1 status by immunohistochemical staining (PD-1 positive (A–D); PD-1 negative (E–H).
FIGURE 3

Survival curves according to histological and radiomics model-predicted PD-1 status. OS curves scaled by histologic PD-1status (A) and radiomics
model-predicted PD-1 status (B) with Kaplan-Meier analysis. The classification of radiomics model-predicted PD-1 status was derived using the
optimal threshold that maximizes the Youden index of receiver-operating characteristic analysis. OS, overall survival.
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(p = 0.063, OR 0.95, 95% CI 0.91–1), peritumoral enhancement (p

= 0.091, OR 3.12, 95% CI 0.83–11.7), and radiomics scores (p

<0.001, OR 2.63, 95%CI 1.54–4.47) were all independent

significant variables associated with PD-1 expression (Table 2).

The Akaike information criterion (AIC) was calculated to assess

the risk of data overfitting.

Incorporated with these independent risk factors, the radiomics

model yielded a good performance for stratifying PD-1 status and

presented as a nomogram to provide individualized risk estimates
Frontiers in Immunology 07
(Figure 4). The formula of the radiomics model for predicting PD-1

is given below:

Y (PD − 1) = 0:965 ∗Radscore − 0:047 ∗Creatinine

+ 1:139 ∗Peritumoral enhancement + 2:918

Accordingly, a clinical model was produced with moderate

performance. The formula of the clinic radiologic model for

predicting PD-1 is given below:
FIGURE 4

Diagnostic performance of the three models. The developed radiomics model nomogram (A) for PD-1 status prediction, which is scaled by the
proportional regression coefficient of each predictor. Comparison of receiver operating characteristic curves of the radscores, clinical model and
radiomics model in the training (B) and validation (C) cohorts.
TABLE 2 Univariate and multivariate analyses of factors related with PD-1 status.

Risk factors Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Creatinine 0.95 (0.92-0.99) 0.007* 0.95 (0.91-1) 0.063

Peritumoral enhancement 2.77 (1.07-7.20) 0.037* 3.12 (0.83-11.7) 0.091

Radiomics Scores 2.72 (1.63-4.53) <0.001* 2.63 (1.54-4.47) <0.001*
* referred to P<0.05; CI, confidence interval.
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Y (PD − 1) = −0:0432 ∗Creatinine

+ 0:923 ∗Peritumoral enhancement + 2:679

Excellent interobserver agreement was observed for the

imaging feature evaluation, with Kappa value of 0.830 for

peritumoral enhancement.
Model evaluation

ROC curves of validation group showed stability of the

radiomics model (Figure 3). The diagnostic performance of the

radiomics model was superior to that of clinical model with AUCs

of 0.897 (95% CI, 0.83- 0.97) vs 0.742 (95% CI, 0.627-0.856) in
Frontiers in Immunology 08
training cohort and 0.794 (95% CI,0.636-0.952) vs 0.651 (95% CI,

0.454-0.847) in validation cohort, with a sensitivity of 88.6%,

specificity of 75.7% in training cohort and sensitivity of 87.5%,

specificity of 52.9% in validation cohort (Table 3). Radiomicd model

show good specificity, the clinical model and radiomics score

showed better sensitivity relatively. The calibration curve analysis

demonstrates that PD-1 status predicted by the radiomics model

fitted well with the actual PD-1 phenotypes in both cohorts. As part

of this study, we also tested the incremental value of the radscores

with respect to clinical model for predicting PD-1 using a decision

curve analysis, as described in Figure 5. Decision curves analysis

demonstrated that the radiomics model combined with clinical

model and radscores did provide a net benefit compared with the

clinical model.
FIGURE 5

Decision curves of each model. Decision curves analysis of three models in the training (A) and validation cohorts (B). The y-axis measures the net
benefit, which was calculated by summing the benefits (true-positive results) and subtracting the harms (false-positive results). The radiomics model
provided the highest net benefit compared with the radscores and clinical model.
TABLE 3 Performance of prediction model in the training and validation cohorts.

Model
Training group

P value
Validation group

P value
AUC (95% CI) Sensitivity Specificity AUC (95% CI) Sensitivity Specificity

Radiomics score 0.852 (0.764-0.940) 88.6% 75.7% 0.1371 0.79 (0.630-0.951) 87.5% 52.9% 0.2841

Clinical model 0.742 (0.627-0.856) 88.6% 51.4% 0.0022 0.651 (0.454-0.847) 81.2% 47.1% 0.2262

Radiomics model 0.897 (0.825-0.968) 74.3% 94.6% 0.4413 0.794 (0.636-0.952) 75.0% 70.6% 0.9053
fro
1AUCs of radiomics score and clinical model were compared; 2AUCs of clinical model and radiomics model were compared; 3AUCs of radiomics score and radiomics model were compare.
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Discussion

In this study, we established and validated a radiomics model

based on CECT images for PD-1 prediction in patients with HCC.

We concluded that radiomic features are of great value to

complement clinicopathologic features for PD-1 prediction. In

addition, the PD-1 status predicted by the model were

independently associated with long-term mortality which suggests

that our model could potentially be used for evaluating patients

most likely to benefit from sorafenib as a potentially combination

therapy regimen with immune checkpoint therapies.

Current acquisition of tumor’s immune microenvironment is

based on histological specimens which is limited by intratumoral

heterogeneity comparted with whole tumor analysis of radiomics. In

this study, radiomics features provided increased power (AUC = 0.852)

for PD-1 prediction in HCC patients and were indicated to be

independent predictors for PD-1 in the final radiomics model. The

radiomics model used in our study significantly outperformed the

clinical model in discriminatory ability (AUC 0.897 vs 0.752 in training

cohort; AUC 0.794 vs 0.651 in validation cohort). Previous studies have

used radiomics analysis for noninvasive assessment of molecular and

clinical-pathologic characteristics of tumors (18–20). Wang Q et al.

proposed an RF-based radiomics analysis method for PD-1 prediction

in HCC patients (21). Yuan G et al. developed a radiomics nomogram

at patient-level based on CECT to predict the anti-PD-1 treatment

efficacy in patients with advanced HCC (22). Both a lesion-based

approach and patients-based approach were applied in the study of Cui

H et al. to evaluate the response of anti-PD-1 therapy in patients with

HCC based on CECT radiomics model (23). These previous studies

whether used radiomics analysis based on ultrasound multi-feature

maps for PD-1 expression prediction or CECT radiomics method to

predict the therapeutic efficacy of PD-1 immunotherapy. No study

before tries to combine radiomics analysis based on CECT images with

PD-1 prediction in HCC patients. In this study, we developed a

satisfactory radiomics model. Among the features selected for the

fusion Rad-score construction, the wavelet-based features occupied

more than half (10/17) in our study, which shows the vital role of

wavelet-based features in the prediction model for they can better

explore the spatial heterogeneity of tumors at multiple scales (24, 25).

During the preoperative work-up, the clinicoradiologic features of

serum creatinine levels (P =0.007) and the peritumoral enhancement

(P =0.037) were independently associated indicators for preoperative

evaluation of PD-1 in HCC patients. Previous studies have showed that

serum creatinine can be independent predictors for hepatic

decompensation (26). Lambrecht J et al. developed a novel blood-

based diagnostic APAC score, consisting of age, soluble platelet-derived

growth factor receptor beta, AFP and creatinine, for early diagnosis of

HCC patients with liver cirrhosis (27). Chen Y et al. to study the risk

factors of AKI after liver transplantation, and the results show that

chronic severe hepatitis and preoperative creatinine may be potential

risk factors for the occurrence of AKI after liver transplantation (28).

Ho CT et al. developed a risk scores using conventional methods and

ML(machine learning) to categorize early-stage HCC patients into

distinct prognostic groups. Factors for the CATS-IF score were selected

by the conventional method, including age, curative treatment, single

large HCC, serum creatinine and alpha-fetoprotein levels, fibrosis-4
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score, lymphocyte-tomonocyte ratio, and albumin-bilirubin grade, and

both the conventional Cox-based CATS-IF score and ML-based

CATS-INF score effectively stratified patients with early-stage HCC

into distinct prognostic groups (29). Our final radiomics model

incorporates creatinine as a predictive feature suggesting a

relationship between creatinine and PD-1 status, in accordance with

previous results of creatinine prediction function for liver cancer (27,

30). The peritumoral enhancement was shown to be associated with

PD-1 expression. It may be related to peritumoral hemodynamic

changes caused by positive PD-1. PD-1, known to be a key immune-

checkpoint receptor, functions primarily in peripheral tissues where T

cells may encounter the immunosuppressive PD-L1 and PD-L2. By

blocking effector functions between PD-1 and PD-L1 and reducing T-

cell killing capacity, PD-1 positive cells tend to grow with invasive

margin with more angiogenesis.

The multi-kinase inhibitor sorafenib, which is the only

approved agent recommended by the AASLD for advanced HCC,

is currently recommended as the first-line therapy in these patients.

STORM trial show the median DFS in the sorafenib group was not

significantly improved compared with the placebo group (31). The

network meta-analysis (32) show sorafenib had the trend of

increasing recurrence rate, but there were no significant

differences between them, however some subsequent studies have

made different findings (33–35) whether sorafenib should be used

exclusively as adjuvant therapy for HCC after curative resection

remains controversial, this would need to be confirmed by more

regional, well-designed randomized controlled trials (36). A unified

guide is still lacking today, In clinical practice, comprehensive

analysis is needed, according to the specific situation of patient

choose the appropriate adjuvant therapy methods.

Decrease in PD-1 expression on T cells has been reported to be

associated with improved HCC prognosis in patients following

sorafenib treatment, prior anti-PD-1 antibody treatment can

amplify HCC response to sorafenib therapy (37, 38). Greater

decreases in the numbers of CD4+PD-1+ T cells or CD8+PD-1+

T cells after sorafenib therapy were correlated with better OS, which

indicates the immunomodulatory effect of sorafenib.

Many scholars have applied radiomics for postoperative prognosis

prediction of HCC (39). Yu et al. reported that the intratumoral or

peritumoral radiomics model could predict prognosis for HCC

patients with vessels encapsulating tumor clusters (40). In our study,

PD-1wasassociatedwithOSand the radiomics-predictedPD-1was an

independentpredictor ofOS inpatientsusing sorafenib treatmentafter

surgery. These suggest that our computational-assisted model could

potentially be used for evaluating patients most likely to benefit from

sorafenib as a potentially combination therapy regimen with immune

checkpoint therapies, enhancing the immune-based strategies

therapeutic efficacy against advanced malignancies.

Our study had several limitations. Firstly, our study was

developed on a limited sample size collected retrospectively in a

single center, additional external cohorts with a large study

population are needed for its stability and generalizability.

Secondly, because specimen staining is required, a large number

of patients with advanced HCC who are losing chance for surgery

because of bad condition were excluded. Potential selection bias

may influence the OS results, since sorafenib treatment is more
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commonly used in that kind of patients. Thirdly, multi-parametric

MRI has assumed to provide muti-scale information of liver

neoplasia, especially MRI with gadoxetic acid, could provide more

efficient information is worthy of exploration.
Conclusion

In conclusion, the proposed combined model based on CT

radiomic signatures demonstrate good performance for

preoperatively prediction of PD-1 in HCC patients. The radiomics

features may provide a promising opportunity to improve clinical

decision support for patients with immunotherapeutic approaches.

Although our study showed a high predictive power, future research

with external independent cohorts and prospective validations were

required to validate it before translating into clinical implementation.
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