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Drp1–associated genes
implicated in sepsis survival
Marissa D. Pokharel1,2†, Anlin Feng1,3†, Ying Liang1,3, Wenli Ma1,3,
Saurabh Aggarwal2, Hoshang Unwalla2, Stephen M. Black1,2,3

and Ting Wang1,2,3*

1Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States,
2Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, United
States, 3Department of Environmental Health Sciences, Florida International University, Miami,
FL, United States
Sepsis is a severe and life-threatening medical syndrome that can lead to organ

failure and death. Despite advances in medical treatment, current therapies are

often inadequate, with high septic mortality rates. Therefore, there is a critical

need for reliable prognostic markers to be used in clinical settings to improve the

management and outcomes of patients with sepsis. Recent studies have

suggested that mitochondrial dynamics, including the processes of

mitochondrial fission and fusion, are closely related to the severity of sepsis

and the status of inflammation. By monitoring transcriptomic signals related to

mitochondrial dynamics, new and reliable biomarkers can be engineered to

more accurately predict sepsis survival risk. Such biomarkers would be invaluable

in clinical settings, aiding healthcare providers in the early identification of high-

risk patients and improving treatment strategies. To achieve this goal, we utilized

the major mitochondrial fission regulatory protein dynamin-related protein 1

(Drp1, gene codeDNM1L) and identified Drp1-associated genes that are enriched

with sepsis survival genes. A 12-gene signature (GS) was established as a

differentially expressed gene (DEG)-based GS. Next, we compared genes of

proteins that interact with Drp1 to sepsis survival genes and identified 7 common

genes, establishing a GS we term as protein-protein interaction (PPI)-based GS.

To evaluate if these GSs can predict sepsis survival, we used publicly available

human blood transcriptomic datasets from sepsis patients. We confirmed that

both GSs can successfully predict sepsis survival in both discovery and validation

cohorts with high sensitivity and specificity, with the PPI-based GS showing

enhanced prognostic performance. Together, this study successfully engineers a

new and validated blood-borne biomarker (PPI-based 7-gene GS) for sepsis

survival risk prediction. This biomarker holds the potential for improving the early

identification of high-risk sepsis patients and optimizing personalized treatment

strategies to reduce sepsis mortality.
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1 Introduction

Sepsis is a deadly syndrome comprised of many dysregulated

pathways in response to infection or injury, ultimately leading to

organ dysfunction and damage (1). Sepsis remains a major public

health concern due to its high incidence, mortality rate, and strain

on the hospital care system (2). The mortality rate is estimated to be

41.9% for intensive care unit (ICU) septic patients (3).

Unfortunately, increasing sepsis survival is not the only hurdle in

treating sepsis; but quality of life after sepsis is a major concern (4–

6). It is estimated that nearly 75% of sepsis survivors have deficits in

at least one activity of daily life (7). Currently, the only treatment for

sepsis is the administration of intravenous broad-spectrum

antibiotics, with the ideal administration within an hour of sepsis

recognition (8). Sepsis survival drops 7.6% every hour that

administration of antibiotics is delayed (9). This short window for

antibiotic administration means early detection of sepsis is critical.

Sepsis treatment includes supportive care, which involves the

initiation of vasopressors and aggressive fluid therapy (10, 11).

However, supportive care only offers limited/modest success (12,

13). This means that the only proven treatment to reduce sepsis

mortalities is early detection and immediate administration of

antibiotics. Unfortunately, there are no reliable biomarkers or

metrics that have been proven to detect sepsis early. Therefore,

the only recourse for clinicians is to perform repeated blood

cultures to monitor serum lactic acid levels and blood pressure in

the hope of identifying sepsis or septic shock cases early (8), causing

significant strain on hospital resources. Septic shock is the most

severe form of sepsis and patients with septic shock have dire

metabolic and cellular abnormalities that are associated with higher

mortality rates than sepsis alone (1).

Historically, sepsis progression has been divided into two

inflammatory stages. Originally, the first stage was believed to be a

pro-inflammatory stage where a cytokine storm induces a profound

and intense immune response, followed by a compensatory, anti-

inflammatory stage. Early investigations targeted the presumed first,

pro-inflammatory stage and evaluated anti-inflammatory treatments.

These strategies were unsuccessful in clinical trials (14–16). Newer

evidence suggests that sepsis is not biphasic, with a distinct pro-then

anti-inflammatory stage, but rather occurs simultaneously (17). This

is likely due to the complexity of immune responses, where

pathways constantly interact and modulate one another (18).

Immunomodulation has been the predominant target tested in

sepsis clinical trials. Despite over 100 randomized clinical trials

testing immunomodulation, they have failed to yield even one

successful drug or strategy (19). This failure likely stems from the

cross-talk of the immune response; thus, simply augmenting or

inhibiting specific immunomodulators does not have the intended

effect as the system responds to this modification. Although further

testing is needed to verify why immunomodulation has failed to

clinically demonstrate efficacy, the overwhelming failure of

immunomodulatory clinical trials emphasizes that this is not a

valid strategy for sepsis treatment; therefore, research effort needs

to be allocated to other approaches.
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Sepsis is known to be the cumulation of multiple dysregulated

pathways; therefore, it is critical to identify therapeutics that target

multiple pathways (20, 21). Mitochondria are known to play critical

roles in a multitude of pathways involved in maintaining

homeostasis (22, 23), suggesting that targeting mitochondria may

modulate multiple aberrant pathways associated with sepsis

progression. For example, mitochondria supply the energy and

metabolic intermediates that are needed for immune cell activation

and function and influence inflammatory and cell death pathways

(24). Dysfunctional mitochondria are well documented in sepsis

(25–28), although modulation of mitochondria remains primarily

untested. Of importance, mitochondrial dysfunction is evident

during the early stages of sepsis and is believed to play a critical

role in the initiation of organ damage (29).

Mitochondria are highly dynamic organelles that exist in

networks rather than individually. Mitochondrial networks can

modulate their function by combining (fusion) or separating

(fission). The cell contains a multitude of mitochondrial networks

that are constantly performing fusion or fission to modulate their

function to adapt to cellular demands, a process referred to as

mitochondrial dynamics (23, 30). Since patients with the highest

mortality rates have pronouncedmetabolic and cellular abnormalities

(1), it is likely that these patients also exhibit greater mitochondrial

dysfunction, although tests are needed to evaluate this postulation.

For that reason, we hypothesize that altered mitochondrial function

plays a critical role in regulating immune and cell responses, which

lead to more severe cases of sepsis and may present an opportunity

for earlier diagnosis. Because of the close relationship between

mitochondrial dynamics and overall mitochondrial function, our

study evaluated dynamin-related protein 1 (Drp1), which is

recognized as one of the major regulators of fission and is one of

the most studied mitochondrial network mediators (31). Therefore,

the aim of this study was first to evaluate the expression of genes

related to mitochondrial dynamics to determine if there is a

relationship between these genes and sepsis survival. Moreover, we

aim to establish a new circulating (Drp1-related) gene signature to

predict sepsis survival and validate it as a powerful and independent

prognostic tool for further clinical application.
2 Materials and methods

2.1 Microarray datasets and sepsis survival-
related genes

We previously have identified genes that are differentially

expressed between patients with a low or high risk of sepsis-

related death (32). These genes were identified using two human

peripheral blood mononuclear cell datasets from ArrayExpress

datasets, E-MTAB-4421 and E-MTAB-4451. Samples from these

datasets were collected from patients at 4 weeks after intensive care

unit admission. Discovery cohort E-MTAB-4421 includes 187

sepsis survivors and 78 non-survivors, with a male-to-female ratio

of 145:120 and a mean age of 62 ± 16 years. Validation cohort E-

MTAB-4451 comprises 50 sepsis survivors and 56 non-survivors,
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with a male-to-female ratio of 79:27 and a mean age of 69 ± 14

years. Differentially expressed genes (DEGs) were only considered

significant if the fold change was greater than 1.5 and the false

discovery rate (FDR) was less than 5%. Here, we use E-MTAB-4421

as the discovery cohort and E-MTAB-4451 as the validation cohort

to test this Drp1-gene signature.
2.2 Sepsis survival score

To generate a practical sepsis survival score, we used a linear

combination of gene expression values and their corresponding

weight values in the Drp1-associated gene signature. The sepsis

survival score is as follows:

sepsis survival score =  o
n

i=1
Wi(

ei − mi

Si
)

Wherein n is the number of genes in the Drp1-associated gene

signature for each dataset, Wi shows the weighted value of each

gene, ei is the expression level of each gene, and mi and Si are the

mean and standard deviation values, respectively, for the

corresponding gene compared the whole sample. Scores above the

mean sepsis survival score were classified into the high sepsis

survival score cohort, while the values below the mean were

classified into the low sepsis survival score cohort.
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2.3 Enrichment analysis

To generate a list of Drp1-related genes, we first identified genes

that significantly changed during Drp1 upregulation using the Gene

Expression Omnibus (GEO) dataset GSE182710, referred to as

differentially expressed genes (DEGs). To be classified as a DEG,

the genes met the following criteria: fold change > 1.5, FRD < 0.05.

Here, we refer to these genes as the DEGs-based Drp1-associated

genes. Next, we performed a protein-protein interaction (PPI)

analysis of the protein, Drp1, to identify proteins that are

predicted to interact with Drp1 using the STRING database. The

STRING database identifies functional protein association

networks. In our analysis, we only used the primary protein

interactors (also known as 1st shell interactors), which are

proteins that are directly associated with Drp1. Proteins with

interaction scores greater than 0.7 were selected and henceforth

referred to as PPI-based Drp1-associated genes. The protein

network was visualized by Cytoscape (3.10.2).

The two Drp1-associated gene signatures (GS) were obtained by

identifying the common genes between sepsis survival DEGs and

the two Drp1-associated genes described above (DEGs-based and

PPI-based, Figure 1). This enrichment resulted in a 12-gene DEG-

based GS and 7-gene PPI-based GS.

Next, we performed Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis of the generated Drp1-associated genes using the
FIGURE 1

Overview of Gene Signature (GS) Generation. First, we compared Drp1-associated genes to sepsis survival genes and identified 12 common genes,
establishing a GS we term as DEG-based GS (A). Next, we compared genes of proteins that interact with Drp1 to sepsis survival genes and identified
7 common genes, establishing a GS we term as PPI-based GS (B). Drp1, Dynamin-related protein 1; DEGs, differentially expressed genes; PPI,
protein-protein interaction; GS, gene signature.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1516145
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pokharel et al. 10.3389/fimmu.2024.1516145
database for annotation, visualization, and integrated discovery

(DAVID, version 6.8, https://david.ncifcrf.gov/tools.jsp). DAVID is a

biological and functional annotation database that aids in the

interpretation of gene/signaling pathway interactions. We

repeated KEGG analysis for the sepsis-survival genes. We

excluded irrelevant pathways, such as diseases that are not

associated with sepsis. Adjusted p-values less than 0.05 were

considered to be significant.

To validate the accuracy of our PPI analysis, we generated

correlation matrixes for both GS using the R package “corrplot”

(version 0.92). The genomic annotation file for humans (Genome

assembly GRCh37) was obtained from the UCSC Genome Browser.

The circular plot was generated by the R package “circlize” (version

0.4.10). All sepsis survival-related genes were visualized as dots, and

genes in two gene signatures were marked in the inner circle.
2.4 Evaluating prognostic capabilities of GS

To validate that these GSs have the prognostic capability of

distinguishing between high and low sepsis risk groups, we

performed a variety of assessments. First, we generated gene

expression heatmaps of both GS and grouped patients by their

sepsis-risk group. The heatmaps were visualized using the R

package “gplots” (version 3.1.3.1). The method “complete” was

used for hierarchical clustering, and the method “euclidean” was

utilized for distance calculation. The survival scores for each GS

were calculated and then plotted in violin plots using the R package

“ggplot2” (version 3.5.1). The ROC curves were generated by R

package “pROC” (version 1.18.5), and the AUC values were

calculated by the function “auc”.
2.5 Running enrichment score

To determine the running enrichment score, the gene

expression matrix of the discovery cohort and gene sets derived

from the KEGG pathway were used as input for gene set enrichment

analysis (GSEA). The analysis was performed using the default

parameters in R package GSEA_R (version 1.2) and adjusted p-

values less than 0.25 were considered to be significant. An

unsupervised method called Gene Set Variation Analysis (GSVA)

by the R package GSVA (version 3.18) was also performed on the

discovery cohort and gene sets derived from the KEGG pathway to

estimate the variation of KEGG gene sets enrichment across

the samples.
2.6 CIBERSORT

We estimated the immune cell proportions in the sepsis datasets

and evaluated if there were different immune cell proportions

between the low- and high-score cohorts generated from the Drp1-

PPI GS. We used CIBERSORT (version 1.04) (33) to assess the

proportions of immune cell populations in the discovery dataset.
Frontiers in Immunology 04
2.7 Statistical analysis

The R packages, ade4 (Version: 1.7-22) (34) and pROC

(Version: 1.18.5) (35) were used to generate the PCA plots and

the ROC curves. Values with false discovery rates (FDR) less than

0.05 were considered to be significant.
3 Results

First, we sought to identify genes related to Drp1 protein

expression. To accomplish this, we used the publicly available

GEO dataset containing the gene expression data from human

cells where Drp1 was overexpressed and from control cells

(GSE182710). With this, we identified 438 genes differentially

expressed (DEGs) after Drp1 overexpression, henceforth referred

to as the DEG-based Drp1-associated genes (Supplementary

Table 1). Next, we performed a protein-protein interaction (PPI)

analysis of the protein, Drp1, to identify proteins predicted to

interact with Drp1 using the STRING database. This method

resulted in an additional 244 genes associated with Drp1,

designated as PPI-based Drp1-associated genes (Supplementary

Table 2). We then enriched these two sets of Drp1-associated

genes with genes related to sepsis survival. This revealed 12 and 7

common genes between the sepsis survival genes and the DEG- or

PPI-based Drp1-associated gene sets, respectively (Figures 2A, B,

Table 1). We designated the 12 and 7 gene sets as DEGs and PPI

Drp1-gene signatures (GS), respectively.

We then performed KEGG pathway analysis using both the

Drp1 DEGs and PPI gene signatures (Figure 2C). This revealed 6

pathways that are enriched in these genes: mitophagy, autophagy,

the NOD-like receptor, TGF-b, and PI3K-Akt signaling pathways.

We have previously published a gene signature that differentiates

between patients with a low or high risk of sepsis-related death and

compiled a list of genes related to sepsis survival (32). KEGG

analysis of these genes reveals 15 pathways enriched in sepsis-

survival genes, consisting of primarily immunomodulatory

pathways (Figure 2D). We then assessed the correlation of the

Drp1-associated genes with the other genes in their respective GS to

validate that PPI GS was generated correctly (Figures 2E, F). As

expected, the Drp1-DEGs GS consists of genes with relatively low

correlation with one another (Figure 2E). On the other hand, the

Drp1-PPI GS consists of genes that are highly correlated with one

another (Figure 2F). The PPI network of this GS is shown in

Figure 2G, meanwhile, no connection was found within Drp1-

DEGs GS. The location of the genes of both GS are shown in

Figure 2H, with the Drp1-DEGs GS represented by blue lettering,

and the Drp1-PPI GS represented by red lettering in the inner circle.

The dots in the middle circle represent the locations of genes related

to sepsis survival, with red dots representing upregulated and blue

dots representing downregulated sepsis survival-related genes.

Next, we sought to evaluate both GS for their capabilities of

distinguishing high and low sepsis risk groups. To accomplish this,

we first compiled the expression levels of the individual genes

within the GS and separated the low and high-risk patients. We
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obtained heatmaps of the DEGs-based (Figure 3A) and PPI-based

(Figure 3B) GS, which both show expression patterns that

differentiate low and high-risk sepsis groups from the discovery

cohort. To confirm this differentiation, we generated violin plots of
Frontiers in Immunology 05
the sepsis survival scores of both gene signatures in the discovery

and validation cohorts. To calculate sepsis survival scores, we used

our previously published formula (32), which assesses the

probability of septic death in each patient. Lower score values
FIGURE 2

Differentially expressed genes and protein-protein interaction analysis revealed a 12 and 7 Drp1-associated gene signature that corresponds with
sepsis survival genes. 12 of 438 Drp1-associated genes (generated by identifying DEG after Drp1 overexpression) match genes related to sepsis
survival (A), these 12 genes are referred to as DEG-based GS. PPI analysis of Drp1 identified 244 Drp1-associated genes. 7 of these genes are
common between the Drp1-associated genes and sepsis survival genes (B), these 7 genes are referred to as PPI-based GS. KEGG analysis was used
to identify pathways enriched with both Drp1-associated GS (C) and pathways enriched with the sepsis survival genes (D). The correlation matrix of
Drp1-DGEs (E) and Drp1-PPI GS (F) shows the relationship of individual genes compared to the other genes in the GS. PPI network for the genes in
the PPI-based GS (G), and DEG-based GS have no interactions. Genomic locations for both GS are shown in a circular plot (H), with the DEG-based
GS represented by blue lettering, and the PPI-based GS represented by red lettering. Red dots represent upregulated genes and blue dots represent
downregulated genes related to sepsis survival. Drp1, Dynamin-related protein 1; DEGs, differentially expressed genes; PPI, protein-protein
interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, adjusted p-value; GS, gene signature; IR, immune response.
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indicate a worse prognosis and survival rate, we labeled this group

as the high-risk septic patients. Higher scores were classified as low-

risk septic patients. Both sepsis survival score violin plots

demonstrate that the DEG-based (Figure 3C) and the PPI-based

(Figure 3D) GS successfully differentiate between low and high-risk

sepsis patients, with the PPI-based GS providing greater separation

between the low and high-risk groups. To evaluate both the

specificity and sensitivity of the gene signatures, we generated a

receiver operating characteristic curve (ROC) for the DEG-based

(Figure 3E) and PPI-based (Figure 3F) GS. These ROC curves reveal

an AUC value of 0.89 for the discovery cohort using the DEG-based

GS and 0.97 using the PPI-based GS. For the validation cohort, the

DEG-based GS has an AUC value of 0.69 and the PPI-based GS has

a value of 0.91, indicating that the PPI-based GS is more specific and

sensitive compared to the DEG-based GS. Principal component

analysis (PCA) of both gene signatures shows that the DEG-based

(Figure 4A) and PPI-based (Figure 4C) GS can completely

differentiate high-risk sepsis patients from low-risk patients in

both the discovery and validation cohorts. The PCA analysis for

DEG-based GS represents 78.5-84.2% of the variable expression

data. The PCA analysis for PPI-based GS represents 52.6-59.3% of

the variable expression data.
Frontiers in Immunology 06
To confirm that both gene signatures are more predictive of

sepsis risk than a random set of whole genome genes (blue) or a

random set of sepsis-survival genes (yellow), we plotted the density

distribution of the AUC for the whole genome and sepsis-survival

genes (Figures 4B, D). The sum of the DEG-based GS AUC value

(1.58) and the sum of the Drp1-PPI GS AUC value (1.88) are

indicated by the red inverted triangles. These results indicate that

both the DEG-based and PPI-based GS have a prognostic power

greater than random genes from the whole genome. However, the

PPI-based GS has prognostic power that is greater than that of other

random genes related to sepsis survival, while the DEG-based GS

does not. Therefore, we selected the PPI-based GS to calculate sepsis

survival scores for the patients in the discovery cohort.

In order to understand the cellular and molecular mechanism of

the prognostic power of the PPI-GS, we compared the transcriptomic

and cellularity differences between the high-score and low-score

groups. Using the PPI-based GS, we then re-clustered the patients

into high-survival score (Supplementary Table 3) or low-survival

score (Supplementary Table 4) cohorts based on whether the survival

scores of these samples were higher or lower than the medium

survival score across all samples. With the new cohorts generated

from the PPI-based GS, we identified DEGs in the high-survival score

cohorts in comparison to the low-survival score cohorts, where low-

survival scores indicate a higher-risk group for sepsis severity. KEGG

analysis shows that the upregulated genes in the high-score, low-risk

cohort are enriched in the ribosome, DNA replication, T cell, and

RNA pathways. While the downregulated genes in this lower-risk

group are enriched in the metabolic and the complement and

coagulation pathways (Figure 5A). We then utilized Gene Set

Variation Analysis (GSVA) to identify additional pathways

enriched in the high scores, lower-risk cohort (Figure 5B). This is

highly consistent with the KEGG analysis in DEGs. We then

generated a heatmap of the pathways identified by GSVA. This

revealed pathway enrichment patterns that could differentiate

between low- and high-sepsis survival score patients (Figure 5C).

Using gene set enrichment analysis (GSEA), we found that the

high-score, lower-risk cohort has increased T-cell signaling and

decreased metabolic signaling (Figure 5D). Because the results from

KEGG, GSVA, and GSEA all indicate an alteration in immune

pathways (Figures 5A–D), we used CIBERSORT to estimate the

proportions of immune cells in the entire discovery cohort

(Figure 5E). Lastly, we separated the low- and high-risk cohorts

from one another (Figure 5F). This separation reveals a predicted

immune profile shift between the low and high-risk groups.

Specifically, the lower-risk patients are predicted to have

decreased levels of neutrophils and increased activation of NK cells.
4 Discussion

Despite immense research efforts, there are still no available

therapeutics for treating sepsis other than general antibiotics and

source control. Early recognition and action are the only courses of

action for physicians to improve patient outcomes (12, 36). This

necessitates a quick diagnosis to reduce sepsis mortality.

Unfortunately, the identification of patients at risk of septic death
TABLE 1 List of genes in the Drp1-associated gene signatures.

Drp1-associated Genes

GS Name Gene

DEG-based GS

SLC4A7

PDCD2L

UPP1

ARL4C

NELL2

LEF1

SGK1

PDE4D

S1PR3

MCTP2

HES6

OLR1

PPI-based GS

AFG3L2

BCL2

ITPR3

LONP1

OPTN

PHB

TOMM40
Two gene signatures were generated: Drp1-DGEs GS and Drp1-PPI GS. Drp1, Dynamin-
related protein 1; DEGs, differentially expressed genes; PPI, protein-protein interaction; GS,
gene signature.
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may not be sufficient to reduce mortality rates. This is exemplified

in a retrospective cohort study of 6 hospitals between 2014 and

2015, where only 3.7% of sepsis-associated deaths were considered

to be either moderately or definitively preventable (37). This

suggests that even early identification of high-risk patients and

subsequent implementation of aggressive treatments will only

minimally improve sepsis outcomes. This highlights the urgency

to identify new strategies to test and implement to improve sepsis

survival. In this study, we identified Drp1-associated genes as a
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predictor of sepsis survival, which not only reveals a novel

biomarker but also calls attention to mitochondrial dynamics as a

pathway that should be investigated for therapeutic development.

Recent research efforts have called attention to the potential and

likely connection between septic organ failure and mitochondrial

function (27, 38). For example, it has been proposed that

mitochondrial dysfunction may explain why there is minimal cell

death observed during sepsis-induced organ failure. Additionally,

mitochondrial dysfunction could also explain how tissues maintain
FIGURE 3

Drp1-associated gene signatures differentiate between low and high-risk sepsis groups in both the discovery and validation cohort. Heatmap of the
DEG-based (A) and PPI-based GS (B) reveal expression patterns that differentiate low and high-risk sepsis groups. Violin plots of the sepsis survival
scores from DEG-based (C) and the PPI-based (D) GS show that these gene signatures successfully differentiate between low and high-risk sepsis
patients in both the discovery and validation cohorts. ROC curves of the DEG-based (E) and PPI-based (F) GS exhibit the sensitivity and specificity of
these gene signatures. Drp1, Dynamin-related protein 1; DEGs, differentially expressed genes; PPI, protein-protein interaction; GS, gene signature;
ROC, receiver operating characteristic curve.
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oxygen levels during sepsis. Moreover, mitochondria have been

speculated to mediate the rapid recovery of organ function in

survivors, even in organs notoriously poor at regeneration (39–43).

Since mitochondria are the leading harnessers of oxygen, it is plausible

that mitochondrial function may explain these seemingly paradoxical

findings. At the center of mitochondrial function is mitochondrial

dynamics, in which networks of mitochondria alter their shape to

modulate their function. Importantly, mitochondrial dynamics

connects a multitude of pathways (23) and has vast implications for

diseases with multiple perturbed pathways, including sepsis. Here, we

provide evidence that mitochondrial dynamics is connected to sepsis

severity by demonstrating the prognostic capability of the major

regulator of fission, Drp1. Additionally, we demonstrate that Drp1

and its associated proteins likely influence multiple signaling pathways.

Historically, sepsis pathobiology was credited to excessive

inflammation. However, this is now widely disputed, resulting in

sepsis being redefined (1). It is now accepted that both pro- and anti-

inflammatory responses are activated during the early phases of

sepsis (17) and that a multitude of nonimmunological pathways are

perturbed in addition to abnormal immune responses (44–46).

Activation of the Toll-Like Receptor 4 (TLR4) signaling pathway is

regarded as a critical component of sepsis (47), releasing pro-

inflammatory mediators and reactive oxygen and nitrogen species

(48). Attempts to antagonize TLR4 have failed to improve mortality

rates (16), suggesting that TLR4 activation may contribute to sepsis

development; however, severity may be determined by a more

downstream component. In support of this, we recently published

that TLR4 agonists increase mitochondrial fission through activation

of Drp1 (49). This and our previously published findings lead us to

conjecture that mitochondrial dynamics play a critical role in
Frontiers in Immunology 08
determining sepsis severity. It is tempting to speculate that

pathways activated during sepsis may modulate mitochondrial

dynamics, leading to dysfunction that perpetuates mitochondrial

damage and disease progression. Postulations aside, this study

demonstrates that Drp1-associated proteins can predict sepsis

severity, implicating mitochondrial dynamics in sepsis progression.

Interestingly, the PPI-based GS predicted sepsis survival better

than the DEG-based GS, as indicated by higher specificity and

sensitivity values. A plausible explanation for this is that the PPI-

based GS consists of proteins that interact with Drp1. Therefore, we

may be identifying genes that have more functional outcomes than

genes identified by Drp1 overexpression. Although further testing is

needed to evaluate this, it does support further evaluation of

mitochondrial dynamics during sepsis. In this study, we used the

STRING database to identify proteins that interact with Drp1, which

generates functional protein association networks grouped into shells.

In our analysis, we only used the primary protein interactors. The

primary interactors represent proteins that are directly associated with

Drp1. On the other hand, the secondary protein interactors (or the 2nd

shell) contain proteins that associate with primary protein interactors.

In this study, we hypothesized that mitochondrial dynamics are

capable of predicting sepsis survival. For that reason, we evaluated

the expression of proteins that are directly associated with Drp1. It

would be interesting to perform further analysis using the 2nd shell to

elucidate which proteins may be enhancing or inhibiting Drp1

activity. Additionally, it would be of value to identify specific

pathways these 2nd shell proteins interact with to isolate a gene

signature with even greater prognostic ability.

In this study, we used datasets from two different biological

sources: primary human peripheral blood mononuclear cells
FIGURE 4

PCA and density distribution plots of both Drp1-associated gene signatures. PCA of both DEG-based (A) and PPI-based (C) GS were performed to
reduce dimensionality and assess the similarity between each individual sample. The PCA showed that both gene signatures can entirely differentiate
high-risk sepsis patients and low-risk sepsis patients. The PCA analysis for DEG-based GS represents 78.5-84.2% of the variable expression data. The
PCA analysis for PPI-based GS represents 52.6-59.3% of the variable expression data. The density distribution of the AUC of random genes (blue)
and sepsis survival-related genes (yellow) shows that both DEG-based GS (B) and PPI-based GS (D) have a prognostic power greater than random
genes from the whole genome. The PPI-based GS (D) prognostic power is greater than that of other random genes related to sepsis survival. The
sum of the DEG-based GS AUC value (1.58) and the sum of the PPI-based GS AUC value (1.88) is indicated by the red inverted triangles. Drp1,
Dynamin-related protein 1; DEGs, differentially expressed genes; PPI, protein-protein interaction; GS, gene signature; PCA, principal component
analysis; AUC, area under the curve.
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(PBMC) and human cell lines. Because the aim of this study was to

evaluate the effects of altered mitochondrial dynamics on sepsis

survival, we chose to focus our study on the major fission regulator,

Drp1, and proteins that are directly affected by Drp1. To identify genes

directly related to Drp1, human cell lines are necessary, as Drp1

deletion causes embryonic lethality in mice (50). Moreover, by using

data from cells, we are only gathering genes directly affected by Drp1

upregulation. Global upregulation of Drp1 in mice causes immense

damage, which would convolute our analysis and cause such a high

degree of dysfunction that the resulting data would no longer have

biological applicability to sepsis (51–53).We then used existing PBMC

expression data to confirm that these genes are detectable and capable

of differentiating between low- and high-risk patients. By using PBMC
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from septic patients, we validated that the identified genes derived

from the human cell lines are relevant in a clinical setting.

One major limitation of this study is the low number of septic

patients with available genetic data. Small data sets are inherently

more prone to bias that may alter or even hide important genetic

evidence. In our study, we used the data set E-MTAB-4421 as the

discovery cohort, consisting of 45.6% female samples, while the

validation cohort E-MTAB-4451 has only 26.3% female samples.

Sex biases in medicine and research are well documented (54–59),

and sex disparity in sepsis severity and survival is also noted in the

field (60). An analysis of sepsis data from 2017 indicates that the

global incidence of sepsis is higher among females (61). This presents

a critical unmet need for studying the sex differences in the response
FIGURE 5

Analysis of low- and high-scores obtained from PPI-based GS. KEGG analysis of the upregulated and downregulated DEGs from high-score, lower-
risk patients in the discovery cohort (A), using the Drp1-PPI GS to generate the sepsis survival scores (Supplementary Tables 3, 4). Gene set variation
analysis (GSVA) shows the logFC of the pathways enriched in the DEGs from the high-score, lower-risk cohort (B). The heatmap generated from the
GSVA shows pathway expression patterns that differentiate the low- and high-score cohorts (C). GSEA shows that the high-score, lower-risk cohort
has increased T cell receptor signaling and decreased expression of metabolic pathways (D). Using CIBERSORT, immune cell proportions in PBMCs
were estimated in the entire discovery cohort (E). Separating the low- and high-risk cohorts shows a predicted immune profile shift between the
groups (F). Specifically, the high-score, lower-risk cohort has decreased levels of neutrophils and increased activation of NK cells. Drp1, Dynamin-
related protein 1; DEGs, differentially expressed genes; PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR,
adjusted p-value; FC, fold change; GS, gene signature; GSVA, gene set variation analysis; GSEA, gene set enrichment analysis (GSEA).
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to sepsis and highlights the necessity to specifically study sepsis and

sex, and include pregnancy status (62, 63). Further, sepsis is well

recognized as a heterogeneous disease state (64), meaning that the

pathogenesis of sepsis is highly influenced by the pathogen, site of

infection, co-morbidities, race, and sex (65–69). Therefore, the

current transcriptome databases are substantially inadequate, and

major effort should be allocated to obtaining larger datasets that

include information on all of these factors for identification of the

expression differences between groups that may be hidden by

aggregating all the different groups together. Additionally, these

datasets lack detailed patient information and the treatments they

received. Because of this lack of information, there may be

confounding factors between the patients who survive and those

who do not. Despite these limitations, we still believe GS could be a

valuable tool to identify high-risk patients.

Another consideration while interpreting the results from our

study is that the generation of this GS was a computational analysis

using data from a retrospective study. Therefore, to confirm our

findings, a prospective study is needed where GS is used at ICU

admission to determine if the high-risk group identified by the GS

has a higher mean length of ICU stay or mortality rate than the low-
FIGURE 6

Gene signature was generated using patient plasma samples to predict sepsi
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risk group. If successful, this may lead to the development of

precision medicine for this group that counters this expression

pattern. Alternatively, this could provide an opportunity to test

therapeutics that have previously failed to demonstrate significance

in clinical trials. Specifically, if our hypothesis of mitochondrial

dynamics being a critical mediator of sepsis severity is correct, that

could mean that drug candidates were tested in a population with

too diverse of sepsis presentations. Sepsis consists of many

perturbed pathways that interact with one another and with a

person’s specific genetics or comorbidities. Thus, an individual’s

presentation of sepsis can vary. Therefore, identifying high-risk

patients with GS could identify a sub-population that would be

responsive to therapies that target mitochondrial dynamics.

Although more testing is needed to confirm the validity of those

speculations, it is clear that the early evidence we provide here

provides support that this generated gene signature may provide

novel clinical opportunities shown in Figure 6.

This current gene signature, can propel the field forward in

understanding the complexity that is sepsis and understand the

clinical implications of mitochondrial health. Moreover, as expected,

this gene signaturemight be applied to other chronic and acute diseases
s prognosis.
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due to its nature as a composite biomarker (70–73). Mitochondrial

dysfunction is closely associated with a variety of diseases, including

SARS-CoV-2 and cancer (74–77). However, it is essential to recognize

that the gene signature will be disease-specific and will require careful

adjustment and validation for each specific condition. This aligns with

the principles of precision medicine. In addition, it is important to

recognize that many challenges exist in translating results from

bioinformatic analyses into the clinic. For example, one significant

challenge is mitigating errors during computational analysis.

Overfitting during bioinformatics analyses can lead to false-positive

results, making the gene signature cohort-specific and lacking the

precision and accuracy needed for reliable disease prognosis in

independent cohorts. To address this, two critical steps should be

employed: (a) validation in independent cohorts and (b) comparison of

the gene signature’s performance against randomized gene signatures,

as illustrated in our Figure 3. However, even while taking these

precautions, it is essential that gene signatures are tested clinically

before widespread use.

In summary, septic organ dysfunction, regardless of severity, is not

associated with cell death (41). This suggests that sepsis involves

changes in functional signaling rather than organ cell death. A leading

theory is that cells are unable to maintain homeostasis during sepsis

(46). Specifically, cells are unable to counteract perturbed pathways to

return to normal physiological function. Mitochondria are known to

play critical roles in maintaining cellular homeostasis (22) and are

implicated in sepsis (25–28). Therefore, mitochondria may present an

opportunity to restore multiple dysregulated pathways using a single

strategy. In this study, we demonstrate that genes related to the major

mitochondrial shaping protein, Drp1, can predict sepsis severity. For

that reason, mitochondrial dynamics not only offers a prognostic

opportunity but also suggests a novel therapeutic strategy that should

be investigated further.
5 Conclusions

By engineering and validating gene signatures linked to Drp1,

we demonstrated that peripheral blood gene expression can

accurately predict sepsis survival. With further studies, this

innovative sepsis prognostic biomarker (Drp1-PPI GS) can be

developed for clinical application.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

Ethical approval was not required for the studies involving

humans because Existing public available datasets from NIH GEO

are used. The studies were conducted in accordance with the local
Frontiers in Immunology 11
legislation and institutional requirements. The human samples used

in this study were acquired from Only de-identified datasets from

NIH-GEO are used. Written informed consent to participate in this

study was not required from the participants or the participants’

legal guardians/next of kin in accordance with the national

legislation and the institutional requirements.
Author contributions

MP: Conceptualization, Formal analysis, Investigation,

Visualization, Writing – original draft, Writing – review & editing.

AF: Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Software, Visualization, Writing – original draft,

Writing – review & editing. YL: Writing – review & editing. WM:

Investigation, Writing – review & editing. SA: Writing – review &

editing. HU: Writing – review & editing. SB: Writing – review &

editing. TW: Conceptualization, Funding acquisition, Methodology,

Supervision, Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study is

supported in part by grants from the National Institutes of Health:

HL134610, HL146369, and HG013615.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1516145/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1516145/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1516145/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1516145
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pokharel et al. 10.3389/fimmu.2024.1516145
References
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M,
et al. The third international consensus definitions for sepsis and septic shock (Sepsis-
3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287

2. Torio CM, Andrews RM. National inpatient hospital costs: the most
expensive conditions by paye. In: Healthcare Cost and Utilization Project (HCUP)
Statistical Briefs. gency for Healthcare Research and Quality (US, Rockville (MD
(2006).

3. Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE,
Schlattmann P, et al. Incidence and mortality of hospital- and ICU-treated sepsis:
results from an updated and expanded systematic review and meta-analysis. Intensive
Care Med. (2020) 46:1552–62. doi: 10.1007/s00134-020-06151-x

4. Karlsson S, Ruokonen E, Varpula T, Ala-Kokko TI, Pettilä V. Long-term outcome
and quality-adjusted life years after severe sepsis. Crit Care Med. (2009) 37:1268–74.
doi: 10.1097/CCM.0b013e31819c13ac

5. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment
and functional disability among survivors of severe sepsis. JAMA. (2010) 304:1787–94.
doi: 10.1001/jama.2010.1553

6. Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE.
Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med.
(2010) 38:1276–83. doi: 10.1097/CCM.0b013e3181d8cc1d

7. Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long-term
survivorship after severe sepsis in older Americans. J Am Geriatr Soc. (2012) 60:1070–7.
doi: 10.1111/j.1532-5415.2012.03989.x

8. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018
update. Intensive Care Med. (2018) 44:925–8. doi: 10.1007/s00134-018-5085-0

9. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of
hypotension before initiation of effective antimicrobial therapy is the critical
determinant of survival in human septic shock. Crit Care Med. (2006) 34:1589–96.
doi: 10.1097/01.CCM.0000217961.75225.E9

10. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al.
Surviving sepsis campaign: international guidelines for management of sepsis and
septic shock: 2016. Intensive Care Med. (2017) 43:304–77. doi: 10.1007/s00134-017-
4683-6

11. Suliman S, Price J, Cahill M, Young T, Furmanek S, Galvis J, et al. Bedside
evaluation for early sepsis intervention: addition of a sepsis response team leads to
improvement in sepsis bundle compliance. Crit Care Explor. (2021) 3. doi: 10.1097/
CCE.0000000000000312

12. Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP,
et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock
from the first hour: results from a guideline-based performance improvement program.
Crit Care Med. (2014) 42:1749–55. doi: 10.1097/CCM.0000000000000330

13. Kim HI, Park S. Sepsis: early recognition and optimized treatment. Tuberc Respir
Dis (Seoul). (2019) 82:6–14. doi: 10.4046/trd.2018.0041

14. Abraham E, Glauser MP, Butler T, Garbino J, Gelmont D, Laterre PF,
et al. p55 Tumor necrosis factor receptor fusion protein in the treatment of
patients with severe sepsis and septic shock. A randomized controlled multicenter
trial. Ro 45-2081 Study Group. JAMA. (1997) 277:1531–8. doi: 10.1001/
jama.1997.03540430043031

15. Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/
inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis
and predict mortality. J Immunol . (2006) 177:1967–74. doi: 10.4049/
jimmunol.177.3.1967

16. Opal SM, Laterre PF, Francois B, Larosa SP, Angus DC, Mira JP, et al. Effect of
eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the
ACCESS randomized trial. JAMA. (2013) 309:1154–62. doi: 10.1001/jama.2013.2194

17. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from
cellular dysfunctions to immunotherapy. Nat Rev Immunol. (2013) 13:862–74.
doi: 10.1038/nri3552

18. Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, lessons and
perspectives. Cell Death Discovery. (2023) 9:465. doi: 10.1038/s41420-023-01766-7

19. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. (2014)
20:195–203. doi: 10.1016/j.molmed.2014.01.007

20. Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D,
Valentine C, et al. Sepsis: multiple abnormalities, heterogeneous responses, and
evolving understanding. Physiol Rev . (2013) 93:1247–88. doi: 10.1152/
physrev.00037.2012

21. Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis.
Signal Transduct Target Ther. (2021) 6:407. doi: 10.1038/s41392-021-00816-9

22. Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, mitochondrial
homeostasis, and cell fate. Front Cell Dev Biol. (2020) 8. doi: 10.3389/fcell.2020.00467

23. Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal
S, et al. Mitochondrial network dynamics in pulmonary disease: Bridging the gap
between inflammation, oxidative stress, and bioenergetics. Redox Biol. (2024)
70:103049. doi: 10.1016/j.redox.2024.103049
Frontiers in Immunology 12
24. Lira Chavez FM, Gartzke LP, Van Beuningen FE, Wink SE, Henning RH,
Krenning G, et al. Restoring the infected powerhouse: Mitochondrial quality control in
sepsis. Redox Biol. (2023) 68:102968. doi: 10.1016/j.redox.2023.102968

25. Exline MC, Crouser ED. Mitochondrial mechanisms of sepsis-induced organ
failure. Front Biosci. (2008) 13:5030–41. doi: 10.2741/3061

26. IslamMN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial
transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against
acute lung injury. Nat Med. (2012) 18:759–65. doi: 10.1038/nm.2736

27. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ
failure. Virulence. (2014) 5:66–72. doi: 10.4161/viru.26907

28. Mccall CE, Zhu X, Zabalawi M, Long D, Quinn MA, Yoza BK, et al. Sepsis,
pyruvate, and mitochondria energy supply chain shortage. J Leukoc Biol. (2022)
112:1509–14. doi: 10.1002/JLB.3MR0322-692RR

29. Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial
dysfunction: A narrative review. World J Crit Care Med. (2023) 12:139–52.
doi: 10.5492/wjccm.v12.i3.139

30. Yu SB, Pekkurnaz G. Mechanisms orchestrating mitochondrial dynamics for
energy homeostasis. J Mol Biol. (2018) 430:3922–41. doi: 10.1016/j.jmb.2018.07.027

31. Qi Z, Huang Z, Xie F, Chen L. Dynamin-related protein 1: A critical protein in
the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J Cell
Physiol. (2019) 234:10032–46. doi: 10.1002/jcp.v234.7

32. Feng A, Simpson E, Wu J, Robinson T, Ma W, Tieu K, et al. NAMPT-associated
gene signature in the prediction of severe sepsis. Am J Transl Res. (2022) 14:7090–7.

33. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-0114-2

34. Jombart T. adegenet: a R package for the multivariate analysis of genetic
markers. Bioinformatics. (2008) 24:1403–5. doi: 10.1093/bioinformatics/btn129

35. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf.
(2011) 12:77. doi: 10.1186/1471-2105-12-77

36. Amland RC, Hahn-Cover KE. Clinical decision support for early recognition of
sepsis(). Am J Med Qual. (2019) 34:494–501. doi: 10.1177/1062860619873225

37. Rhee C, Jones TM, Hamad Y, Pande A, Varon J, O’brien C, et al. Prevalence,
underlying causes, and preventability of sepsis-associated mortality in US acute care
hospitals. JAMA Network Open. (2019) 2:e187571–e187571. doi: 10.1001/
jamanetworkopen.2018.7571

38. Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT,
Gomez H, et al. MITOCHONDRIAL FUNCTION IN SEPSIS. Shock. (2016) 45:271–
81. doi: 10.1097/SHK.0000000000000463

39. Boekstegers P, Weidenhöfer S, Pilz G, Werdan K. Peripheral oxygen availability
within skeletal muscle in sepsis and septic shock: comparison to limited infection and
cardiogenic shock. Infection. (1991) 19:317–23. doi: 10.1007/BF01645355

40. Rosser DM, Stidwill RP, Jacobson D, Singer M. Oxygen tension in the bladder
epithelium rises in both high and low cardiac output endotoxemic sepsis. J Appl Physiol
(1985). (1995) 79:1878–82. doi: 10.1152/jappl.1995.79.6.1878

41. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM,
et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ
dysfunction. Crit Care Med. (1999) 27:1230–51. doi: 10.1097/00003246-199907000-
00002

42. Dyson A, Rudiger A, Singer M. Temporal changes in tissue cardiorespiratory
function during faecal peritonitis. Intensive Care Med. (2011) 37:1192–200.
doi: 10.1007/s00134-011-2227-z

43. Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of
cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med.
(2013) 187:509–17. doi: 10.1164/rccm.201211-1983OC

44. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive,
endocrine-mediated, metabolic response to overwhelming systemic inflammation.
Lancet. (2004) 364:545–8. doi: 10.1016/S0140-6736(04)16815-3

45. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. (2013)
369:840–51. doi: 10.1056/NEJMra1208623

46. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives.
Immunity. (2014) 40:463–75. doi: 10.1016/j.immuni.2014.04.001

47. Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN,
Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation
and sepsis. Vaccines (Basel). (2017) 5. doi: 10.3390/vaccines5040034

48. Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their
endogenous negative regulators as future immunomodulatory targets. Int
Immunopharmacol. (2020) 89:107087. doi: 10.1016/j.intimp.2020.107087

49. Pokharel MD, Fu P, Garcia-Flores A, Yegambaram M, Lu Q, Sun X, et al.
Inflammatory lung injury is associated with endothelial cell mitochondrial fission and
requires the nitration of RhoA and cytoskeletal remodeling. Free Radic Biol Med. (2024)
221:125–35. doi: 10.1016/j.freeradbiomed.2024.05.019
frontiersin.org

https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1007/s00134-020-06151-x
https://doi.org/10.1097/CCM.0b013e31819c13ac
https://doi.org/10.1001/jama.2010.1553
https://doi.org/10.1097/CCM.0b013e3181d8cc1d
https://doi.org/10.1111/j.1532-5415.2012.03989.x
https://doi.org/10.1007/s00134-018-5085-0
https://doi.org/10.1097/01.CCM.0000217961.75225.E9
https://doi.org/10.1007/s00134-017-4683-6
https://doi.org/10.1007/s00134-017-4683-6
https://doi.org/10.1097/CCE.0000000000000312
https://doi.org/10.1097/CCE.0000000000000312
https://doi.org/10.1097/CCM.0000000000000330
https://doi.org/10.4046/trd.2018.0041
https://doi.org/10.1001/jama.1997.03540430043031
https://doi.org/10.1001/jama.1997.03540430043031
https://doi.org/10.4049/jimmunol.177.3.1967
https://doi.org/10.4049/jimmunol.177.3.1967
https://doi.org/10.1001/jama.2013.2194
https://doi.org/10.1038/nri3552
https://doi.org/10.1038/s41420-023-01766-7
https://doi.org/10.1016/j.molmed.2014.01.007
https://doi.org/10.1152/physrev.00037.2012
https://doi.org/10.1152/physrev.00037.2012
https://doi.org/10.1038/s41392-021-00816-9
https://doi.org/10.3389/fcell.2020.00467
https://doi.org/10.1016/j.redox.2024.103049
https://doi.org/10.1016/j.redox.2023.102968
https://doi.org/10.2741/3061
https://doi.org/10.1038/nm.2736
https://doi.org/10.4161/viru.26907
https://doi.org/10.1002/JLB.3MR0322-692RR
https://doi.org/10.5492/wjccm.v12.i3.139
https://doi.org/10.1016/j.jmb.2018.07.027
https://doi.org/10.1002/jcp.v234.7
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1177/1062860619873225
https://doi.org/10.1001/jamanetworkopen.2018.7571
https://doi.org/10.1001/jamanetworkopen.2018.7571
https://doi.org/10.1097/SHK.0000000000000463
https://doi.org/10.1007/BF01645355
https://doi.org/10.1152/jappl.1995.79.6.1878
https://doi.org/10.1097/00003246-199907000-00002
https://doi.org/10.1097/00003246-199907000-00002
https://doi.org/10.1007/s00134-011-2227-z
https://doi.org/10.1164/rccm.201211-1983OC
https://doi.org/10.1016/S0140-6736(04)16815-3
https://doi.org/10.1056/NEJMra1208623
https://doi.org/10.1016/j.immuni.2014.04.001
https://doi.org/10.3390/vaccines5040034
https://doi.org/10.1016/j.intimp.2020.107087
https://doi.org/10.1016/j.freeradbiomed.2024.05.019
https://doi.org/10.3389/fimmu.2024.1516145
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pokharel et al. 10.3389/fimmu.2024.1516145
50. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M,
Kensler TW, et al. The dynamin-related GTPase Drp1 is required for embryonic
and brain development in mice. J Cell Biol. (2009) 186:805–16. doi: 10.1083/
jcb.200903065

51. Touvier T, De Palma C, Rigamonti E, Scagliola A, Incerti E, Mazelin L,
et al. Muscle-specific Drp1 overexpression impairs skeletal muscle growth
via translational attenuation. Cell Death Dis. (2015) 6:e1663–3. doi: 10.1038/
cddis.2014.595

52. Hu C, Huang Y, Li L. Drp1-dependent mitochondrial fission plays critical roles
in physiological and pathological progresses in mammals. Int J Mol Sci. (2017) 18.
doi: 10.3390/ijms18010144

53. Giovarelli M, Zecchini S, Martini E, Garrè M, Barozzi S, Ripolone M, et al. Drp1
overexpression induces desmin disassembling and drives kinesin-1 activation
promoting mitochondrial trafficking in skeletal muscle. Cell Death Differentiation.
(2020) 27:2383–401. doi: 10.1038/s41418-020-0510-7

54. Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci
Biobehav Rev. (2011) 35:565–72. doi: 10.1016/j.neubiorev.2010.07.002

55. Clayton JA, Arnegard ME. Taking cardiology clinical trials to the next level: A
call to action. Clin Cardiol. (2018) 41:179–84. doi: 10.1002/clc.2018.41.issue-2

56. Feldman S, Ammar W, Lo K, Trepman E, Van Zuylen M, Etzioni O. Quantifying
sex bias in clinical studies at scale with automated data extraction. JAMA Netw Open.
(2019) 2:e196700. doi: 10.1001/jamanetworkopen.2019.6700

57. Mamlouk GM, Dorris DM, Barrett LR, Meitzen J. Sex bias and omission in
neuroscience research is influenced by research model and journal, but not reported
NIH funding. Front Neuroendocrinol . (2020) 57:100835. doi: 10.1016/
j.yfrne.2020.100835

58. Al Hamid A, Beckett R, Wilson M, Jalal Z, Cheema E, Al-Jumeily Obe D, et al.
Gender bias in diagnosis, prevention, and treatment of cardiovascular diseases: A
systematic review. Cureus. (2024) 16:e54264. doi: 10.7759/cureus.54264

59. Goldstein KM, Kung LCY, Dailey SA, Kroll-Desrosiers A, Burke C, Shepherd-
Banigan M, et al. Strategies for enhancing the representation of women in clinical trials:
an evidence map. Syst Rev. (2024) 13:2. doi: 10.1186/s13643-023-02408-w

60. Klein SL. Sex influences immune responses to viruses, and efficacy of prophylaxis
and treatments for viral diseases. Bioessays. (2012) 34:1050–9. doi: 10.1002/
bies.201200099

61. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al.
Global, regional, and national sepsis incidence and mortality 1990-2017: analysis for
the Global Burden of Disease Study. Lancet. (2020) 395:200–11. doi: 10.1016/S0140-
6736(19)32989-7
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