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Objective: To explore the value of combined radiomics and deep learning

models using different machine learning algorithms based on mammography

(MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node

metastasis (ALNM) in breast cancer (BC). The objective is to provide guidance for

developing scientifically individualized treatment plans, assessing prognosis, and

planning preoperative interventions.

Methods: A retrospective analysis was conducted on clinical and imaging data

from 270 patients with BC confirmed by surgical pathology at the Third Hospital of

Shanxi Medical University between November 2022 and April 2024. Multiple

sequence images from MG and MRI were selected, and regions of interest in the

lesions were delineated. Radiomics and deep learning (3D-Resnet18) features were

extracted and fused. The samples were randomly divided into training and test sets

in a 7:3 ratio. Dimensionality reduction and feature selectionwere performed using

the least absolute shrinkage and selection operator (LASSO) regressionmodel, and

other methods. Various machine learning algorithms were used to construct

radiomics, deep learning, and combined models. These models were visualized

and evaluated for performance using receiver operating characteristic curves, area

under the curve (AUC), calibration curves, and decision curves.

Results: The highest AUCs in the test set were achieved using radiomics-logistic

regression (AUC = 0.759), deep learning-multilayer perceptron (MLP) (AUC = 0.712),

and combined-MLP models (AUC = 0.846). The MLP model demonstrated strong

classification performance, with the combinedmodel (AUC = 0.846) outperforming

both the radiomics (AUC = 0.756) and deep learning (AUC = 0.712) models.
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Conclusion: The multimodal radiomics and deep learning models developed in

this study, incorporating various machine learning algorithms, offer significant

value for the preoperative prediction of ALNM in BC.
KEYWORDS

mammography, magnetic resonance imaging, machine learning, radiomics, deep
learning, breast cancer, axillary lymph node metastasis
1 Introduction

Breast cancer (BC) has surpassed lung cancer as the most

common cancer among women worldwide and is the leading

cause of cancer-related deaths in women globally (1). Prognosis

and treatment strategies for BC vary depending on the molecular

subtype, clinical stage, and histological grading (2). Axillary lymph

node metastasis (ALNM) plays a critical role in BC clinical staging.

Studies have shown that patients with BC and ALNM have a

14% lower 5-year survival rate compared to those without

metastasis (3, 4). Preoperative adjuvant therapy or axillary lymph

node dissection (ALND) can improve patient survival (5, 6). Early

prediction of ALNM can help clinicians assess prognosis and

develop individualized treatment plans for patients with BC.

However, imaging assessments in clinical practice are often

subjective, requiring fine-needle aspiration or postoperative

histopathological biopsy for accurate results. Therefore, there is a

need for accurate and noninvasive methods to evaluate ALNM.

Radiomics can be used to noninvasively extract high-dimensional

data from images, revealing tumor-rated characteristics that are

invisible to the naked eye. This approach can potentially provide

more accurate interpretations of results, prognoses, and treatment

predictions (7–9). Deep learning, a new field in artificial intelligence

(AI) and machine learning, involves multilayer neural networks that

mimic the architecture of the human brain. Convolutional neural

networks, a highly effective deep learning method, are widely used in

medical image analysis (10). BC imaging typically involves

mammography (MG) and magnetic resonance imaging (MRI),

each with strengths and weaknesses in distinguishing calcifications

from soft tissues. Research indicates that combining both methods

provides more comprehensive information (11, 12).

Previous studies have mostly relied on single MG or MRI

images and individual machine-learning algorithms to construct

radiomics or deep-learning models, which limits tumor

information and hinders the identification of the most effective

models. This study investigated the performance of multimodal

radiomics combined with deep learning models, utilizing various

machine learning algorithms based on MG and MRI, for the

preoperative prediction of ALNM in patients with BC.
02
The objective was to guide preoperative intervention, prognosis

assessment, and the development of scientifically individualized

treatment plans.
2 Materials and methods

2.1 Study cohort

A retrospective analysis was conducted on the clinical and

radiological data of patients with BC confirmed by surgical

pathology at the Third Hospital of Shanxi Medical University

between November 2022 and April 2024. The inclusion criteria

were as follows:
1. Underwent breast MRI and MG examinations with clear

and complete images performed before biopsy, surgical

treatment, or chemoradiotherapy.

2. An in t e r v a l o f ≤ 1 week b e tween MG and

MRI examinations.

3. BC confirmed through pathological results, with the

axillary lymph node (ALN) status determined by ALND,

fine-needle aspiration, or sentinel lymph node biopsy

(SLNB), some of which were conducted prior to

neoadjuvant therapy.
The exclusion criteria were as follows:
1. Primary breast tumor lesions that were too small lesions or

had unclear boundaries, making it difficult to delineate the

region of interest (ROI).

2. Occult, recurrent, or distant metastatic BC.

3. A history of other malignancies.

4. Receiving neoadjuvant therapy before the pathological

evaluation of lymph nodes and imaging assessment.
The final analysis included 270 female patients. All samples

were randomly divided into training and testing sets in a 7:3 ratio.

Statistical analysis was conducted to verify that the baseline data
frontiersin.org
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were balanced between the groups. The ethics committee of the

Third Hospital of Shanxi Medical University approved the study

and waived the requirement for informed consent. The patient

inclusion flowchart is presented in Figure 1.
2.2 Equipment and methods

2.2.1 Equipment and image acquisition
MG was performed using the Hologic Selenia Dimensions

digital mammography system for craniocaudal (CC) and

mediolateral oblique (MLO) views of both breasts. The scanning

sequence included the CC view of the affected side, the CC view

unaffected side, the MLO view of the affected side, and the MLO

view of the unaffected. Additional lateral views, spot compression

views, and tomosynthesis were performed as needed.

MRI examinations were performed using a 3.0T MR scanner

(Skyra, Siemens, Germany) equipped with an 18-channel dedicated

coil. An apparent diffusion coefficient sequence was generated from

two different b-value diffusion-weighted imaging (DWI) sequences.

After mask scanning, Gd-DTPA (Gadopentetate Dimeglumine,

Bayer, Germany) was injected into the antecubital vein at a rate

of 2.5 mL/s using a power injector, at a dose of 0.2 mL/kg body

weight, followed by a 20 mL saline flush for dynamic contrast-

enhanced (DCE)-MRI. Enhanced images were continuously

acquired over six phases after contrast injection. Detailed

parameters are listed in Supplementary Table 1.

2.2.2 Image preprocessing, segmentation, and
feature extraction

For image preprocessing, the “N4BiasFieldCorrection” function

from the “ANTsPy” package was first used to correct bias in MRI

images, eliminating signal distortions caused by inhomogeneous

magnetic fields and enhancing image uniformity and contrast. After

that, the normalization function from the “nibabel” package was

applied to standardize the MRI grayscale values, ensuring

consistency across different images. All images were then
Frontiers in Immunology 03
resampled to a fixed resolution of 1×1×1 mm voxel size to

standardize voxel spacing for spatial normalization.

After preprocessing, two experienced radiologists, blinded to

the patients’ pathological results, used ITK-SNAP 4.2.0 software to

delineate ROIs of the same lesions in the CC and MLO views of MG

images as well as in T2-weighted imaging, DWI (b value = 800),

apparent diffusion coefficient, and the second phase of DCE-MRI

sequences. In cases with multiple lesions, the largest single lesion

was selected. Radiologist A initially delineated the lesions for all

patients, while Radiologist B randomly selected and delineated the

lesions of 30 patients. Radiologist A repeated the delineation for

these 30 patients 2 weeks later to test feature consistency. Any

discrepancies were resolved by consensus.

Using the “Pyradiomics” package in Python 3.7, radiomics features

were extracted from the delineated ROIs, including shape features,

first-order statistics, texture features (second-order statistics) [Gray-

Level Co-occurrence Matrix, Gray-Level Run Length Matrix, Gray-

Level Dependence Matrix], higher-order statistics, frequency-domain

features, filter-based features, and Local Binary Patterns features.

Radiomics features from the different sequences were combined for

subsequent screening. Deep learning features were extracted using a

pretrained 3D ResNet model, with the input layer modified to accept a

single-channel input and the final fully connected layer removed. The

extracted deep-learning features were then combined across sequences.

The combined model features were formed by integrating the deep

learning features with the radiomic features that passed consistency

testing. Radiomic, deep learning, and combined model features were

independently analyzed in subsequent steps.

2.2.3 Feature selection, model building,
and evaluation

Radiomics features extracted from ROIs outlined by different

doctors were assessed using a bidirectional consistency model to

calculate the intraclass correlation coefficient (ICC), retaining

features with an ICC > 0.9. Since deep-learning features are high-

dimensional numerical vectors rather than manually defined, they

did not require consistency testing.
FIGURE 1

Flowchart of the patient enrolment.
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A synthetic minority oversampling technique was used to

balance the class distribution in the dataset by interpolating new

minority class samples in the feature space (k = 5).

Z-score normalization was applied to the features to ensure that

they were analyzed on the same scale. The mean and standard

deviation of each feature were calculated from the training set, and

these values were used to standardize both the training and

validation sets to prevent data leakage.

After that, univariate analysis was performed to filter features.

For normally distributed features with equal variance, independent

sample t-tests were used; for normally distributed features with

unequal variance, corrected t-test methods such as the Cochran &

Cox, Satterthwaite, and Welch methods were applied; and for non-

normally distributed features, the Mann-Whitney U test was

employed. Features with p-values < 0.05 were retained.

Based on the univariate analysis results, Spearman correlation

analysis was performed, and features with a correlation > 0.9 were

randomly removed, repeating this process until all feature

correlations were ≤ 0.9.

The Max-Relevance and min-redundancy method was applied

to identify the features most relevant to the final output while

minimizing redundancy among them.

Finally, LASSO regression was used for feature dimensionality

reduction, with 20 repetitions of 10-fold cross-validation using

different random seeds employed to select the feature subset

corresponding to the optimal regularization parameter l with the

minimum mean squared error (MSE).

Using 20 repetitions of 5-fold cross-validation using different

random seeds, the final selected radiomics and deep learning features

were used to construct models with eight machine learning

algorithms: logistic regression (LR), naive Bayes, support vector

machine (SVM), k-nearest neighbors (KNN), extreme gradient

boosting (XGBoost), light gradient boosting machine (LightGBM),

adaptive boosting (AdaBoost), and multilayer perceptron (MLP).
Frontiers in Immunology 04
Receiver operating characteristic (ROC) curves were plotted for

all the models, and metrics such as area under the curve (AUC),

diagnostic accuracy, sensitivity, specificity, positive predictive value,

negative predictive value, precision, recall, F1 score, and threshold

were calculated. The best-performing algorithm model was

selected, and waterfall plots were used to display the distribution of

the model’s prediction probabilities. The DeLong test, net

reclassification improvement index (NRI), and integrated

discrimination improvement index (IDI) were used to compare

model performance. Calibration curves (CAL) and decision curve

analysis (DCA) were used to assess model fit and clinical benefits. The

research workflow is illustrated in Figure 2.

2.2.4 Statistical analysis
Statistical analyses were performed using R version 4.4.1.

Continuous variables were presented as “mean ± standard deviation.”

Independent-sample t-tests were used for normally distributed

continuous variables; in contrast, the Mann–Whitney U test was used

for non-normally distributed continuous variables. Categorical variables

are expressed as frequencies and percentages, and comparisons were

made using the chi-square test, continuity correction test, and Fisher’s

exact test. Statistical significance was set at p < 0.05.
3 Results

3.1 Clinical characteristics

This study included 270 patients with BC: 117 (43.3%) with

ALNM and 153 (56.7%) without ALNM. All patients were

randomly divided into training (n = 189) and test (n = 81) sets in

a 7:3 ratio. The training set comprised 80 (29.6%) patients with

ALNM and 109 (40.4%) patients without ALNM; in contrast, the

test set included 39 (14.4%) patients with ALNM and 42 (15.6%)
FIGURE 2

Flowchart of radiomics.
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patients without ALNM. Patient characteristics and comparisons

between and within groups are presented in Table 1.
3.2 Feature selection and machine learning
model construction

Table 2 lists the number of features retained at each step of the

feature selection process and the corresponding figure numbers for

visualizations. The feature selection process using LASSO

regression is shown in Figure 3, while the final selected features

and their coefficients are listed in Supplementary Table 2.
3.3 Model performance evaluation
and visualization

The diagnostic performance is presented in Supplementary

Table 3, and the ROC curves are shown in Figure 4, indicating

that all models performed well in both the test and training cohorts.

Among all machine learning algorithms, the AUCs of the combined

models were improved compared to those of the radiomics or deep

learning models alone. The classifers with the highest perfomance

in the test set for the three feature subset models were as follows:

Accuracy: Radiomics-MLP (0.753), Deep Learning-MLP

(0.691), Combined-LR (0.778);

AUC: Radiomics-LR (0.759), Deep Learning-MLP (0.712), and

Combined-MLP (0.846);

F1 score: Radiomics-MLP (0.730), Deep Learning-MLP (0.684),

Combined-MLP (0.782);

Sensitivity: Radiomics-XGBoost (0.861), Deep Learning-SVM

(0.833), Combined-MLP (0.944);

Specificity: Radiomics-KNN (0.867), Deep Learning-LightGBM

(0.889), Combined-KNN (0.800);

PPV: Radiomics-SVM (0.727), Deep Learning-KNN (0.800),

Combined-KNN (0.700);

NPV: Radiomics-AdaBoost (0.811), Deep Learning-MLP

(0.763), Combined-SVM (0.963).

The MLP model demonstrated superior overall performance

across the three different feature subset models, as detailed below:

Radiomics-MLP: AUC = 0.756, Accuracy = 0.753, F1 Score = 0.730;

Deep Learning-MLP: AUC = 0.712, Accuracy = 0.691, F1

Score = 0.684;

Combined-MLP: AUC = 0.846, Accuracy = 0.765, F1 Score = 0.782.

Therefore, this algorithm was selected for further interpretation

of the study results.

The ROC, DCA, and CAL of the MLP model are shown in

Supplementary Figure 5, the waterfall plot in Supplementary

Figure 6, and the DeLong test, NRI, and IDI plots in

Supplementary Figure 7. The test set results indicate that the

combined model showed a statistically significant difference over

single-modality models according to the DeLong test (P=0.043 for

Combined-MLP vs. Radiomics-MLP; P=0.038 for Combined-MLP

vs. Deep Learning-MLP). Additionally, NRI and IDI metrics

showed improvements (NRI=0.074 and IDI=0.126 for Combined-

MLP vs. Radiomics-MLP; NRI=0.213 and IDI=0.147 for
Frontiers in Immunology 05
Combined-MLP vs. Deep Learning-MLP). The ROC curve of the

MLP model demonstrated excellent classification performance,

with the AUC of the combined model in the test set (AUC =

0.846) showing an improvement compared with the radiomics

(AUC = 0.756) and deep learning models (AUC = 0.712).
4 Discussion

The ALN is the most common site of metastasis in patients with

BC. Determining ALNM is crucial for clinical staging and prognosis

assessment because it helps in planning surgical and adjuvant

treatment strategies (13). For example, depending on the

metastasis , patients may need to receive neoadjuvant

chemotherapy to reduce the size of the tumors and metastatic

lymph nodes, increasing the success rate of surgery and the

possibility of breast-conserving surgery. It can also assist

radiologists in precisely targeting the radiation therapy area,

thereby improving treatment efficacy and minimizing damage to

normal tissues (14, 15). Imaging assessments of ALNM rely heavily

on the subjective experience of physicians. SLNB and ALND can

improve patient survival. However, these two methods have

drawbacks. SLNB shows a high negative rate of 70–80%,

indicating unnecessary procedures (16). ALND can lead to

complications such as arm numbness and upper limb

lymphedema (17). Therefore, we aimed to predict ALNM

preoperatively to guide clinicians in preoperative intervention,

prognostic assessment, and formulation of scientifically

individualized treatment plans for BC.

In recent years, the field of AI has experienced unprecedented

growth, significantly affecting various domains, including

healthcare. Among the numerous applications, AI has shown

remarkable potential for the early detection of cancer, prediction

of treatment response, and prognosis assessment through advanced

techniques, such as radiomics and deep learning (9, 10). This new

technology offers accurate and noninvasive methods for predicting

the pathological indicators of BC mentioned above. MG is a

commonly used screening method for BC, with a sensitivity of

approximately 75%, and is capable of detecting microcalcifications.

However, its sensitivity decreases in women with dense breast

tissue. In two-dimensional imaging, the overlap of normal

fibroglandular tissue can mimic malignant features, leading to a

higher false positive rate (18). MRI is suitable for screening high-

risk patients with BC, with a sensitivity as high as 92%, and provides

more detailed anatomical information that helps assess the extent

and invasiveness of tumors. However, calcifications may not

produce strong signals, making it difficult to distinguish them

from the surrounding tissues. Additionally, MRI is sensitive to

patient movement and metal implants during imaging, which can

lead to artifacts that affect the image quality (19). While radiologists

are highly skilled in interpreting medical images, their assessments

are inherently subjective and can be influenced by factors such as

experience, fatigue, and cognitive bias. This subjectivity can

sometimes lead to variability in diagnosis and assessment. In

contrast, radiomics and deep learning models offer a more

objective and standardized approach to image analysis (20).
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TABLE 1 The baseline clinical characteristics of patients.

Training Set (N=189)

p.overall

Test Set (N=81)

p.overall
ALNM (N=80)

Non-
ALNM (N=109)

ALNM (N=39)
Non-
ALNM (N=42)

ALNM: - -

No - - - -

Yes - - - -

Age 51.0 (12.6) 53.3 (10.9) 0.197 53.2 (12.7) 55.7 (11.7) 0.372

BMI 24.8 (2.98) 24.8 (3.07) 0.936 24.4 (3.53) 24.8 (2.99) 0.545

Lesion Site: 0.987 0.928

Left 45 (56.2%) 60 (55.0%) 19 (48.7%) 19 (45.2%)

Right 35 (43.8%) 49 (45.0%) 20 (51.3%) 23 (54.8%)

MG BI-RADS: <0.001 0.243

0 0 (0.00%) 1 (0.92%) 0 (0.00%) 0 (0.00%)

1 0 (0.00%) 1 (0.92%) 0 (0.00%) 0 (0.00%)

2 3 (3.75%) 8 (7.34%) 3 (7.69%) 2 (4.76%)

3 2 (2.50%) 1 (0.92%) 0 (0.00%) 1 (2.38%)

4a 1 (1.25%) 10 (9.17%) 0 (0.00%) 3 (7.14%)

4b 3 (3.75%) 10 (9.17%) 2 (5.13%) 5 (11.9%)

4c 31 (38.8%) 56 (51.4%) 16 (41.0%) 19 (45.2%)

5 40 (50.0%) 22 (20.2%) 18 (46.2%) 12 (28.6%)

MG ALNM: <0.001 0.012

No 64 (80.0%) 107 (98.2%) 31 (79.5%) 41 (97.6%)

Yes 16 (20.0%) 2 (1.83%) 8 (20.5%) 1 (2.38%)

MG Spiculated Sign: 0.355 0.978

No 49 (61.3%) 75 (68.8%) 28 (71.8%) 29 (69.0%)

Yes 31 (38.8%) 34 (31.2%) 11 (28.2%) 13 (31.0%)

MG Lobulated Sign: 0.867 1.000

No 54 (67.5%) 76 (69.7%) 26 (66.7%) 29 (69.0%)

Yes 26 (32.5%) 33 (30.3%) 13 (33.3%) 13 (31.0%)

MG Calcification: 0.867 0.060

No 51 (63.7%) 67 (61.5%) 21 (53.8%) 32 (76.2%)

Yes 29 (36.2%) 42 (38.5%) 18 (46.2%) 10 (23.8%)

MRI BI-RADS: 0.018 0.007

3 2 (2.50%) 4 (3.67%) 0 (0.00%) 1 (2.38%)

4a 1 (1.25%) 3 (2.75%) 0 (0.00%) 0 (0.00%)

4b 1 (1.25%) 3 (2.75%) 1 (2.56%) 0 (0.00%)

4c 9 (11.2%) 31 (28.4%) 4 (10.3%) 15 (35.7%)

5 67 (83.8%) 68 (62.4%) 34 (87.2%) 26 (61.9%)

MRI ALNM: <0.001 0.009

No 39 (48.8%) 92 (84.4%) 21 (53.8%) 35 (83.3%)

(Continued)
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TABLE 1 Continued

Training Set (N=189)

p.overall

Test Set (N=81)

p.overall
ALNM (N=80)

Non-
ALNM (N=109)

ALNM (N=39)
Non-
ALNM (N=42)

Yes 41 (51.2%) 17 (15.6%) 18 (46.2%) 7 (16.7%)

MRI Spiculated Sign: 0.399 0.748

No 36 (45.0%) 57 (52.3%) 19 (48.7%) 23 (54.8%)

Yes 44 (55.0%) 52 (47.7%) 20 (51.3%) 19 (45.2%)

MRI Lobulated Sign: 0.893 0.978

No 61 (76.2%) 81 (74.3%) 28 (71.8%) 29 (69.0%)

Yes 19 (23.8%) 28 (25.7%) 11 (28.2%) 13 (31.0%)

MRI Tumor Margin: 0.640 0.947

Clear 57 (71.2%) 73 (67.0%) 30 (76.9%) 31 (73.8%)

Indistinct 23 (28.7%) 36 (33.0%) 9 (23.1%) 11 (26.2%)

DCIS: 0.022 0.117

No 80 (100%) 101 (92.7%) 39 (100%) 38 (90.5%)

Yes 0 (0.00%) 8 (7.34%) 0 (0.00%) 4 (9.52%)

IDC: 0.013 0.001

No 5 (6.25%) 22 (20.2%) 0 (0.00%) 10 (23.8%)

Yes 75 (93.8%) 87 (79.8%) 39 (100%) 32 (76.2%)

ER: 0.569 0.895

Negative 12 (15.0%) 21 (19.3%) 6 (15.4%) 5 (11.9%)

Positive 68 (85.0%) 88 (80.7%) 33 (84.6%) 37 (88.1%)

PR: 0.784 0.359

High expression 50 (62.5%) 66 (60.6%) 20 (51.3%) 28 (66.7%)

Low expression 9 (11.2%) 10 (9.17%) 9 (23.1%) 6 (14.3%)

Negative 21 (26.2%) 33 (30.3%) 10 (25.6%) 8 (19.0%)

HER2: 0.460 0.452

Negative 57 (71.2%) 84 (77.1%) 31 (79.5%) 37 (88.1%)

Positive 23 (28.7%) 25 (22.9%) 8 (20.5%) 5 (11.9%)

Ki67: 0.003 0.074

High expression 69 (86.2%) 72 (66.1%) 35 (89.7%) 30 (71.4%)

Low expression 11 (13.8%) 37 (33.9%) 4 (10.3%) 12 (28.6%)

Molecular Subtype: 0.057 0.630

HER2-Enriched 6 (7.50%) 4 (3.67%) 3 (7.69%) 4 (9.52%)

LuminalA 10 (12.5%) 29 (26.6%) 3 (7.69%) 7 (16.7%)

LuminalB HER2-Negative 47 (58.8%) 46 (42.2%) 25 (64.1%) 20 (47.6%)

LuminalB HER2-Positive 11 (13.8%) 19 (17.4%) 6 (15.4%) 8 (19.0%)

TNBC 6 (7.50%) 11 (10.1%) 2 (5.13%) 3 (7.14%)
F
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MG/MRI ALNM, Suspicious ALNM in imaging reports; DCIS, Ductal carcinoma in situ; IDC, Invasive ductal carcinoma. Estrogen receptor (ER) and progesterone receptor (PR) are considered
positive if ≥1% of cells show nuclear staining. PR expression is classified as low if ≤20% and high if >20%. HER2 (Human epidermal growth factor receptor 2) is deemed positive if the result is 3+
or if FISH indicates gene amplification; it is considered negative if the result is 0+, 1+, or if FISH indicates no amplification. Ki67 is classified as low expression if ≤14% of cells show nuclear
staining and high expression if >14%.
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Numerous studies have demonstrated that radiomics or deep

learning models based on MG or MRI perform well in predicting

BC risk, ALNM, histological grading, and response to neoadjuvant

therapy, as well as in differentiating between benign and malignant

breast masses and molecular subtypes of BC (21–27). Recent studies

by Yuchen and Ma et al. found that radiomics models constructed

by combining MG and MRI outperformed those based on a single

sequence (11, 12). Additionally, research by Manon and Xue et al.

demonstrated that models combining radiomics with deep learning

outperform models using either method alone (28, 29). Inspired by

the study mentioned above, we combined MG with MRI, radiomics,

and deep learning to construct models using various machine-

learning algorithms.

ResNet, proposed by He et al. in 2015, addresses the common

issues of vanishing and exploding gradients in deep neural network
Frontiers in Immunology 08
training (30). This network architecture introduces a residual

learning framework that enables the training of considerably

deeper networks (31, 32). We utilize ResNet-18, a shallower

version in the ResNet family. It has fewer parameters and lower

computational complexity but still provides efficient feature

extraction capabilities. It is widely used in various computer

vision tasks.

Previous studies have established radiomics models to predict

ALNM by delineating ROIs in the ALN region (3, 33). Our study

demonstrated that models predicting ALNM based on ROIs drawn

around breast tumors exhibit strong performance. This suggests

that the imaging features of the primary tumor not only reflect the

internal structure of the tumor but may also reveal insights into the

tumor’s biological behavior, aggressiveness, and interactions with

lymph nodes.
FIGURE 3

(A, D, G) Coefficients of LASSO 10 fold cross validation. (B, E, H) MSE of LASSO 10 fold cross validation.The feature subset corresponding to the l
value with the minimum MSE was retained. (C, F, I) Weights of features in the final subset. (A–C) Radiomics features. (D–F) Deep learning features.
(G–I) Combined features.
TABLE 2 Feature Counts.

MG+MRI ICC
Univariate
Analysis

Spearman
Correlation
Analysis

mRMR
LASSO 10-Fold
Cross-Validation

Corresponding Figures -
Supplementary
Figure 1

Supplementary
Figure 2

-
Supplementary
Figure 3

Figure 3 and
Supplementary Figure 4

Radiomics Features 6222 4291 845 190 30 18

Deep Learning Features 3072 - 123 97 30 21

Combined Features - 7363 433 291 30 20
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In the final selected feature subset, deep learning features did

not include those from the MG sequence because MG sequence

features were excluded owing to their high correlation with features

from other sequences. Several combined features overlapped with

the selected radiomics and deep learning features. We also

attempted other methods to construct combined models;

however, their performances did not match the approach used in

this study. The specific methods and possible reasons are as follows:

when combining independently selected radiomics and deep

learning features, the interactions between features were not

considered, leading to the exclusion of weak features that could

play an important role in the combined feature set, ultimately

resulting in a combined feature set that fails to capture the

complementary information between the two types of features.

Using the predicted probability values from radiomics and deep

learning models as new features or taking their mean while

simplifying the model complexity may result in information loss.

This is because probability values typically reflect a model’s overall

confidence in a specific sample rather than fully representing the

complex relationships among all potential features (34, 35).
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When comparing baseline data between the ALNM and non-

ALNM groups, we found significant statistical differences in features

such as MG/MRI ALNM and MG/MRI BI-RADS. However, after

further selection of these clinical features and combining them with

radiomics or deep learning models, the diagnostic performance in the

test set did not show significant improvement and even decreased.

We speculate that this may be due to the high correlation between

clinical features and radiomics or deep learning features, leading to

information redundancy when combined, which did not provide

additional useful information to the model but instead increased its

complexity. Additionally, our relatively small sample size may not

represent the characteristics of the entire patient population, leading

to a higher risk of overfitting (36, 37).

The MLP is a type of feedforward artificial neural network,

composed of multiple layers of perceptrons, capable of handling

highly nonlinear and complex problems through multiple hidden

layers and nonlinear activation functions. Rosenblatt first proposed

the perceptron model in the 1960s, and MLP is a multilayer

extension. In this study, the combined model built with the MLP

algorithm (AUC=0.846, Accuracy=0.765) outperformed the
FIGURE 4

ROC for all models. (A, B) Radiomics models. (C, D) Deep learning models. (E, F) Combined models. (A, C, E) Training set. (B, D, F) Test set.
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radiomics model (AUC=0.756, Accuracy=0.753) and the deep

learning model (AUC=0.712, Accuracy=0.691). It was also more

accurate than subjective assessments by radiologists (Accuracy for

MG=0.637, Accuracy for MRI=0.689) and exceeded the performance

of the model constructed by Hua, Y. et al., which combined MG and

MRI but extracted only radiomics features (AUC=0.793,

Accuracy=0.750) (11). The DCA indicates that all MLP models

have higher net benefits than traditional decision strategies. CAL

showed a good fit between the model’s predicted probabilities and

actual outcomes. The waterfall plot visually illustrates the changes in

individual samples within the model predictions. Most samples

exhibited significant classification effects, with changes in the

predicted probabilities showing a clear gradient, further validating

the strong predictive ability of the model at the individual level. The

waterfall plot also highlights a few misclassified samples, indicating

the areas in which the model requires improvement. The DeLong test

showed a significant statistical difference, and both the NRI and IDI

were not vanishing, indicating that the MLP model can effectively

integrate radiomics and deep learning features (38).

This study has a few limitations:
Fron
1. It was a single-center study with a small sample size and

lacked external validation from other institutions, which

may introduce selection bias.

2. Only the second-phase features of DCE-MRI were

extracted; future research could include other phases or

ultrasound images.
5 Conclusion

Multimodal radiomics, deep learning, and combined models

based on MG and MRI constructed using various machine learning

algorithms demonstrated good performance in the preoperative

prediction of ALNM. These models may provide valuable guidance

for physicians in preoperative intervention, prognostic assessment,

and the development of scientifically individualized treatment plans

for BC.
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