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The role of neutrophils in
osteosarcoma: insights from
laboratory to clinic
Ming Xia, Yu Han, Lihui Sun, Dongbo Li, Chunquan Zhu
and Dongsong Li*

Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin, China
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly

influenced by the intricate interactions within its tumor microenvironment

(TME), particularly involving neutrophils. This review delineates the

multifaceted roles of neutrophils, including tumor-associated neutrophils

(TANs) and neutrophil extracellular traps (NETs), in osteosarcoma ’s

pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating

tumor growth and immune evasion, while NETs facilitate tumor cell adhesion,

migration, and immunosuppression. Clinically, neutrophil-related markers such

as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes,

highlighting the potential for neutrophil-targeted therapies. Unraveling these

complex interactions is crucial for developing novel treatment strategies that

harness the TME to improve osteosarcoma management.
KEYWORDS
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Introduction

Osteosarcoma is a primary malignant bone tumor characterized by the uncontrolled

proliferation of osteoblastic cells, predominantly affecting children and adolescents (1).

This aggressive cancer is associated with significant morbidity and mortality, necessitating

a deeper understanding of its pathogenesis and progression (2).

The tumor microenvironment (TME) plays a pivotal role in the development and

progression of cancer. TME encompassing a complex milieu of cellular and molecular

components that interact with tumor cells and influence their behavior (3). In TME,

various cell types, including immune cells, fibroblasts, endothelial cells, and extracellular

matrix components, dynamically interact with tumor cells to create a supportive niche for

tumor growth and dissemination (4). In osteosarcoma, the tumor microenvironment is

characterized by an immunosuppressive milieu, driven by the secretion of cytokines,

chemokines, growth factors, and extracellular matrix remodeling enzymes (5). These

factors not only promote tumor cell proliferation, survival, and invasion but also
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modulate the immune response, angiogenesis, and metastatic

potential of osteosarcoma (6).

Neutrophils are white blood cells that play a key role in the

innate immune response to infection and inflammation (7). In

recent years, evidence has highlighted the multifaceted roles of

neutrophils in the TME of various cancers, including osteosarcoma

(8). Neutrophils can be recruited to the TME in response to tumor-

derived signals and inflammatory mediators, where they interact

with tumor cells and other stromal components (9).

Neutrophils have long been recognized for their role in

osteosarcoma. Initially, the prognostic significance of the

neutrophil-to-lymphocyte ratio in osteosarcoma was identified

(10). Subsequent research has further elucidated the involvement

of neutrophils, particularly neutrophil extracellular traps (NETs)

and tumor-associated neutrophils (TANs), in the immune

microenvironment and progression of osteosarcoma (8).

While neutrophils can promote tumor progression in various

cancers, the specific mechanisms and the extent of their influence

may vary. In osteosarcoma, neutrophils may contribute more

significantly to the immunosuppressive tumor microenvironment

and the promotion of metastasis due to the unique interactions

between neutrophils and the bone matrix, as well as the high

propensity of osteosarcoma cells to metastasize to the lung and

the roles of neutrophils in the body after surgery (5). Previous

findings underscore the intricate involvement of neutrophils in the

complex interplay within TME of osteosarcoma, highlighting their

potential as key modulators and therapeutic targets for improving

clinical outcomes in this aggressive bone cancer (11). In the context
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of osteosarcoma, neutrophils have been shown to interact uniquely

with the tumor microenvironment (12). The osteosarcoma

microenvironment is a complex ecosystem that includes not only

the tumor cells but also a variety of immune cells, bone cells,

extracellular matrix components, and signaling molecules (1).

Neutrophils in this context can be affected by the tumor to

promote tumor growth, survival, and metastasis (13).

Understanding the interactions between TANs, NETs, and

TME in osteosarcoma is essential for elucidating the mechanisms

underlying tumor progression and identifying potential therapeutic

targets. Targeting the immune cell components and inflammatory

pathways within the tumor microenvironment may offer novel

strategies for the treatment of osteosarcoma and improve patient

outcomes. This review aims to provide insights into the

multifaceted roles of neutrophils in osteosarcoma, spanning from

fundamental laboratory research to potential clinical implications.

By elucidating the intricate interactions between neutrophils and

osteosarcoma, this review seeks to enhance our understanding of

the complex tumor microenvironment and identify novel

therapeutic strategies for the management of this aggressive bone

cancer (Figure 1).
TANs in the tumor

Neutrophils are the most abundant immune cells in the human

body and constitute 50%-70% of all white blood cells (14). Due to

the limited proliferation capacity and lifespan of neutrophils, the
FIGURE 1

Overall design of our study. The nuanced interactions between neutrophils, specifically tumor-associated neutrophils (TANs) and neutrophil
extracellular traps (NETs), with key osteosarcoma microenvironment (TME) constituents. It emphasizes the reciprocal modulation between TANs and
TME cellular components, such as cancer-associated fibroblasts (CAFs) and regulatory T cells (Tregs), and molecular mediators including cytokines
and chemokines, which orchestrate a pro-tumorigenic or tumor-suppressive milieu.
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understanding of the roles of neutrophils in heterogeneous tumors

has been lacking in recent decades (15). In recent years, owing to

novel biotechnology, such as single-cell sequencing, there has been

increasing attention on neutrophils in tumor-related research (16).

Nowadays, the heterogeneity of TANs far exceeds the simple

classification of several groups (17). According to their roles and

functions in TME, TANs are classified into anti-tumor (N1) and

pro-tumor (N2) phenotypes (Figure 2), and these two TANs

phenotypes with opposing effects may regulate the initiation,

proliferation, metastasis, and immune suppression (18).

Usually, neutrophils are continuously produced in the

hematopoietic cords of the bone marrow and are regulated by

transcription factors and proteins such as CCAAT-enhancer

binding protein (CEBP/a) and colony-stimulating factors (19). In

the tumor tissues, the function and polarization of neutrophils were

mainly regulated by the factors in inflammatory TME. Different

transcription factors and proteins may contribute to different

neutrophil phenotypes (20). For example, interferon type 1 (IFN-

1) may enhance the ability of adhesion and phagocytosis of

neutrophils and force neutrophils to polarized towards N1

phenotype, and reversely, transforming growth factor-b (TGF-b)
is a driver for N2 phenotype (21, 22). Furthermore, many other

factors were also identified as the drivers of the polarization of

neutrophils, including adenosine triphosphate, S100A9, adenosine,

and so on (23, 24).

In recent years, some downstream pathways related to TANs

were identified. N1 cell phenotypes usually perform their anti-

tumor effects via reactive oxygen species (ROS) related pathways

(25). ROS may up-regulate the superoxide-dependent Ca2+

channel of the tumor cells, contribute to the disorder of the Ca2+

levels, and lastly inhibit the development of the cancer (26).
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Reversely, tumor development may be upregulated by the factors

produced by N2 phenotypes, including neutrophil elastase (NE)

and matrix metalloproteinases (15).

In addition to immune regulations, TANs were also regulated

by metabolic factors: the factors produced in the glucose

metabolism, lipid metabolism, tricarboxylic acid cycle, and amino

acid metabolism were able to reprogram the metabolism of TANs

(7, 27). The oxygen deprivation TME may contribute to the

glycolytic effects of TANs (28), and the factors produced in the

glycolysis may inhibit the proliferation of movement of T cells and

play their immunosuppressive functions (29). The TANs after

metabolism reprogramming may contribute to a higher level of

hypoxia-inducible factor 1 alpha (HIF-1a) expression (30). HIF-1a
is a key transcription factor that plays a critical role in cellular

responses to low oxygen levels, or hypoxia. In the context of tumors,

HIF-1a is known to be a master regulator of the adaptive

mechanisms that cancer cells employ to survive and proliferate

under hypoxic conditions (31). Activation of HIF-1a in tumor cells

leads to the upregulation of genes involved in angiogenesis,

glycolysis, and cell survival, promoting tumor growth and

metastasis (31, 32).
NETs in tumor

In addition to neutrophils, neutrophil-related components have

also attracted increasing attention. Neutrophil extracellular traps

(NETs) are web-like structures composed of chromatin, histones,

and antimicrobial proteins released by activated neutrophils in

response to various stimuli, including infection, inflammation,

and cancer (33). In the context of tumors, emerging evidence
FIGURE 2

Function and roles of Tumor-Associated Neutrophils (TANs) in Osteosarcoma. N1 TANs, characterized by their anti-tumoral functions, are depicted
engaging in ROS-mediated cytotoxicity and antigen presentation, while N2 TANs are portrayed as pro-tumorigenic, secreting factors such as MMP-9
and VEGF that facilitate angiogenesis and immunosuppression.
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suggests that NETs play an important role in the tumor

microenvironment (34). NETs have been implicated in promoting

tumor progression by facilitating tumor cell adhesion, migration,

and invasion, as well as inducing immunosuppression and

angiogenesis (35).

The formation of NETs is not spontaneous but rather occurs

abundantly in activated neutrophils (33). The formation of NETs is

related to a distinct form of cell death, mediated by ROS and termed

neutrophilic inflammatory cell death (NETosis), distinguishing it

from traditional apoptosis and necrosis (36). Upon stimulation by

extracellular physicochemical factors, the chromatin within the

nucleus undergoes abnormal changes, and enzymes within

cytoplasmic vesicles are activated, ultimately leading to the

rupture of the cell membrane and release of the contents (37). In

certain instances, neutrophils do not need to sacrifice themselves to

release NETs, as non-lytic NETosis can occur during

Staphylococcus aureus infection. In this scenario, neutrophils

rapidly release chromatin extracellularly and undergo

degranulation to release various enzymes, thereby forming

extracellular NETs (33).

Initially, the roles of NETs in cancer metastasis, especially in the

premetastatic niche, were recognized. NETs may facilitate tumor

cell migration and invasion by releasing pro-inflammatory

cytokines and chemokines that attract tumor cells to the site of

NETs deposition, including IL-1, IL-6, IL-8, and so on, promoting

their movement toward distant sites (38). Additionally, NETs

induce an epithelial-mesenchymal transition (EMT) in cancer

cells, leading to the acquisition of a mesenchymal phenotype that

enhances their migratory and invasive abilities (39). Furthermore,

NETs interact with endothelial cells, causing a loss of cell-to-cell

junctions and altering the morphology of the endothelium,

facilitating tumor cell intravasation and extravasation (40). By

capturing circulating tumor cells and creating a permissive

environment in pre-metastatic and metastatic niches, NETs

promote the establishment and growth of metastatic lesions (41).

Nowadays, studies have proven that NETs also contribute

significantly to cancer progression. NETs may induce tumor cell

proliferation by releasing factors that enhance the proliferative

ability of cancer cells (42). They also contribute to the

immunosuppressive tumor microenvironment by hindering the

migration of cytotoxic immune cells and shielding tumor cells

from immune-mediated killing (43). Furthermore, NETs play a

role in awakening dormant cancer cells, promoting their

proliferation and metastatic growth (44). By facilitating cell

migration and metastatic microenvironment, NETs contribute to

the overall progression of cancer (45).

The formation of NETs requires the presence of two essential

proteins: integrin avb1 and matrix metalloproteinase 9 (MMP-9),

which can capture and activate TGF-b (46). The activation of TGF-

b triggers EMT in cancer cells and is associated with the progression

of tumor cells (46, 47). The DNA component of NETs also plays a

crucial role in tumors by interacting with receptors on tumor cells,

influencing their behavior and contributing to the complex

interplay between the immune system and cancer cells in the

tumor microenvironment (48). Additionally, the chemical

composition of NETs may also be a key factor, for example, IL-17
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found in NETs can interact with cytotoxic CD8 T cells and exclude

them from the tumor tissue (49).
Tumor microenvironment
in osteosarcoma

The basis of understanding the roles of neutrophils in

osteosarcoma is to decode the TME of osteosarcoma (Figure 3).

The TME of osteosarcoma comprises a heterogeneous milieu of

cellular components, including bone cells, stromal cells, vascular

cells, immune cells, and the extracellular matrix (ECM) (5). Within

the TME of osteosarcoma, interactions between tumor cells and

stromal cells contribute to tumor growth, invasion, and metastasis

(50). In this complex microenvironment, the immune system plays

a paradoxical role: it may promote or suppress the progression of

osteosarcoma, according to different TME and cellular phenotypes

(51). Moreover, the ECM components in the TME of osteosarcoma

provide structural support and signaling cues that influence tumor

cell behavior, including migration, invasion, and drug resistance

(52). Recent evidence also suggested that EVs, small membrane-

bound vesicles released by cells into the ECM, may serve as a bridge

of intercellular communication and metastasis (53).

In osteosarcoma, bone cells, including osteoblasts, osteoclasts,

and osteocytes, play a crucial role in the TME (5). Osteoblast, a type

of bone-forming cell, is originating from pluripotent mesenchymal

stem cells. In the TME of osteosarcoma, osteoblasts may regulate

the osteoclasts’ metabolism and communicate with osteosarcoma

cells via multiple pathways, such as OPG/RANK/RANKL and Fas/

FasL (54). Moreover, a recent study also reported that osteoblast

may also regulate the TME by extracellular vesicles (55). Compared

to osteoblasts, osteoclasts, cells derived frommyeloid precursor cells

and playing bone resorption effect, may play a more active area in

osteosarcoma (50). From views of the population level, individuals

with higher levels of osteoclast activity may have a lower risk of

osteosarcoma and more satisfactory chemotherapy efficacy (56).

Osteoclasts may activate CD4+ and CD8+ T cells and play an

antigen-presenting cells-like role (57). However, in the different

stages of osteosarcoma, osteoclasts may have different effects: in the

early stage, osteoclasts may establish a niche containing

osteosarcoma and suppress the metastasis, while in the later stage,

accumulated tumor cells may have a stronger metastatic (58).

Osteoclasts may also regulate the TME of osteosarcoma by

interacting with CD4+ Tregs (59). Lastly, osteocytes as mature

bone cells were also reported to have contributions to TME of

osteosarcoma: osteocytes may have communications with

osteosarcoma via the CXCL12-CXCR4 axis and by secreting

TGF-b and VEGFA (60).

Another crucial cell in the TME of osteosarcoma is the

mesenchymal stem cell (MSC), due to their potential roles as the

precursors of osteosarcoma cells (61). The communications

between MSCs and osteosarcoma cells have been reported in

previous studies, and many factors, including CXCL12, IL-6, and

VEGF, have been proven to be included (61). Moreover,

extracellular vesicles may also mediate the interaction between

MSCs and osteosarcoma cells by regulating the MALAT1/Wnt/b-
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catenin pathway and autophagy (62). Due to the characteristics and

the roles of the extracellular vesicles fromMSCs in the development

of osteosarcoma, engineered extracellular vesicles may become a

potential treatment for osteosarcoma by encapsulating drugs (63).

Recently, with the development of single-cell transcription,

more understandings of immune TME of osteosarcoma are

emerging. T cells play different roles in the TME of osteosarcoma

due to the heterogeneity. Usually, CD8+T cells may directly attack

tumor cells, and CD4 T cells may orchestrate the immunity, while

Tregs act as an immune suppressor role (64). In the single-cell

dynasty, the landscapes of T cells in osteosarcoma are more

complex and diverse (13). T cells may also be regulated by TME.

In TME, many chemokines, such as CXCL12, and many cell

phenotypes, such as Tregs and myeloid-derived suppressor cells

(MDSCs), may regulate the migration of T cells and contribute to

the progression of osteosarcoma (13). Compared to T cells, B cells

may mainly play tumor-promotion roles in osteosarcoma by

secreting immune suppressive cytokines and activating Tregs

(65). Recent studies have reported the potential checkpoint

molecules on B cells, and targeting these checkpoints may

become a potential strategy for osteosarcoma treatment (66).

Another lymphoid cell in TME of osteosarcoma is the NK cell, a

type of cell featured by its strong cytotoxic activity on malignant

cells (67). NK cells may directly regulate the TME and establish the

antitumor microenvironment by releasing IFN-g (68). However,

recent understandings from single-cell levels indicated that TME

may also have an effect on NK cells and cause high levels of

heterogeneity by regulating NK cell receptor signals and Tregs

(13). Many studies have tried to develop potential methods based

on NK cells to treat osteosarcoma, and these methods may enhance
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the anti-tumor effect of NK cells by targeting IL-12, IL-15, and so

on (69).

Another immune cell lineage in osteosarcoma TME is

monocyte lineage, including monocytes, macrophages, and

dendritic cells (DCs). Monocytes play roles of antigen-presenting

cells and could further differentiate into macrophages or DCs (70).

Monocytes may release chemokine monocyte chemoattractant

protein-1 (MCP-1), and MCP-1 may regulate the growth,

metastasis, and progression of osteosarcoma cells (71). The

recruitment of monocytes in TME is mainly regulated by CCL2,

and by inhibiting the CCL2 receptor, the monocyte recruitment in

TME may significantly decrease (72).

Monocytes may further differentiate into macrophages, which

are the most abundant immune cells in the TME of osteosarcoma

(73). Polarizing into M1 or M2 phenotype, macrophages may have

contrast effects on tumor progression (74). M1 macrophages release

proinflammatory cytokines, including nitric oxide synthase (iNOS),

and tumor necrosis factor-alpha (TNF-a), and factors may lead to

anti-tumor activity and induce the Th1 cells (75). Compared to M1

macrophages, M2 phenotype cells have contrasting activity: M2

macrophages exert their pro-tumor activities through various

mechanisms in TME, including immune suppression, tissue

remodeling, tumor progression, and angiogenesis (12). M2

macrophages promote osteosarcoma metastasis by secreting

factors such as CCL18, MMP-12, COX-2, and IL-1b, and these

factors may contribute to metastasis through the NF-kB/miR-181a-
5p/RASSF1A/Wnt pathway (76, 77). M2 macrophages may also

contribute to tumor angiogenesis by releasing vascular endothelial

growth factor (VEGF) and fibroblast growth factor (FGF) (78).

Recent studies also reported that M2 macrophages may inhibit the
FIGURE 3

Cellular and Acellular Elements of the Osteosarcoma Tumor Microenvironment. Detailed representation of the osteosarcoma TME, delineates the
interplay between osteoblasts, osteoclasts, MSCs, and immune cells, including T cells and macrophages.
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activity of T cells due to their expression of PD-1 (79).

Repolarization of M2-like macrophages to M1-like macrophages

is emerging as an innovative anticancer approach.

Another phenotype differentiated from monocytes is DCs,

kinds of professional antigen-presenting cells (APCs) (68). By

producing IFN-1a and IFN-1b, DCs may regulate anti-tumor

effects (80). High levels of DCs may relate to high levels of heat

shock promoter 70 (HSP70) and high activity of T cells (81). In view

of results from single-cell RNAseq, DCs may have different

phenotypes, and some of them may play immunosuppressive

roles (82).
Roles of neutrophils in osteosarcoma

The recruitment of neutrophils from the circulatory system to

TME may undergo several stages, including attachment, adhesion,

crawling, and transmigration (83). Chemokine of the CXC family is

the major system that regulates the attraction of neutrophils,

including seven chemokines and two receptors. Usually, the CXC

family chemokines secreted by tumor tissues may attract the

neutrophils by interacting with CXC receptors CXCR1 and

CXCR2 expressed on neutrophils (84). After the receptor binding,

the G-protein and b-arrestin signaling pathways were activated,

which may further regulate the activation of calcium channels,

phospholipase C, MAP, and tyrosine kinase pathways (85). The

activation of these pathways may promote neutrophil migration by

remodeling dynamic actin (86). Previous studies have reported that

many neutrophil-regulating factors, such as CSF and IL-17, may

regulate neutrophil attraction by regulating the levels of CXC

chemokines and the receptions (87, 88). Many factors that play

significant roles in neutrophil migration have been explored in

osteosarcoma, including CXCL1, IL-6, CCL2, and so on (89).

CXCL1 has higher expression in the tumor tissues compared to

normal tissues, and the levels of CXCL1 expression may increase

with the tumor progression, many factors were found to relate to

this phenomenon, including the extracellular vesicles secreted by

osteosarcoma cells, pH levels, and other cytokines released by

tumor-relating cells (90, 91).

The recruitment of neutrophils to other organs is also

significantly related to the formation of a pre-metastatic niche

(92). Previous studies have proven that CXCL1 releasing by

human pulmonary artery endothelial cells may significantly

increase osteosarcoma cell mobility, and this phenomenon was

mediated by VCAM-1 (93). Moreover, it was also reported that

ANGPTL2 may contribute to the recruitment of neutrophils to the

lung and promote the formation of lung pre-metastatic (92).

Moreover, evidence from transcriptomic and histological analysis

of premetastatic lungs has identified the characteristics of pro-

metastatic events including inflammatory-induced stromal

fibroblast activation, neutrophil infi ltration, and ECM

remodeling (94).

Though the research on TANs in osteosarcoma is still limited,

the neutrophils and their related phenotypes have also been proven

to have effects on the development and progression of osteosarcoma
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(95). In osteosarcoma, the N1 subtype of TANs may be more

prevalent in the early stages of the disease, correlating with a

favorable response to treatment and a better prognosis, while the

N2 subtype could foster an immunosuppressive microenvironment

that hinders effective immunotherapy (96). The unique behavior of

neutrophils in osteosarcoma may be attributed to the bone matrix

components and the specific cytokine milieu present in the OS

microenvironment, which can influence neutrophil polarization

and function (97).

Furthermore, recent multi-omics analyses identified distinct

molecular subtypes of osteosarcoma, each with varying prognoses

and responses to treatment (98). These subtypes exhibit different

patterns of neutrophil infiltration and activation, suggesting that the

regulatory mechanisms controlling neutrophil behavior may vary

between osteosarcoma subtypes (98). TANs may regulate the

development of osteosarcoma via matrix metalloproteinases -9

(MMP-9): the high levels of MMP-9 mediated by TANs are

correlated with poorer prognosis (99). MMP-9 secreted from

TANs may interact with insulin receptor substrate 1 (IRS-1), and

further regulate the PI3K/AKT signaling pathway to contribute to

the proliferation of tumor cells (100). From the insights of single-

cell sequencing, the expressions of PPP2R5C, PPP2R5E, YWHAG,

and CREBBP on TANs were significantly related to the metastatic

of osteosarcoma, and these genes may play their roles via HIF-1,

PI3K-AKT, and JAK-STAT signaling pathways (101). Similar to

MMP-9, the PPP2R5C, a subunit of protein phosphatase 2A, was

expressed on TANs, and may also regulate the proliferation of

osteosarcoma via PI3K/AKT pathway (101). By comprehensively

analyzing the significant genes from osteosarcoma and neutrophils

at the single-cell level, hundreds of genes were identified, and

C3AR1 and FCER1G as two neutrophil-related genes were

validated to play critical roles in the communication between

neutrophils and osteosarcoma cells (102). C3AR1 and FCER1G

were highly regulated in the osteosarcoma mice induced by K7M2,

and these two genes were proven to have significant prognostic

value in osteosarcoma (102).

TANs may also act by communicating with other immune cells

(103). The most significant cell phenotypes that relate to TANs are

myeloid-derived suppressor cells (MDSCs), due to their shared

origin (15). MDSCs, the immature myeloid cells, play significant

roles in TME. In humans and mice, there are two major classes of

myeloid-derived suppressor cells (MDSCs), classified based on their

origins from the granulocytic lineage and monocytic lineage,

namely polymorphonuclear-MDSCs (PMN-MDSCs) and

monocytic-MDSCs (M-MDSCs) (104). The common feature of

MDSCs is their appearance in immunologically activated

pathological states, due to sustained stimulation of myeloid cells

in environments such as cancer, chronic infections or

inflammation, and autoimmune diseases, as a result of prolonged

presence of myeloid growth factors and inflammatory signals. The

main characteristic of MDSCs is their ability to suppress immune

responses, including those mediated by T cells, B cells, and natural

killer (NK) cells (105). M-MDSCs and PMN-MDSCs possess key

biochemical features that contribute to immune response

suppression, including upregulation of signal transducer and
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activator of transcription 3 (STAT3), induction of endoplasmic

reticulum stress, expression of arginase 1, and expression of

S100A8/A9 (106).

MDSCs may inhibit the migration of T cells and reduce T cell

activity to protect osteosarcoma cells (107, 108). This function of

MDSCs may be achieved by several pathways and factors, such as

the production of nitric oxide (NO) and ROS, and the consumption

of L-arginine (109). MDSCs may also contribute to the metastasis of

osteosarcoma by forcing T-cell tolerance and releasing TGF-b and

hepatocyte growth factor (HGF) (110). Moreover, MDSCs may also

regulate tumor angiogenesis by releasing VEGF and MMP-9 (111).

Another remarkable cell interaction with neutrophils is tumor-

associated macrophages (15). The neutrophils may attract

monocytes by secreting IL-37, CCL2, and CCL3, and these

monocytes may differentiate into macrophages via IL-8 and TNF-

a (112). It was also reported that in the development of sarcoma,

TANs may regulate the IL-12 releasing of macrophages, and IL-12

may contribute to the activation of unconventional T cells due to

their high levels of IL-12R expression, which further regulate the

secreting of IFN-g and tumor suppression (113). During the nascent

stages of oncogenesis, macrophages exhibit tumoricidal properties

due to their activated state, generating reactive oxygen and nitrogen

species that can induce DNA damage and genetic instability (114).

The cytokines from neutrophils in the tumor microenvironment

may significantly impact macrophage functions and phenotypes

(115). Furthermore, macrophages may contribute to malignant

transformation through the secretion of angiogenic factors,

proteases, and growth factors (116). These factors stimulate

cancer cell proliferation and support the epithelial-mesenchymal

transition in tumor cells, thereby facilitating tumor growth and

metastasis (117). Recent studies also reported that these recruited

monocytes and macrophages may release CXCL8 to further attract

neutrophils, which may become a feedback loop (118).

TANs may also interact with lymphoid cells and have paradoxical

effects on the functions of lymphoid cells (119). TANs may release

ROS, reactive nitrogen intermediates (RNI), and prostaglandin E2

(PGE2), and these factors may directly inhibit the functions of T cells

and NK cells (120, 121). The release function of TANs may relate to

their metabolism status. Facing limited glucose supply, neutrophils may

have high levels of mitochondrial fatty acid oxidation and high ROS

production (120). Moreover, TANs with endoplasmic reticulum stress

and altered lipid metabolism may also have higher levels of ROS

production (122). In addition to the release of mediate factors, TANs

may also interact with lymphocytes by disturbing the immune

checkpoints, due to the expression of PD-L1 and VISTA on

neutrophils, which may result in the dysfunction of T cells and NK

cells by interacting with their ligands (123). It was also reported that

some types of neutrophils may directly contact CD4+ T cells physically

to inhibit the functions of the cells (124). TANs may regulate the

activity of T cells by attracting Tregs and formatting the TME.

Interestingly, TANs may also have positive effects on lymphoid cell

activation. TANs may activate T cells by showing their APC-like

features, and these APC-like features in TANs are activated by TME-

derived CSF and IFN-g (125). Furthermore, the activation of T cells

may contribute to the expression of CD54 and CD86 on TANs, which

may further strengthen the APC-like features of TNAs and construct a
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positive feedback loop (126). By secreting IL-1b and IL-18, neutrophils

also directly attract and activate NK cells (127).

Within the context of the tumor microenvironment, the

intricate interplay between neutrophils and B cells holds

substantial implications for cancer progression and therapeutic

strategies (124). Neutrophils have been shown to facilitate the

migration of B cells through the release of TNF-a, with this effect

being notably enhanced by the presence of specific chemokines,

including CXCL13 and CXCL12 (128). While the precise nature of

the interaction between neutrophils and follicular B cells remains to

be fully elucidated, it is observed that neutrophils tend to

concentrate in areas rich in B cells and secrete B-cell-activating

factor (BAFF) under the influence of G-CSF, which in turn, bolsters

the rapid production of plasma cells (129). Furthermore,

neutrophils are known to regulate immunoglobulin production by

interacting with the BAFF receptor on B cells, a pivotal mechanism

in the modulation of the humoral immune response (130). This

capability of neutrophils to influence B cell activity is particularly

significant when considering the diverse functions of B cells in

countering tumorigenesis and their ability to stimulate other

immune cells, including T and NK cells (131).

The roles of NETs in osteosarcoma were also reported in

previous studies. In the osteosarcoma gene profiles, more than 90

NETs genes were identified, and these genes were related to

immune cell infiltration, including NK cells and CD8+ T cells (8).

Previous studies tried to establish a prognostic signature based on

NETs-related genes to predict the overall prognosis of osteosarcoma

and proved the strong performance of this signature (11). Similarly,

the TME between groups with different levels of NETs-related

signatures may have different types of immune cell infiltration.

Though few functional and experimental studies tried to

explore the specific mechanism of NETs in osteosarcoma, the

normal function and features of NETs in general tumors may

provide us with a potential hypothesis. In the context of tumor

development, NETs may serve to limit tumor spread in the early

stages by directly entrapping and killing cancer cells (132).

Moreover, NETs can enhance the local immune response by

promoting the recruitment and activation of immune cells such

as T cells and natural killer (NK) cells. This can lead to the secretion

of cytokines and chemokines that reinforce the inflammatory

response and potentially contribute to the elimination of cancer

cells (133). Generally, some NETs-related factors, such as IL-8, G-

CSF, and CXC chemokine receptor family, have been also proven to

relate to the progression of osteosarcoma (134). Similarly, MMP-9,

mentioned many times in this review, as a critical protein of NETs,

is also proven as a key factor in osteosarcoma (135). In addition, the

roles of NETs in blocking immune cells and protecting cancer cells

physically may also exist in the TME of osteosarcoma. The overall

roles of neutrophils in osteosarcoma are summarized in Figure 3.
Clinical evidence of neutrophils
in osteosarcoma

Previous studies reported the neutrophil count was an

independent risk factor for the metastasis of osteosarcoma (136).
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However, the most widely used predictive parameter related to

neutrophils in osteosarcoma is the neutrophil-to-lymphocyte ratio

(NLR), which may predict many kinds of prognoses, including

overall survival, progression-free survival (PFS), disease-free

survival (DFS), metastasis, and so on (137–139). In a cohort

enrolling 359 individuals after surgeries for osteosarcoma, pre-

treatment NLR may independently predict the overall survival

and PFS: the individuals with higher NLR may have lower 5-year

overall survival (HR = 1.80, 95% CI = 1.35-2.41, P < 0.001) and PFS

(HR = 1.65, 95% CI = 1.26-2.15, P < 0.001) compared with those

with low levels of NLR (137). Similar results were also reported in a

study that included 100 children with osteosarcoma,

rhabdomyosarcoma, and Ewing sarcoma: the NLR > 2 may

independently predict the overall survival (HR = 2.27, 95% CI =

1.07-5.30, P = 0.046) for children with osteosarcoma (10).

Compared to other hemogram parameters, such as platelet-to-

lymphocyte ratio (PLR) (AUC = 0.668 and AUC = 0.600) and

lymphocyte-to-monocyte ratio (LMR) (AUC = 0.609 and AUC =

0.407), NLR (AUC = 0.749 and AUC = 0.663) has the highest

predictive value for overall survival (140, 141). Pre-treatment NLR

may also predict the efficacy of neoadjuvant chemotherapy in

osteosarcoma, and the results from multicenter cohorts showed

that the patients with lower NLR may be more likely to achieve

pathological complete response (OR = 2.82, 95% CI = 1.36-5.17, P =

0.020) compared with patients with high NLR (142). Similarly, a

cohort from Iran with 186 individuals also reported that the pre-

treatment NLR may effectively predict the response after

neoadjuvant chemotherapy and overall survival: the patients with

high NLR have significantly low overall survival (20.7 months vs.

34.6 months, P = 0.003) and DFS (20.4 months vs. 32.7 months, P =

0.020) compared with individuals with normal NLR (143). The

prognostic abilities of increased NLR for overall survival (HR =

1.30, 95% CI = 1.10-1.50, P = 0.002) were also reported in

individuals with osteosarcoma and treated with high-dose

methotrexate and etoposide/ifosfamide chemotherapy (144).

Beyond the pre-treatment NLR, a recent study also reported the

prognostic value of dynamic changes of NLR during the treatment:

by combining the baseline NLR and Delta NLR, the NLR staging

system (HR = 2.46, 95% CI = 1.63-3.71, P < 0.001) may have better

predictive values (145).

In addition to the simple immune inflammation index such as

NLR, many immune indices related to neutrophils were also

reported to be used to predict the outcome of osteosarcoma. For

example, the systemic immune inflammation index (SII), defined as

platelet × neutrophil/lymphocyte counts, was reported to relate to

tumor size, histological type, Enneking stage, and neoadjuvant

chemotherapy, and high SII (HR = 1.22, 95% CI = 1.10-1.45, P =

0.029 and HR = 1.01, 95% CI = 1.00-1.02, P = 0.015) may

independently predict the overall survival (146, 147). A

multicenter study also reported the prognostic values of pre-

operative SII in the overall survival of both young (≤20 years)

individuals (HR = 2.38, 95% CI = 1.02-5.56, P = 0.045) and older

(60-80 years) individuals (HR = 2.42, 95% CI = 1.03-5.68, P = 0.043)

with osteosarcoma (148). In addition to SII, the lung immune

prognostic index (LIPI), calculated by serum lactate dehydrogenase
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(LDH) and neutrophil to lymphocyte ratio (NLR), was also proven

to predict the metastasis (HR = 1.864, 95% CI = 1.11-3.13, P =

0.018) of osteosarcoma (149). Moreover, studies included 133

individuals with osteosarcoma reported that the pre-treatment

Naples prognostic score (NPS), composed of serum albumin level,

serum total cholesterol (TC), lymphocyte-to-monocyte ratio

(LMR), and neutrophil-to-lymphocyte ratio (NLR), was able to

predict the overall survival (HR = 5.87, 95% CI = 1.03-6.43, P <

0.001; HR = 6.55, 95% CI = 1.15-13.62, P < 0.001) and PFS (HR =

5.27, 95% CI = 1.02-11.49, P < 0.001; HR = 6.78, 95% CI = 1.23-

10.58, P < 0.001), and was significantly related to tumor location (P

= 0.009), Enneking stage (P < 0.001), pathological fracture (P =

0.005), local recurrence (P < 0.001), and metastasis (P = 0.003)

(150). The studies related to the clinical roles of neutrophils are

summarized in Table 1.
Neutrophils in the surgery
of osteosarcoma

In the treatment of osteosarcoma, surgical resection is the most

critical treatment strategy. However, even after the surgical

procedure, patients with osteosarcoma may also face a high risk

of postoperative metastasis (151). Recent studies reported that the

postoperative metastasis was partly driven by the immune response

caused by infection, tissue damage, and cell injury, and the surgical

procedure of osteosarcoma is the major cause, due to the extensive

tissue resection and reconstruction (152). Even after surgery, the

tissue healing process also activates systemic inflammatory reaction,

which establishes a favorable microenvironment for tumor growth

and metastasis (153). Neutrophils may play critical roles in this kind

of acute inflammatory response (Figure 4).

After the surgical procedures of osteosarcoma, the extensive

trauma caused by surgery may result in high levels of release of

intracellular factors and cytokines, which may initiate the immune

response and naturally increase the circulation neutrophil counts

(154). The damaged cells after surgery expressed increased levels of

damage-associated molecular patterns (DAMPs), groups of cellular

components including ATP, DNA, cytokines, and so on (155).

DAMPs in the local tissues may attract the circulation of

neutrophils and contribute to the activation of neutrophils (116).

A recent study reported that with the cell destruction,

mitochondrial DNA (mtDNA) was released into circulation, and

attracted neutrophils to format the pre-metastatic niche, which

indicated the roles of neutrophils in the surgery-induced

osteosarcoma metastasis (156).

Facing the extensive simulation, the NETosis of neutrophils

would be activated. Previous studies have proven that after major

surgeries, especially the large removal and reconstruction in tumor

surgeries, the NETs markers in circulation may significantly

increase (157, 158). Additionally, the intraoperative surgical

vascular occlusion and hypoxia in the surgery procedures may

also contribute to NETosis (159). The extensive release of NETs

may finally promote the metastasis of tumors and result in the

failure of radical surgery.
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Potential treatments based
on neutrophils
How to benefit the patients more by targeting neutrophils?

Many researchers have begun their explorations in the engineering

and targeting of neutrophil strategies. Due to the limited

recognition of the neutrophils in the cancer, especially in

osteosarcoma, few studies about the neutrophil treatment in

osteosarcoma have been reported. Here, we reviewed the progress
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and explorations in targeting and engineering neutrophils for

cancer treatment to provide potentia l ways to treat

osteosarcoma (Figure 5).

The recruitment of neutrophils in local tissues plays a

significant role in tumor development and metastasis, so many

studies tried to inhibit this process to achieve the goals of cancer

therapy. Targeting CXCL/CXCR2 signaling has been reported as a

potential treatment in cancer: by regulating neutrophil infiltration,

CXCR2 inhibition, and interference may significantly suppress the

tumor growth and prolong the survival of mice with tumor, as well
TABLE 1 Studies focusing on the clinical roles of neutrophils in osteosarcoma.

Index
Sample
size Location

Population
Characteristics

Study
type Outcome Conclusion Ref

Pretreatment
Neutrophil count 65 Japan

First visit osteosarcoma
patients without metastasis

Single-center
retrospective
study Metastasis

Low neutrophil count as a risk factor
for metastasis of osteosarcoma (122)

Pretreatment
NLR 359 China

Patients who underwent
curative surgery
for osteosarcoma

Single-center
retrospective
study

5-years
OS/PFS

High levels of NLR as risk factors for
survival of osteosarcoma (123)

NLR 2087 – Patients with osteosarcoma Meta-analysis OS/DFS
High levels of NLR as risk factors for
survival of osteosarcoma (124)

NLR 2162 – Patients with osteosarcoma Meta-analysis OS/DPS
High levels of NLR as risk factors for
survival of osteosarcoma (125)

Pretreatment
NLR 172 Turkey

Pretreatment patients
with osteosarcoma

Single-center
retrospective
study OS

High levels of NLR as risk factors for
survival of osteosarcoma (126)

Pretreatment
NLR 162 China

Pretreatment patients
with osteosarcoma

Single-center
retrospective
study OS

High levels of NLR as risk factors for
survival of osteosarcoma (127)

NLR at the first
cycle
of chemotherapy 96 China

Patients who underwent
NACT for osteosarcoma

Multi-center
retrospective
study pCR

High levels of NLR as risk factors for
the effect of NACT (128)

NLR at the first
cycle
of chemotherapy 186 Iran

Patients who underwent
NACT for osteosarcoma

Multi-center
prospective
study OS/DFS

High levels of NLR as risk factors for
survival of osteosarcoma (129)

NLR
during
chemotherapy 164 France

Patients with osteosarcoma
and treated with M-
EI chemotherapy

Multi-center
prospective
study OS/EFS

High levels of NLR at 4 weeks as risk
factors for survival of osteosarcoma (130)

NLR (baseline,
during
treatment, delta) 251 China

Pretreatment patients
with osteosarcoma

Single-center
retrospective
study OS

High levels of baseline NLR and delta
NLR as risk factors for survival
of osteosarcoma (131)

Pretreatment SII 126 China
Pretreatment patients
with osteosarcoma

Single-center
retrospective
study OS

High levels of SII as risk factors for
survival of osteosarcoma (132)

Pretreatment SII 86 China
Pretreatment patients
with osteosarcoma

Single-center
retrospective
study EFS/CSS

High levels of SII as risk factors for
survival of osteosarcoma (133)

Pretreatment SII 125 China
Pretreatment patients
with osteosarcoma

Single-center
retrospective
study OS

High levels of SII as risk factors for
survival of osteosarcoma (134)

Pretreatment LIPI 184 China
Pretreatment patients
with osteosarcoma

Single-center
retrospective
study Metastasis

Low levels of LIPI as risk factors for
metastasis of osteosarcoma (135)

Pretreatment NPS 133 China
Pretreatment patients
with osteosarcoma

Single-center
retrospective
study OS/PFS

High levels of NPS as risk factors for
survival of osteosarcoma (136)
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FIGURE 5

Therapeutic Interventions Targeting Neutrophils in Osteosarcoma. These include neutralizing chemokine gradients that recruit neutrophils to the
TME, pharmacological repolarization of TAN phenotypes using TGF-b inhibitors, and the innovative use of engineered neutrophils for precision drug
delivery, highlighting the potential of these approaches to disrupt osteosarcoma progression and enhance therapeutic responses.
FIGURE 4

Post-surgical Neutrophil Activation and Its Implications in Osteosarcoma Metastasis. The post-operative surge in neutrophil activity following
osteosarcoma surgery, showcasing the release of damage-associated molecular patterns (DAMPs) and subsequent neutrophil chemotaxis. It
suggests a model where surgical stress-induced NETosis and the formation of pre-metastatic niches in distal organs are potential drivers of tumor
cell dissemination.
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as improve the quality of chemotherapy (160, 161). In addition to

the direct effects on tumor development, anti-CXCR2 may also

improve the effectiveness of PD-1 strategies, suppress the

inflammatory microenvironment caused by neutrophils, and

inhibit the formation of NETs (162). Similarly to CXCR2-related

strategies, targeting CXCR4 may also have effects on tumor

development by disturbing the recruitment of neutrophils (163).

Additionally, many cytokines, proteins, and novel nanomaterial

drugs, such as CEMIP (cell migration-inducing protein), IL-17, G-

CSF-inhibiting antibodies, and colchicine, were reported to have a

potential suppressive effect on neutrophil recruitment and have

potential to become a treatment of cancers (164–166).

Due to the different phenotypes of TANs, researchers also tried

to develop methods to repolarize pro-tumor TANs to anti-tumor

TANs. As the TGF-b/Smad pathway is critical to the polarization of

N2 TANs, some studies explored the potential strategies that may

inhibit this signal, and usage of TGF-b receptor inhibitor and

Smad3 inhibitor, as well as knockdown of Smad3, can effectively

contribute to the repolarization to N1 phenotypes and enhance the

anti-tumor effect of neutrophils (167). Similarly, enhancing the

pathways that contribute to the polarization of TANs to anti-tumor

phenotypes may also provide a potential effect on tumor

suppression, such as interferon therapy (22). Recently, many new

factors that may affect the repolarization of TANs were also

reported, including Interleukin-1 receptor-associated kinase M

(IRAK-M), nicotinamide phosphoribosyltransferase (NAMPT),

novel TGF-b inhibitor, and proteins for inflammation resolution

(168–170).

Trying to eliminate the effects caused by pro-tumor TANs may

also be a potential intervention in targeting neutrophils for cancer

treatments. Studies reported that by using STAT3 inhibitors, the

activation of neutrophils was suppressed and turned into an anti-

tumor phenotype (171). Targeting the angiogenesis effect of

neutrophils may also inhibit the development and metastasis of

tumors (172). A recent study also proved that inhibiting the FGF

pathway could eliminate the neutrophil-activated effect on tumor

cells (173). Moreover, many factors and proteins were found to have

a regulatory impact on neutrophil activity by inhibiting specific

pathways, such as fatty acid transport protein 2 (FATP2) inhibitor,

HDAC inhibitor, leukotriene-generating enzyme arachidonate 5-

lipoxygenase (Alox5) inhibitor, and so on (174, 175).

Targeting NETs is also a potential strategy. Targeting the

protein structures of NETs, previous studies tried to use DNase I

and (protein-arginine deaminase 4) PAD4 inhibitors, as well as

laminin antibodies, to inhibit the protective roles of NETs in tumor

progress (176). Due to the unstable nature of these inhibitor

proteins, some nanomaterials were designed to precisely release

the protein inhibitors at the accurate tumor location, which has

achieved satisfactory effects (177). Similarly, studies also reported

the exploration of targeting NETs-DNA. By designing cationic

materials that may inhibit the interaction between NETs-DNA

and CCDC25, researchers significantly reduced the infiltration of

NETs-DNA and suppressed the metastasis of tumors (178).

Based on the characteristics of neutrophils that neutrophils may

release cargo in certain microenvironments, engineering neutrophils

were also considered as a potential treatment for tumors. Recent
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studies have reported that neutrophils may be engineered as cell drug

delivery systems to transport chemotherapy drugs, photosensitizers,

photothermal agents, and so on to tumor tissues efficiently and safely

(179, 180). Neutrophil membranes have also been engineered for

novel therapy strategies for tumors. The cell membranes derived from

different cells have similar structures and functions to their derived

cells, which were considered to have the potential to interact with

tumor cells and to deliver drugs accurately (181). Recent studies

designed the neutrophil membranes loaded celastrol (CLT), paclitaxel

(PTX), and so on to treat cancer and achieved significant anti-tumor

efficacy (182, 183). It was also proven that irreversible electroporation

may induce the attraction of neutrophils and then improve the drug

delivery effectiveness mediated by neutrophils (184). Additionally,

neutrophil-derived extracellular vesicles (EVs) were also considered

as potential platforms for drug delivery. Due to the inflammatory

chemotaxis of neutrophil-derived EVs, EVs may automatically

migrate to the inflammatory site, as well as tumor location (185).

Engineered neutrophil-derived EVs may directly kill tumor cells and

regulate TME by carrying drugs, miRNAs, and cytotoxic factors such

as doxorubicin, granzyme, perforin, and so on (186, 187).

In addition to normal engineered neutrophil systems, many

other engineered strategies based on neutrophils have also been

developed. A recent study developed a two-pronged delivery system

to inhibit the effect of neutrophils in TME by both eliminating

NETs and reducing mitochondrial biogenesis (188). The design of

this strategy was based on the positive feedback loop that hypoxia

caused by exceeding mitochondrial activity may promote the

formation of NETs and NETs may positively contribute to the

mitochondrial metabolism. It was also reported that a drug delivery

system based on a platelet-neutrophil hybrid Membrane may

achieve efficient drug delivery guided by neutrophil-related

inflammatory microenvironment and enhance the anti-tumor

effect of macrophage (189).

However, the challenges and potential side effects associated

with neutrophil-related therapies should also be noticed. Usually,

chemokine inhibitors and chemokine receptor inhibitors were

usually employed to achieve the strategies targeting on the

recruitment, repolarization, pro-tumor effect, and NETosis (162).

The human chemokine system is characterized by its intricate and

diverse nature. The inhibition of a pivotal chemokine receptor could

potentially result in significant adverse effects (72). Moreover, the

redundancy inherent in chemokines and their receptors necessitates

the use of appropriate initiating doses and metabolic stabilizers for

the antagonists to be effective. This requirement significantly

constrains the development of chemokine receptor antagonists

and their clinical efficacy (190). Consequently, there is a pressing

need to optimize chemokine receptor antagonists in future research

and development endeavors. Moreover, we have to further explore

the effects of neutrophil subtypes. As neutrophils play a critical role

in innate immunity, broad targeting of these cells can increase the

risk of infections and other diseases (98). Therefore, therapies must

be tailored to minimize off-target effects on normal neutrophil

functions. Engineered neutrophil systems may achieve more

satisfactory effect due to their ability in precision targeting,

immunomodulation, and rapid response (187). They can be

designed to deliver drugs directly to the tumor site, increasing the
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efficacy of chemotherapy and reducing systemic side effects (173).

Despite these advantages, their stability within the complex in vivo

environment can be a concern, potentially affecting their

therapeutic efficacy. Ensuring biocompatibility to avoid adverse

immune responses is also a significant hurdle (173).

In summary, while neutrophil-based therapeutic strategies

show promise in the fight against cancer, they also present

significant scientific and technical challenges. Future research

must focus on overcoming these hurdles, refining these therapies

to maximize their efficacy and minimize adverse effects, and

identifying biomarkers that can predict treatment response. This

will be crucial in translating these innovative approaches into

clinical practice, offering new hope for cancer patients.
Challenges and perspectives

With the development of single-cell sequencing, the roles of

neutrophils in tumor development and metastasis are gradually

recognized and understood. However, their involvement in bone

cancer, specifically osteosarcoma, remains relatively understudied

compared to other types of tumors. Recent research has partly

demonstrated the roles of neutrophils in osteosarcoma, but the

specific roles of neutrophils in osteosarcoma, including

the interaction with bone cells (osteoclasts and osteoblasts), the

communication with immune cells, and the effects of NETs, were

still not fully understood. Moreover, further engineering and targeting

therapies based on neutrophils were still limited.

In the future, further research is needed to elucidate the

complex interplay between neutrophils and tumor cells in

osteosarcoma, as well as to identify novel therapeutic targets to

modulate neutrophil function and improve patient outcomes.

Single-cell transcriptomics allows for a detailed analysis of the

transcriptomic profiles of neutrophils in different osteosarcoma

subtypes (191). By comparing the gene expression profiles of N1

and N2 neutrophils in various osteosarcoma subtypes, we can gain

insights into the molecular mechanisms underlying their

polarization and function. This can be optimized by using

advanced computational methods to analyze the single-cell data

and by integrating the data with proteomic and metabolomic

profiles. Moreover, given the role of exosomes and other

extracellular vesicles in cell-cell communication, future research

should focus on their role in neutrophil-bone cell interactions (187).

Isolation and characterization of these vesicles from osteosarcoma

subtypes can reveal novel biomarkers and therapeutic targets.

Additionally, the development of preclinical models that

accurately recapitulate the bone tumor microenvironment will be

essential for advancing our understanding of neutrophil biology in

osteosarcoma and translating these findings into clinical practice.

Many models in bone metabolism research may achieve the

regulation of different bone cells, such as B-hRANKL mice, B-

hSOST mice, B-hRSPO1 mice, and so on (192). Integrating the

bone-related diseases models, orthotopic osteosarcoma models and

neutrophil models, we may further explore the potential

mechanism of the neutrophils in osteosarcoma.
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Conclusion

In this review, we tried to summarize the roles of neutrophils in

osteosarcoma from various dimensions, including the NETs, TANs

in immune TME, interaction between neutrophils and immune

cells, clinical evidence of neutrophils in osteosarcoma, the roles of

neutrophils in surgery, and the potential therapy based on

neutrophils. Though the studies on neutrophils in osteosarcoma

were still limited, taking inspiration from studies on neutrophils in

other types of cancer can also provide valuable insights for future

research on their role in osteosarcoma development.
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