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Dissecting the functions and
regulatory mechanisms of
disulfidoptosis-related RPN1 in
pan-cancer: modulation of
immune microenvironment
and cellular senescence
Lexin Qin †, Tingting Liang †, Hailong Zhang, Xian Gong,
Meidan Wei, Xiangrong Song, Yaoyu Hu, Xinyu Zhu,
Wentao Hu, Jianxiang Li* and Jin Wang*

School of Public Health, Suzhou Medicine College of Soochow University, Jiangsu, Suzhou, China
Introduction: Cancer’s inherent heterogeneity, marked by diverse genetic and

molecular alterations, presents significant challenges for developing effective

treatments. One such alteration is the regulation of disulfidoptosis, a recently

discovered programmed cell death pathway. RPN1, a key regulator associated

with disulfidoptosis, may influence various aspects of tumor biology, including

immune evasion and cellular senescence. This study aims to dissect the role of

RPN1 in pan-cancer and its potential as a therapeutic target.

Methods: We employed a pan-cancer analysis to explore RPN1 expression and

its association with clinical outcomes across multiple tumor types. Immune cell

infiltration and expression of immune checkpoint genes were analyzed in relation

to RPN1. Additionally, cellular senescence markers were assessed in RPN1

knockdown tumor cells. Gene regulatory mechanisms were studied through

gene copy number variations, DNA methylation analysis, and transcriptional

regulation by SP1.

Results: RPN1 is overexpressed in a wide range of tumor types and correlates

with poor clinical outcomes, including overall survival, disease-specific survival,

and progression-free intervals. Our analysis shows that RPN1 is involved in

immune evasion, correlating with the presence of myeloid dendritic cells,

macrophages, and tumor-associated fibroblasts, and influencing T-cell activity.

RPN1 knockdown led to reduced tumor cell proliferation and induced cellular

senescence, marked by increased senescence-associated biomarkers and b-
galactosidase activity. RPN1 expression was found to be regulated by gene copy

number variations, reduced DNAmethylation, and transcriptional control via SP1.

Discussion: These findings highlight RPN1 as a key pan-cancer regulator,

influencing immune microenvironment interactions and cellular senescence.
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The regulation of disulfidoptosis by RPN1 presents a promising avenue for

therapeutic intervention. Targeting RPN1 could enhance immunotherapy

efficacy and help mitigate tumor progression, offering a potential strategy for

cancer treatment.
KEYWORDS
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1 Introduction

In the latest advancements in cell death research, a novel form of

programmed cell death known as disulfidptosis has emerged as a

significant area of study (1, 2). Dr. Gan from the Cancer Center has

detailed this new cell death mechanism, characterized by its unique

sensitivity todisulfide stress.Under glucosedeprivation, cellswithhigh

expression of SLC7A11 exhibit rapid depletion of NADPH, leading to

abnormal accumulation of disulfides such as cystine (1). The research

emphasizes the intricate relationship between this cell death process

and the actin cytoskeleton, with significant changes observed in actin

filaments during disulfidptosis (2). As a metabolism-related form of

cell death, it holds promise for targeting cancer metabolic

vulnerabilities by inducing disulfidptosis, thereby providing a novel

avenue for cancer metabolic therapy (3). Several studies have explored

themulti-omic characteristics and potential functions of disulfidptosis

in bladder cancer (4), esophageal cancer (5), and lung cancer (6).

Previous research using CRISPR screening identified potential genes

involved indisulfidptosis, further screeningandvalidating thekey gene

NCKAP1, a critical regulator of actin filament aggregation and

lamellipodia formation, underscoring the role of the cytoskeleton in

this novel cell death pathway (2).

RPN1, amember of the glycosyltransferase family13, has also been

found to be strongly associated with disulfidptosis (2). RPN1 plays a

crucial role in glycosylation, enabling interactions with other

biomolecules to exert its biological functions (7, 8). Knockdown of

RPN1-mediated aberrant protein hypoglycosylation can activate

endoplasmic reticulum stress (ERS), thereby inhibiting the

proliferation and invasion of breast cancer cells, promoting

apoptosis, and suppressing tumor progression (8). Despite the

potential significance of RPN1, its comprehensive role across various

cancers remains underexplored.

Pan-cancer research, which integrates data across different tumor

types, represents a transformative approach to understanding the

complex landscape of cancer biology. This broad-spectrum analysis

can identify shared molecular pathways and genetic alterations that

might be obscured in single-cancer studies (9, 10). By examining

these commonalities, pan-cancer research can reveal universal

mechanisms of tumorigenesis and treatment resistance, uncovering

new intervention targets. This comprehensive approach also aids in

discovering biomarkers applicable to multiple cancer types,
02
potentially leading to more effective and widely applicable

treatment strategies, thereby promoting the development of more

precise and inclusive therapeutic models (9).

This study aims to address this gap by systematically analyzing

the expression and biological and clinical significance of RPN1 across

various cancer types using bioinformatics approaches. By leveraging

large-scale cancer datasets, we will elucidate the differential

expression patterns and prognostic value of RPN1, thereby

enhancing our understanding of its involvement in tumor biology.

Additionally, we will validate these findings through in vitro and in

vivo experiments to elucidate the functional relevance of RPN1 and

its potential as a therapeutic target, providing valuable insights into

the complex mechanisms of cancer cell death and survival.
2 Methods

2.1 Data source

The results of whole-genome CRISPR–Cas9 screening in

SLC7A11-overexpressing 786-O cells under glucose-replete and

-starved conditions were downloaded from previous study (2).

The log2 (TPM + 0.001) transformed normalized gene and

transcripts expression profiles, copy number variations on gene

expression estimated using the Genomic Identification of Significant

Targets in Cancer 2.0 (GISTIC2.0)method,DNAmethylation profiles

and phenotype data of pan-cancer were download from theUniversity

of California, Santa Cruz Genome Browser (UCSC) Xena database

(https://xenabrowser.net/). Moreover, the proteomics data of

multiple cancer types were obtained from the Clinical Proteomic

Tumor Analysis Consortium (CPTAC) database (https://

proteomics.cancer.gov/programs/cptac). The ProteoCancer

Analysis Suite (PCAS) package was used to analyze the CPTAC

datasets (11). Also, several datasets for various cancer types were

obtained from GEO datasets (https://www.ncbi.nlm.nih.gov/geo/).
2.2 Correlation analysis

To understand the biological and clinical significance of RPN1,

correlations were analyzed between the expression of RPN1 and
frontiersin.org

https://xenabrowser.net/
https://proteomics.cancer.gov/programs/cptac
https://proteomics.cancer.gov/programs/cptac
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2024.1512445
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1512445
genesets expression, Tumor Mutation Burden (TMB), immune cell

infiltration, and Tumor Immune Dysfunction and Exclusion (TIDE)

score, as well as drug sensitivity score. Oncogenes were obtained from

ONGene (http://www.ongene.bioinfo-minzhao.org) (12) databases.

A total of 11 immune checkpoint genes (ICGs) were extracted from

previous studies (13). Immune cell infiltration scores came from the

TIMER2.0 database (http://timer.cistrome.org/) (14). TIDE scores

were predicted using the online TIDE tool (http://tide.dfci.harvard.

edu/) (15). Data from the Genomics of Drug Sensitivity in Cancer

database (GDSC, https://www.cancerrxgene.org/) was used to assess

drug sensitivity using “oncoPredict” (16). Spearman’s method

(“psych” package) was used for correlations.
2.3 Enrichment analysis

Gene set enrichment analysis (GSEA) was performed using the

“ClusterProfiler” R package to explore gene set enrichment based

on correlation analysis. Specifically, two gene set collections were

employed: c2.cp.kegg.v2023.2.entrez.gmt for signaling pathway

analysis and c5.go.bp.v2023.2.entrez.gmt for biological processes

associated with RPN1. This analysis spanned multiple cancer types

to identify consistently enriched pathways and biological processes.

Following GSEA for each cancer type, commonly enriched gene sets

were extracted and visualized to underscore their significance.
2.4 RPN1 shRNA plasmid construction

RPN1 shRNA sequences were designed using the BLOCK-iT™

RNAi Designer tool (Thermo Fisher Scientific, URL: https://

rnaidesigner.thermofisher.com/rnaiexpress). The annealed shRNA

double-stranded fragments were cloned into the pGreen vector.

After assessing the knockdown efficiency of multiple candidate

shRNAs, two shRNAs targeting RPN1 were selected for

subsequent experiments. Additionally, a scrambled non-specific

control shRNA (shNC) was cloned into the same vector and used

as a negative control.
2.5 Cell culture and transfection

Human cancer cell lines, including A549 and H1299 (lung

cancer), T24 (bladder cancer), SW480 (colon cancer), MDA-MB-

231 (breast cancer), MGC-803 (gastric cancer), and U87

(glioblastoma), were acquired from the American Type Culture

Collection (ATCC). Cells were cultured in DMEM supplemented

with 10% FBS at 37°C in a 5% CO2 atmosphere. After a 24-hour

incubation period, lung cancer cells were transfected with 2.5 mg of
shRNA using Lipofectamine 6000 reagent (Beyotime, China)

according to the manufacturer’s instructions.
2.6 Cell proliferation assay

For the EdU assay, cells were treated with 10 mM EdU for 2

hours, fixed with 4% paraformaldehyde, and permeabilized with

0.3% Triton X-100 in PBS. The Click reaction solution from
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Beyotime Institute of Biotechnology (China) was used for

subsequent processing. Following a 24-hour incubation, cell

images were captured using an inverted fluorescent microscope

and analyzed using NIH ImageJ software (Version 1.8.0).

For the CCK-8 assay, cells were incubated with the CCK-8

working solution for 1-4 hours at 37°C. Absorbance was measured

at 450 nm using a microplate reader, and the absorbance values

were used to calculate cell viability percentages relative to

control samples.
2.7 qPCR assay

Total RNA was extracted from cultured cells using a

commercially available RNA isolation kit, following the

manufacturer’s protocol. RNA concentration and purity were

assessed using a spectrophotometer (NanoDrop 2000, Thermo

Fisher Scientific, USA). cDNA synthesis was performed using a

reverse transcription kit (cDNA Reverse Transcription Kit, Thermo

Fisher Scientific, USA) according to the manufacturer’s

instructions. For qPCR, we used specific primers for CDKN1A

(Fo rw a r d : TGTCCGTCAGAACCCATGC , R e v e r s e :

AAAGTCGAAGTTCCATCGCTC) and CDKN2A (Forward:

G G G T T T T C G T G G T T C A C A T C C , R e v e r s e :

CTAGACGCTGGCTCCTCAGTA), with a reference gene, ACTB

(Forward : CATGTACGTTGCTATCCAGGC, Reverse :

CTCCTTAATGTCACGCACGAT). The PCR reactions were

performed on a real-time PCR system (ABI Q6, Applied

Biosystems, USA), using SYBR Green assay. The thermal cycling

conditions were as follows: 95°C for 10 min, followed by 40 cycles of

95°C for 15 sec, 60°C for 1 min. Relative expression levels were

calculated using the comparative Ct method (DDCt).
2.8 Detection of cellular senescence

Senescent cells were identified using a fluorescein-based probe

targeting b-galactosidase activity. The probe, containing two

galactoside moieties, is cleaved by b-galactosidase within

lysosomes under acidic conditions, emitting a fluorescent signal

with absorption/emission maxima of 490/514 nm. Post-incubation

with the probe, cells were fixed and nuclei counterstained with

DAPI. Fluorescent signals were visualized using a fluorescence

microscope equipped with standard filter sets.
2.9 Western blot analysis

Protein expression levels of Ki67, P21, and P16 were assessed by

Western blotting, with ACTB serving as the internal control. Protein

samples were resolved by SDS-PAGE, transferred to PVDFmembranes

(Millipore, USA), and incubatedwith primary antibodies: Ki67 (Catalog

No. 27309-1-AP, 1:1000dilution), P21 (CatalogNo. 10355-1-AP, 1:1000

dilution), P16 (Catalog No. 10883-1-AP, 1:1000 dilution), sourced from

Proteintech (Rosemont, IL,USA).Membraneswere then incubatedwith

HRP-conjugated secondary antibodies (Catalog No. SA00001-2/1,
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1:5000 dilution, Rosemont, IL, USA) at a 1:5000 dilution for 1 hour at

room temperature. Bands were visualized using an enhanced

chemiluminescence kit (Beyotime, China). The band intensity was

quantified using ImageJ software (NIH, Bethesda, MD, USA),

normalized against ACTB levels for accurate comparison

across samples.
2.10 ELISA assay

ELISA was conducted to measure IL6 and IL8 concentrations in

the culture supernatants of RPN1 knockdown cells. ELISA kits for

IL6 and IL8 were purchased from R&D Systems (Minneapolis, MN,

USA). Results were presented as mean values for shRPN1 and shNC

groups, with standard curves generated for each cytokine to ensure

accurate quantification. Data analysis was performed using

GraphPad Prism software (GraphPad Software, San Diego, CA,

USA) to compare cytokine levels between the RPN1 knockdown

and control conditions.
2.11 Nude mouse tumorigenesis assay

All animal experiments adhered to institutional animal ethics

guidelines and were conducted following the ethical standards

approved by the Laboratory Animal Ethics Committee of the

Experiment Animal Center of Soochow University (approval no.

202401A052). Six nude mice per group were used: one group

received subcutaneous injections of H1299 cells transfected with

shNC, while the other group received shRPN1-transfected H1299

cells. Tumor growth was monitored weekly by recording body

weight and tumor volume.

At the endpoint of the study, all animals were euthanized

humanely under deep anesthesia to minimize suffering. Anesthesia

was achieved using an intraperitoneal injection of pentobarbital

sodium at a dose of 50 mg/kg. Following confirmation of deep

anesthesia, as indicated by the loss of the righting reflex and absence

of response to a toe pinch, euthanasia was performed by cervical

dislocation. After euthanasia, tumors were promptly excised, weighed,

and analyzed. Tumor volumes were calculated using the formula V =

(length × width²)/2. Body weight and tumor size data were used to

evaluate the impact of RPN1 knockdown on tumor growth.
2.12 Immunohistochemistry

Tumor tissues were processed into paraffin-embedded sections

and subjected to standard immunohistochemistry protocols.

Sections were incubated with primary antibodies against RPN1

(Catalog No. 12894-1-AP, 1:200 dilution), SLC7A11 (Catalog No.

26864-1-AP, 1:200 dilution), P16 (Catalog No. 10883-1-AP, 1:200

dilution), Ki67 (Catalog No. 27309-1-AP, 1:200 dilution), and

CD31 (Catalog No. 11265-1-AP, 1:200 dilution), all from

Proteintech (Rosemont, IL, USA). Quantitative analysis was

conducted using ImageJ software (NIH, Bethesda, MD, USA) to

determine the Area of Differential Staining (AOD) for RPN1,
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SLC7A11, and P16, the proliferation index for Ki67-positive cells,

and the blood vessel areas for CD31-positive cells.
2.13 Copy number analysis

Copy number analysis was performed using qPCR with an

absolute quantification method. DNA samples were extracted from

cells and subjected to qPCR using specific primers targeting RPN1

(Forward: GGCCAAGATTTCAGTCATTGTGG, Reverse:

CTTCGTTGGATAGGGAGAGTAGA). Standard curves from

known copy number standards quantified absolute copy numbers

per cell. Results were expressed as copy numbers per cell, with a copy

number of 2 serving as the baseline control. All qPCR reactions were

performed in triplicate, and data were analyzed using the relative

quantification method.
2.14 Methylation-specific PCR

Genomic DNA was extracted using a DNA Purification Kit, and 1

mgofDNAwasmodifiedwith sodiumbisulfite using theEpitectBisulfite

kit (Qiagen, Inc.) according to the manufacturer’s specifications. MSP

was conducted in a 20 ml reaction volume using AmpliTaq Gold

(Applied Biosystems; Thermo Fisher Scientific, Inc.). MSP products

were separatedon2%agarose gels containingGelRed®NucleicAcidGel

Stain. Successful bisulfitemodificationwas confirmed by amplifying the

GAPDH promoter region with modified DNA samples. Primers used

were: MF: 5’-AATTGTTATGTTGTTTATTTTTCGA-3’, MR: 5’-ACT

ACGACCTACCTTTATATACGAA-3’, UF: 5’-AATTGTTATGTTGT

TTATTTTTTGA-3’, UR: 5’-AACTACAACCTACCTTTATATAC

AAA-3’.
2.15 Transcription factor prediction

Using TFTF R package to predict upstream transcription factors

regulating RPN1 (17), a total of 7 transcription factor target gene

prediction datasets were included, including KnockTF (18),

hTFTarget (19), ChIP_Atlas (20), GTRD (21), and ENCODE

(22), as well as prediction results calculated using FIMO

algorithm based on core transcription factors from JASPAR

database (23, 24). Further calculate the expression correlation

between RPN1 and SP1 based on the pan organizational dataset

of TCGA and GETx databases.
2.16 Dual-luciferase reporter assay

To investigate the regulatory effect of the transcription factor SP1

on the target gene RPN1, a dual-luciferase reporter assay was

performed. The complete promoter sequence of RPN1 was amplified

and cloned into a firefly luciferase reporter vector (pGL3-basic,

Promega, Madison, WI, USA). The control vector containing a

Renilla luciferase gene was used for normalization of transfection

efficiency (pRL-TK, Promega, Madison, WI, USA).
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Cells were co-transfected with the RPN1 promoter-firefly

luciferase construct and the Renilla luciferase control vector, along

with or without a SP1 expression vector. After 48 hours, the cells were

lysed, and luciferase activities were measured using a Dual-Luciferase

Reporter Assay System (Promega, Madison, WI, USA) according to

the manufacturer’s instructions. The firefly luciferase activity was

normalized to the Renilla luciferase activity to determine the relative

promoter activity. The fold change in luciferase activity in the presence

of SP1 was compared to the control to assess the regulatory impact of

SP1 on the RPN1 promoter.
2.17 Statistical analysis

Spearman method is used for correlation analysis. The results

from in vitro experiments are presented as means ± standard

deviation, and were analyzed using SPSS 22.0 software (IBM

Corp.). Differences between groups were analyzed using Student’s

t-test or one-way ANOVA as appropriate. P < 0.05 was considered

to indicate a statistically significant difference.
3 Results

3.1 RPN1 promotes glucose deprivation-
induced cell death

Based on results from a whole-genome CRISPR-Cas9 screening of

SLC7A11-overexpressing 786-O cells under glucose-sufficient and

glucose-starved conditions, RPN1 emerged as the third-ranked

suppressor hit gene (Norm Z = 4.02, Figure 1A). Correlation

analysis from the TCGA database indicated a significant positive

correlation between RPN1 and SLC7A11 expression in 24 types of

tumors (r > 0.3, P < 0.05, Figure 1B). The top five tumors by this

correlation were UCS (P = 0.70), PAAD (P = 0.65), CHOL (P = 0.65),

COAD (P = 0.64), and DLBC (P = 0.63). Further correlation analysis

demonstrated a significant positive correlation between RPN1

expression and key genes of the pentose phosphate pathway in the

majority of tumors (P < 0.05, Figure 1C). Notably, SLC3A2 expression

showed a significant positive correlation with RPN1 in 27 types of

tumors (r > 0.3, P < 0.05, Supplementary Figure S1A), and TKT

expression showed a significant positive correlation with RPN1 in 26

types of tumors (r > 0.3, P < 0.05, Supplementary Figure S1B). To

validate the role of RPN1 in promoting disulfide-induced cell death,

RPN1 was knocked down in eight types of tumor cells (Supplementary

Figure S2), which were then cultured in glucose-deprived medium.

Knockdown of RPN1 significantly rescued the increase in cell death

induced by 8 hours of glucose deprivation (Figure 1D) and the

upregulation of the NADP+/NADPH ratio (Figure 1E).
3.2 RPN1 is broadly upregulated and a
prognostic risk factor in pan-cancer

Based on the pan-cancer dataset combining TCGA and GTEx

databases, RPN1 was found to be significantly upregulated in the

majority of tumor types (P < 0.05, Figure 2A). Furthermore,
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transcriptomic data from the CPTAC cancer dataset also showed

significant upregulation of RPN1 in several tumors (P < 0.05,

Figure 2B). Additionally, high-throughput transcriptomic data for

various cancer types obtained from the GEO database indicated that

RPN1 is significantly upregulated in multiple tumors (P < 0.05,

Supplementary Figure S3). Moreover, paired t-test analysis revealed

that RPN1 is significantly upregulated in paired tumor samples across

several cancer types (P < 0.05, Supplementary Figure S4). According

to the Ensembl database, RPN1 has eight transcripts, including two

protein-coding transcripts (Supplementary Figure S5A), all of which

are significantly upregulated in multiple tumors based on TCGA data

(Supplementary Figure S5B). From the CPTAC database, we

observed that RPN1 protein expression is significantly higher in

various cancers compared to normal tissues (P < 0.05, Figure 2C).

Importantly, further COX analysis indicated that RPN1 is correlated

with OS, DSS, DFI, and PFI in various cancers, serving as a risk factor

(HR > 1, P < 0.05, Figure 2D). Using the KMplotter online tool, high

RPN1 expression was associated with poorer prognosis in patients

with lung, colon, and breast cancers (HR > 1, P < 0.05, Supplementary

Figures S6A-C).
3.3 RPN1 is associated with tumor
biological processes and
signaling pathways

Based on GSEA enrichment analysis, RPN1 was found to be

significantly enriched in multiple key biological processes across

various tumors (Figure 3A), including mitochondrial gene

expression, recombinational repair, leukocyte-mediated

cytotoxicity, cell cycle checkpoint signaling (Figure 3B), and

regulation of DNA repair (Figure 3C). Regarding KEGG signaling

pathways, enrichment analysis revealed that RPN1 is significantly

associated with several critical biological functions (Figure 3D),

primarily including proteasome (Figure 3E), cell cycle (Figure 3F),

spliceosome, DNA replication, nucleotide excision repair, mismatch

repair, lysosome, and protein export. To further evaluate the

significance of RPN1 in cancer progression, we analyzed the

correlation between RPN1 expression and oncogene expression

across pan-cancer samples. The results indicated that RPN1 is

significantly positively correlated with oncogene expression in

most tumors (P < 0.05, Supplementary Figure S6A). Specifically,

correlation analysis showed that the oncogenes HSPA5 and TFG are

significantly positively correlated with RPN1 expression in nearly

all cancers (P < 0.05, r > 0.2, Supplementary Figures S7B, C).
3.4 RPN1 contributes to endoplasmic
reticulum stress

Based on enrichment analysis, RPN1 was found to be associated

with the proteasome, prompting us to further investigate its

relationship with endoplasmic reticulum (ER) stress. Correlation

analysis using transcriptomic data from the TCGA database

revealed that RPN1 expression positively correlates with the ER

stress-related genes PERK (EIF2AK3, Figure 4A) and ATF6
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(Figure 4B) in multiple cancer types. Furthermore, using the PCAS

package, we observed that RPN1 protein expression also positively

correlates with the levels of PERK and ATF6 in various tumors

(Figure 4C). Phosphorylation data from the PCAS package analysis

revealed that RPN1 levels significantly positively correlate with the

phosphorylation of IRE1a (ERN1, Figure 4D) and PERK

(Figure 4E). Moreover, in three cancer cell lines (A549, MGC-

803, and SW480), we analyzed the expression changes of PERK and

ATF6 following RPN1 knockdown. The results showed that both

PERK and ATF6 were significantly downregulated (Figures 4F, G).

At the protein level, PERK expression was significantly decreased

following RPN1 knockdown (Figure 4H).
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3.5 Knockdown of RPN1 inhibits tumor cell
proliferation and promotes
cellular senescence

To further investigate the regulatory effects of RPN1 on cell

proliferation and senescence, we constructed RPN1 knockdown

plasmids and conducted in vitro experiments. CCK-8 assays

demonstrated that knockdown of RPN1 significantly reduced the

proliferative capacity of lung cancer cells A549 (Figure 5A), gastric

cancer cells MGC-803 (Figure 5B), and colon cancer cells

SW480 (Figure 5C). EdU incorporation assays visually confirmed the

reduced proliferation in these cell lines, as shown by representative
FIGURE 1

RPN1 promotes glucose deprivation-induced cell death. (A) Scatter plot showing results of the whole-genome CRISPR–Cas9 screening. (B) Scatter
plot showing correlation analysis between SLC7A11 and RPN1 expression across multiple tumor types in the TCGA database. (C) Heat map showing
correlation analysis between RPN1 expression and pentose phosphate pathway (PPP)-related genes in multiple tumor types. * P < 0.05, ** P < 0.01,
*** P < 0.001. (D) CCK-8 assay showing the effect of RPN1 knockdown on cell death after 8 hours of glucose deprivation. (E) Effect of RPN1
knockdown on the NADP+/NADPH ratio after glucose deprivation. Compare with shNC, * P < 0.05, ** P < 0.01, *** P < 0.001. TCGA, The Cancer
Genome Atlas. NADPH, Nicotinamide adenine dinucleotide phosphate.
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images (Figure 5D) and quantification results (Figure 5E).

Immunofluorescence staining for b-galactosidase activity indicated

increased cellular senescence following RPN1 knockdown (Figures 5F,

G). Further correlation analysis indicated that RPN1 expression is

significantly positively correlated with cell cycle-related gene
Frontiers in Immunology 07
expression in LUAD, STAD, and COAD (Supplementary Figures

S8A-C). qPCR analysis demonstrated that knockdown of RPN1 led to

a significant downregulation of several key cell cycle regulatory genes

(Supplementary Figure S8D). In addition, Ki67 mRNA levels were

downregulated in RPN1-depleted cells (Figure 5H), whereas CDKN2A
FIGURE 2

RPN1 is broadly upregulated and a prognostic risk factor in pan-cancer. (A) Analysis of RPN1 transcript levels across multiple cancers from the
combined TCGA and GTEx dataset. (B) Analysis of RPN1 transcript levels across multiple cancers from the CPTAC database. (C) Analysis of RPN1
protein levels across multiple cancers from the CPTAC database. (D) Analysis of the correlation between RPN1 expression and OS, DSS, DFI, and PFI
in patients with various cancers from the TCGA database. TCGA, The Cancer Genome Atlas. CPTAC, Clinical Proteomic Tumor Analysis Consortium.
GTEx, Genotype-Tissue Expression. OS, Overall Survival. DSS, Disease-Specific Survival. DFI, Disease-Free Interval. PFI, Progression-Free Interval. ns/
NS, not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.
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(Figure 5I) and CDKN1A (Figure 5J) mRNA levels were upregulated.

These findings were corroborated at the protein level by Western blot

analysis, which showed decreased Ki67 and increased expression of P16

(product of CDKN2A) and P21 (product of CDKN1A) (Figures 5K-N).

Additionally, ELISA detected elevated concentrations of IL6 and IL8 in

the culture supernatants of RPN1-knockdown cells, indicating enhanced

secretion of senescence-associated inflammatory cytokines (Figure 5O).
3.6 Knockdown of RPN1 inhibits tumor
formation in nude mice

We demonstrated the effects of RPN1 knockdown on

subcutaneous tumor formation using shNC and shRPN1 stably

transfected H1299 cancer cells in nude mice (Figure 6A). Tumor

growth curves indicated that the shRPN1 group exhibited significantly

reduced tumor growth compared to the shNC group (Figure 6B). At

the end of the experiment, the tumor weights in the shRPN1 group
Frontiers in Immunology 08
were markedly lower (Figure 6C). qPCR analysis confirmed reduced

RPN1 expression in tumors from the shRPN1 group (Figure 6D).

Dissociation of tumor tissues for EdU proliferation assays revealed

inhibited proliferation of tumor cells in the shRPN1 group (Figures 6E,

F). Immunohistochemical staining indicated significantly decreased

expression of RPN1 and SLC7A11, and increased expression of P16 in

the shRPN1 group (Figures 6G, H). Furthermore, quantitative analysis

showed a reduced proportion of Ki67-positive cells in the tumors from

the shRPN1 group (Figure 6I), along with a decreased area of

intratumoral vasculature (Figure 6J).
3.7 Regulation of RPN1 gene expression by
copy number alterations and
DNA methylation

Analysis of pan-cancer DNA copy number data from the TCGA

database revealed an increase in RPN1 copy number in themajority of
FIGURE 3

RPN1 is associated with tumor-related signaling pathways and biological functions. (A) Heatmap displaying the GSEA enrichment analysis results of
RPN1 expression-associated genes in biological processes across pan-cancer samples. lollipop charts showing the enrichment results of RPN1
expression-associated genes in the “Cell cycle checkpoint signaling” term (B) and “Regulation of DNA repair” term (C) across various cancers. (D)
Heatmap displaying the GSEA enrichment analysis results of RPN1 expression-associated genes in KEGG pathways across pan-cancer samples.
Lollipop charts showing the enrichment results of RPN1 expression-associated genes in the “Proteasome” term (E) and “Cell cycle” term (F) across
various cancers. GSEA, Gene Set Enrichment Analysis. * P < 0.05,** P < 0.01,*** P < 0.001.
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tumor types (Figure 7A). Correlation analysis demonstrated a

significant positive correlation between RPN1 copy number and

RNA expression levels in most tumors (P < 0.05, r > 0.3, Figure 7B).

The four cancer types with the highest correlation were HNSC (r =

0.675, Supplementary Figure S9A), LUSC (r = 0.664, Supplementary

Figure S9B), ESCA (r = 0.654, Supplementary Figure S9C), and LUAD

(r = 0.609, Supplementary Figure S9D). qPCR analysis confirmed a

significant increase in the averageRPN1copynumber in several cancer

cell lines (Figure 7C). On the other hand, based on methylation array

data, we identified a significant association between RPN1 expression

and methylation levels at specific CpG sites (Figure 7D). Using the

methPrimer online tool, we designed primers for MSP and identified

CpG islands in the promoter region of RPN1 (Supplementary Figure

S9E). MSP experiments in three cell lines confirmed the presence of

DNA methylation modifications in the RPN1 promoter region

(Figure 7E). As shown in Figure 7F, treatment of these cell lines with
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the DNA methylation inhibitor 5-Aza resulted in increased RPN1

expression, indicating that DNA methylation negatively regulates

RPN1 expression.
3.8 Regulation of RPN1 expression by
transcription factor SP1

Using the TFTF package, we identified SP1 as an upstream

transcription factor of RPN1 (Figure 8A). Correlation analysis

based on pan-cancer data from the TCGA database revealed a

positive correlation between the expression of RPN1 and SP1 in the

majority of cancers (P < 0.05, r > 0.3, Figure 8B). Among them, the

cancer types with the highest correlations were THYM (r = 0.736),

KICH (r = 0.619), and LIHC (r = 0.582). Similarly, data from the

GTEx database demonstrated a positive correlation between RPN1
FIGURE 4

RPN1 Contributes to Endoplasmic Reticulum Stress. Scatter plots showing the correlation analysis results between the mRNA expression of RPN1
and PERK (A) and ATF6 (B) based on the pancancer data of TCGA database. (C) Heatmap showing the correlation between the protein expression of
RPN1 and PERK and ATF6 based on PCAS package. Heatmap showing the correlation between the protein expression of RPN1 and the
phosphorylation levels of ERN1 (D) and PERK (E) based on PCAS package. * P < 0.05,** P < 0.01,*** P < 0.001. qPCR analysis showing changes in
PERK (F) and ATF6 (G) expression in the three cell lines following RPN1 knockdown. Western blot analysis showing representative images and
statistical results of PERK protein expression changes in the three cell lines after RPN1 knockdown. TCGA, The Cancer Genome Atlas. PCAS,
ProteoCancer Analysis Suite. Compare with shNC, * P < 0.05, ** P < 0.01, *** P < 0.001.
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and SP1 expression across various tissues (P < 0.05, r > 0.3,

Figure 8C). The tissues with the top three correlation coefficients

were blood (r = 0.830), kidney (r = 0.824), and stomach (r = 0.677).

qPCR analysis indicated that overexpression of SP1 increased RPN1

expression (Figure 8D). Dual-luciferase reporter assays confirmed

the transcriptional activation of RPN1 by SP1 in T24 (Figure 8E),

A549 (Figure 8F), and SW480 cells (Figure 8G), validating the

regulatory role of SP1 on RPN1 transcription.
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3.9 RPN1 is associated with
immunotherapy response

Immune therapy response is typically associated with specific

immune cell infiltration. Using the TIMER algorithm, we obtained

infiltration scores for six major immune cells across pan-cancer

samples. Further correlation analysis revealed that RPN1 is

significantly associated with the infiltration of various immune cells
FIGURE 5

Knockdown of RPN1 inhibits cell cycle and promotes cellular senescence. CCK-8 assay analyzing the proliferation changes in A549 (A), MGC-803
(B), and SW480 (C) cells following RPN1 knockdown. EdU assay showing representative images (D) and statistical results (E) of proliferation changes
in the three cell lines after RPN1 knockdown. immunofluorescence staining for b-galactosidase activity showing representative images (F) and
statistical results (G) of senescence in the three cell lines after RPN1 knockdown. qPCR analysis showing changes in Ki67 (H), CDKN2A (I), and
CDKN1A (J) expression in the three cell lines following RPN1 knockdown. Western blot analysis showing representative images (K) and statistical
results (L-N) of Ki67, P16, and P21 protein expression changes in the three cell lines after RPN1 knockdown. Compare with shNC, ** P < 0.01,
*** P < 0.001. (O) ELISA detecting changes in IL6 and IL8 concentrations in the culture supernatants of the three cell lines following RPN1
knockdown. * P < 0.05, ** P < 0.01, *** P < 0.001.
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in multiple cancers (Figure 9A). Specifically, for myeloid dendritic

cells, high correlation with RPN1 expression was observed in 10

cancer types (r > 0.2, P < 0.05, Figure 9B). For macrophages, a high

correlation with RPN1 expression was noted in 13 cancer types (r >

0.2, P < 0.05, Figure 9C). Additionally, the correlation analysis of

immune checkpoint genes (ICGs) expression indicated that RPN1 is

correlated with several ICGs across various cancers (Figure 9D). For

SIGLEC7, 12 cancer types exhibited significant correlation with RPN1

expression (r > 0.2, P < 0.05, Figure 9E). Similarly, for SIRPA, a

significant correlation with RPN1 expression was found in 12 cancer
Frontiers in Immunology 11
types (r > 0.2, P < 0.05, Figure 9F). Furthermore, we used the TIDE

algorithm to assess the immunotherapy sensitivity of tumor samples.

Correlation analysis showed that RPN1 expression was significantly

positively correlated with the infiltration of tumor-associated

fibroblasts (Supplementary Figure S10A) and myeloid-derived

suppressor cells (Supplementary Figure S10B) in multiple cancers.

Moreover, RPN1 was significantly negatively correlated with T cell

dysfunction (Supplementary Figure S10C) and significantly positively

correlated with T cell exclusion (Supplementary Figure S10D) across

various cancers.
FIGURE 6

Knockdown of RPN1 inhibits tumor formation in nude mice. (A) Images of subcutaneous tumors formed by H1299 lung cancer cells stably
transfected with shNC and shRPN1 in nude mice. (B) Growth curves of subcutaneous tumors in nude mice. *** P < 0.001. (C) Differences in tumor
weights at the experimental endpoint between the two groups of mice. (D) qPCR detection of differences in RPN1 expression between tumors from
the two groups of mice. Representative images (E) and statistical results (F) of EdU proliferation assays on dissociated tumor tissues from the two
groups of mice. (G) Immunohistochemical staining analysis of RPN1, SLC7A11, P16, Ki67, and CD31 expression differences in tumor tissues from the
two groups of mice. (H) AOD statistical results of immunohistochemical images for RPN1, SLC7A11, and P16. (I) Statistical results of the proportion of
Ki67-positive cells in immunohistochemical staining images. (J) Statistical results of the vascular area in CD31 immunohistochemical staining images.
AOD, average optical density.
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4 Discussion

Cancer is a highly heterogeneous disease characterized by diverse

genetic and molecular features, resulting in distinct malignant

phenotypes across different tumor types. Understanding common

vulnerabilities and universal characteristics of cancer is crucial for

developing more effective and broadly applicable therapeutic

strategies. In this context, a pan-cancer perspective has emerged as a

powerful approach to identifying key molecular regulators with broad
Frontiers in Immunology 12
significance in tumor biology. RPN1 is one such pivotal regulator, a

protein involved in disulfidoptosis, a recently described form of

programmed cell death. Our comprehensive analysis across various

cancer types revealed widespread upregulation of RPN1 and its

association with poor patient survival outcomes, suggesting a critical

role for this protein in driving malignant transformation and disease

progression. In this study, we systematically investigated the pan-cancer

significance of RPN1, elucidating its functional relevance, transcriptional

and epigenetic regulation, and potential as a therapeutic target.
FIGURE 7

Regulation of RPN1 gene expression by copy number alterations and DNA methylation. (A) Likert scale plot showing changes in RPN1 DNA copy
number in the pan-cancer dataset from the TCGA database. (B) Scatter plot displaying the correlation analysis between RPN1 copy number and RNA
expression. (C) qPCR detection of the average copy number in several cancer cell lines. Compare with baseline, * P < 0.05, ** P < 0.01, *** P <
0.001. (D) Heatmap showing the correlation between RPN1 expression and methylation levels at CpG sites from the TCGA database. * P < 0.05, ** P
< 0.01, *** P < 0.001. (E) MSP verification of DNA methylation modifications in three cell lines. (F) qPCR detection of RPN1 expression changes in
three cell lines treated with the DNA methylation inhibitor 5-Aza. Compare with NC, *** P < 0.001. TCGA, The Cancer Genome Atlas. MSP,
methylation specific PCR. NS, not significant.
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RPN1 is a major component of the oligosaccharyltransferase

(OST) complex and is essential for N-linked glycosylation. Previous

reports have indicated that alterations in N-glycosylation are crucial for

tumorigenesis, proliferation, and metastasis through modification of

key proteins or triggering mechanisms involved in maintaining cellular

homeostasis (25, 26). Although prior studies have highlighted the role

of RPN2 in various cancers (27–29), the impact of RPN1 has been

relatively understudied. Notably, since the discovery of disulfidoptosis,

RPN1 has garnered increasing attention due to its potential regulatory

role in this process. Recent studies have reported the involvement of

RPN1 in pan-cancer (30), breast cancer (8, 31), and glioma (32);

however, these studies do not provide a comprehensive analysis of the
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clinical and biological significance of RPN1 and its potential regulatory

mechanisms across different cancers. In this study, we confirmed the

upregulation of RPN1 in nearly all cancers based on transcriptomic

data from the TCGA and GEO databases and proteomic data from the

CPTAC database. For patient prognosis, RPN1 was identified as a risk

factor for OS, DSS, DFI, and PFI in various tumors.

Chronic ER stress has emerged as a new hallmark of cancer,

enabling malignant cells to adapt to oncogenic and environmental

challenges while coordinating various immune regulatory mechanisms

that promote malignant progression (33). In mammalian cells, three

ER membrane proteins serve as sensors of ER stress: Activating

Transcription Factor 6 (ATF6), Inositol-Requiring Enzyme 1a
FIGURE 8

Regulation of RPN1 expression by transcription factor REST. (A) Petal chart showing the results of predicting upstream transcription factors of RPN1
using the TFTF package. (B) Scatter plot displaying the correlation analysis between RPN1 and SP1 expression in various cancers from the TCGA
database. (C) Scatter plot showing the correlation analysis between RPN1 and SP1 expression in various tissues from the GTEx database. (D) qPCR
detection of RPN1 expression changes in cells overexpressing SP1. Dual-luciferase reporter assays validating the transcriptional activation of RPN1 by
SP1 in T24 (E), A549 (F), and SW480 (G) cells. Compare with pCDH, ** P < 0.01, *** P < 0.001. TCGA, The Cancer Genome Atlas.
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FIGURE 9

RPN1 is significantly associated with immune cell infiltration and immune checkpoint gene expression. (A) Heatmap showing the correlation
between RPN1 expression and immune cell infiltration scores obtained using the TIMER algorithm in multiple cancers from the TCGA database.
scatter plots showing the correlation analysis results between RPN1 expression and the infiltration scores of myeloid dendritic cells (B) and
macrophages (C). (D) Heatmap showing the correlation between RPN1 expression and 11 immune checkpoint genes in multiple cancers from the
TCGA database. Scatter plots showing the correlation analysis results between RPN1 expression and SIGLEC7 (E) and SIRPA (F). * P < 0.05,** P <
0.01,*** P < 0.001. TCGA, The Cancer Genome Atlas. TIMER, Tumor Immune Estimation Resource.
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(IRE1a, also known as ERN1), and PKR-like ER Kinase (PERK, also

known as EIF2AK3) (34). In this study, based on transcriptomic data

from the TCGA database and proteomic data from the CPTAC

database, we found that RPN1 is associated with ER stress.

Dysregulation of the ER stress response leads to an imbalance in

protein homeostasis, and increasing evidence links protein homeostasis

disruption to cellular senescence (35). Cellular senescence is a

permanent state of cell cycle arrest that occurs in proliferating cells

under various stresses. Notably, cellular senescence, specifically the

presence of senescent cells in the tumor microenvironment, has been

classified as a hallmark of cancer (36). In cancer cells, senescence serves

as an effective barrier to tumorigenesis (37). Given that the primary

biological function of RPN1 involves glycosylation modification, which

has been extensively reported to be associated with cellular senescence

and senescence-related processes (38, 39), we explored this relationship

through bioinformatic analyses. We found that RPN1 is closely related

to the cell cycle, and further in vitro and in vivo experiments confirmed

that knockdown of RPN1 inhibits cell proliferation and promotes

cellular senescence, evidenced by upregulation of senescence-associated

markers P21 and P16, increased b-galactosidase staining, and the

senescence-associated secretory phenotype.

At the DNA level, gene expression regulation pathways include

copy number variation, DNA methylation, and transcriptional

regulation. To assess potential reasons for the upregulation of RPN1

in most tumors, we utilized multi-omics data from TCGA and in vitro

experiments. We found that RPN1 upregulation is regulated by copy

number increases, decreased methylation, and the transcription factor

SP1. Specific protein 1 (SP1) is one of the earliest identified

transcription factors and a member of the Sp/Kruppel-like factor (Sp/

KLF) family. Previous studies have reported that SP1 can activate or

repress the transformation of normal cells to cancer cells, thereby

promoting or inhibiting cancer progression (40, 41). SP1 is

overexpressed in various cancers, including gastric cancer (42, 43),

colorectal cancer (44), and lung cancer (45), and is positively correlated

with tumor progression. Our study indicates that RPN1 is a target gene

of SP1, participating in SP1’s regulatory network in tumors.

Immunotherapy has revolutionized cancer treatment and

revitalized the field of tumor immunology (46). Immune cells are

the cellular foundation of immunotherapy; hence, understanding

immune infi l tration in the TME is key to enhancing

immunotherapy response rates and developing novel therapeutic

strategies (47). Dendritic cells (DCs) exhibit unique antigen-

presenting functions and play critical roles in innate and adaptive

immune responses. By cross-presenting tumor-associated antigens

to naive T cells, DCs contribute to generating specific T cell-

mediated anti-tumor effector responses, controlling tumor growth

and dissemination (48). In the cancer context, tumor-associated

macrophages (TAMs) within the TME typically promote cancer cell

proliferation, immunosuppression, and angiogenesis to support

tumor growth and metastasis (49). Our analysis identified a

correlation between RPN1 expression and infiltration of myeloid

dendritic cells, macrophages, and tumor-associated fibroblasts.

Furthermore, immune checkpoint blockade can induce durable

responses in various cancer types, expanding the curative

potential of cancer therapies (50). RPN1 expression was also

found to be associated with several immune checkpoint genes,
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including SIGLEC7 and SIRPA. Based on the TIDE algorithm, we

discovered that RPN1 negatively correlates with T cell dysfunction

and positively correlates with T cell exclusion. These findings

suggest that RPN1 may play a critical role in regulating tumor

immunotherapy and immune evasion mechanisms.

This study systematically elucidates the significant role of RPN1 in

a pan-cancer context. We found that RPN1 is universally overexpressed

and associated with poor prognosis, playing a crucial role in tumor

immune evasion. In vitro and in vivo experiments demonstrated that

RPN1 could inhibit tumor progression and promote tumor cell

senescence. Additionally, RPN1 expression is regulated at multiple

levels, including gene copy number variation, DNA methylation, and

transcription factor SP1 regulation. In summary, this study

comprehensively reveals the important biological functions of RPN1

as a key pan-cancer regulator, providing a vital basis for developing

potential therapeutic strategies targeting RPN1.
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