
   

  Molecular Mechanisms of Obesity Predisposes to Atopic Dermatitis

  D a j i n  S h a n g
1

,  S h e n g n a n  Z h a o
2 *

 
1

C h i n a  M e d i c a l  U n i v e r s i t y ,  C h i n a ,  
2

T h e  F i r s t  A f f i l i a t e d  H o s p i t a l  o f
C h i n a  M e d i c a l  U n i v e r s i t y ,  C h i n a

  S u b m i t t e d  t o  J o u r n a l :

  F r o n t i e r s  i n  I m m u n o l o g y

  S p e c i a l t y  S e c t i o n :

  I n f l a m m a t i o n

  I S S N :

  1 6 6 4 - 3 2 2 4

  A r t i c l e  t y p e :

  R e v i e w  A r t i c l e

  R e c e i v e d  o n :

  3 0  J u l  2 0 2 4

  A c c e p t e d  o n :

  1 5  O c t  2 0 2 4

  P r o v i s i o n a l  P D F  p u b l i s h e d  o n :

  1 5  O c t  2 0 2 4

  F r o n t i e r s  w e b s i t e  l i n k :

  w w w . f r o n t i e r s i n . o r g

  C i t a t i o n :

 

S h a n g  D  a n d  Z h a o  S ( 2 0 2 4 )  M o l e c u l a r  M e c h a n i s m s  o f  O b e s i t y
P r e d i s p o s e s  t o  A t o p i c  D e r m a t i t i s .  F r o n t .  I m m u n o l . 1 5 : 1 4 7 3 1 0 5 .
d o i : 1 0 . 3 3 8 9 / f i m m u . 2 0 2 4 . 1 4 7 3 1 0 5

  C o p y r i g h t  s t a t e m e n t :

 

©  2 0 2 4  S h a n g  a n d  Z h a o .  T h i s  i s  a n  o p e n - a c c e s s  a r t i c l e  d i s t r i b u t e d
u n d e r  t h e  t e r m s  o f  t h e  C r e a t i v e  C o m m o n s  A t t r i b u t i o n  L i c e n s e  ( C C
B Y ).  T h e  u s e ,  d i s t r i b u t i o n  a n d  r e p r o d u c t i o n  i n  o t h e r  f o r u m s  i s
p e r m i t t e d ,  p r o v i d e d  t h e  o r i g i n a l  a u t h o r ( s )  o r  l i c e n s o r  a r e  c r e d i t e d
a n d  t h a t  t h e  o r i g i n a l  p u b l i c a t i o n  i n  t h i s  j o u r n a l  i s  c i t e d ,  i n
a c c o r d a n c e  w i t h  a c c e p t e d  a c a d e m i c  p r a c t i c e .  N o  u s e ,  d i s t r i b u t i o n
o r  r e p r o d u c t i o n  i s  p e r m i t t e d  w h i c h  d o e s  n o t  c o m p l y  w i t h  t h e s e
t e r m s .

 
T h i s  P r o v i s i o n a l  P D F  c o r r e s p o n d s  t o  t h e  a r t i c l e  a s  i t  a p p e a r e d  u p o n  a c c e p t a n c e ,  a f t e r
p e e r - r e v i e w .  F u l l y  f o r m a t t e d  P D F  a n d  f u l l  t e x t  ( H T M L )  v e r s i o n s  w i l l  b e  m a d e  a v a i l a b l e  s o o n .

 

F r o n t i e r s  i n  I m m u n o l o g y  |  w w w . f r o n t i e r s i n . o r g

Provisional

http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/


Molecular Mechanisms of Obesity Predisposes to Atopic Dermatitis

Obesity is a prevalent metabolic disease that reduces bacterial diversity, colonizes the epidermis

with lipophilic bacteria, and increases intestinal pro-inflammatory species, all of which lead to

impaired epithelial barriers. Adipose tissue secretes immunomodulatory molecules, such as

adipokines, leptin, and adiponectin, which alters the morphology of adipocytes and macrophages

as well as modulates T cell differentiation and peripheral Th2-dominated immune responses.

Atopic dermatitis (AD) and obesity have similar pathological manifestations, including

inflammation as well as insulin and leptin resistance. This review examines the major mechanisms

between obesity and AD, which focus on the effect on skin and gut microbiota, immune responses

mediated by the toll like receptor (TLR) signaling pathway, and changes in cytokine levels

(TNF-a, IL-6, IL-4, and IL13). Moreover, we describe the potential effects of adipokines on AD

and finally mechanisms by which PPAR-γ suppresses and regulates type 2 immunity.

Keywords: atopic dermatitis; obesity; immune; adipokines; cytokines.

Introduction

Atopic dermatitis (AD) is a chronic, recurrent, inflammatory, pruritic dermatosis with complex

pathophysiology, involving disruption of the epidermal barrier, microbial dysbiosis within

affected lesions, and Th2 immune responses to skin allergens.(1)Impaired skin barrier function is

thought to be both a cause and a consequence of AD. Severe atopic dermatitis has been linked to

deficiencies in the filaggrin (FLG) protein or antimicrobial peptides.(2) Increased inflammatory

cell infiltration is observed in AD lesions, including T cells, dendritic cells, macrophages, mast

cells, and eosinophils.(3)These often precipitate increased cytokines including thymic stromal

lymphopoietin (TSLP), interleukin-1 (IL-1), IL-4, IL-5, IL-6, IL-25, IL-33, and transforming

growth factor-β (TGF-β), which promote inflammation and immune activation. Upregulated

expression levels of IL-12, interferon-γ (IFN-γ), and granulocyte-macrophage colony-stimulating

factor (GM-CSF) are detected during chronic phase.(4) Additionally, Th17 and Th22 cell

cytokines, such as IL13, IL-17, CCL17, tumor necrosis factor-α (TNF-α), and IL-22, promote the

formation of chronic skin lesions in AD.(4) Atopic sensitization is also associated with IL9, IL33,

and IL33R expression during infancy. In addition, AD could be aggravated by dysbiosis or

imbalances in microbial species diversity and environmental factors including diet.(5)

Obesity, a major health problem, is a result of metabolic syndrome in adipose tissue and is linked

to various chronic immune disorders.(6) Studies have shown that adipose expansion in early and

chronic obesity activates an inflammatory program, altering the immune phenotype to a

pro-inflammatory status.(7)Adipose depots usually release cytokines, chemokines, and adipokines

that coordinately regulate other immune cells, including eosinophils, mast cells, and macrophages

in an M2-polarized or alternately activated state.(7)Treatment that reduces obesity symptoms

could reduce epidermal thickness and eosinophil/mast cell infiltration, along with a reduction in

IgE, IL-4, IL-6, TNF-α, and AD-like lesions.(8)

Currently, the association of obesity/overweight with AD is not conclusive. Studies addressing

obesity in infancy or early childhood (age < 2 years) and AD have found a positive association;
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from childhood into adulthood; but this was not observed in other cross-sectional studies.(9) It has

also been shown that obesity may have a pathogenic function in AD. Obese adults are more likely

to develop moderate-to-severe AD.(10) Investigations have revealed that higher levels of serum

IgE and cutaneous mRNA levels of TNF-α, IL-13, and IL-31 are associated with more severe AD

in rat models with a higher body weight than those with lower body weight.(11) Moreover, IL-5

serum level correlated with both body mass index (BMI) and waist circumference.(12)

Collectively, these findings indicate that obesity may predispose individuals to or exacerbate AD.

The discrepancies observed here may be explained by differences in study designs, the diagnostic

criteria of AD, regional differences, and by the varied definitions of overweight and obesity used

across studies. Although the potential mechanisms by which obesity contributes to AD are not

fully understood, several potential mechanisms should be considered.

In obese or overweight individuals, low levels of adiponectin and PPAR-γ trigger a cascade of

events. First, these low levels lead to increased production of cytokines and chemokines. These

signaling molecules then activate macrophages and T cells, further promoting inflammation. The

resulting inflammatory state can further elevate leptin levels, which can create a vicious cycle by

further suppressing adiponectin and PPARγ.(13) The leptin secreted in obese or overweight

individuals can upregulate the expression levels of cytokines and chemokines, thereby increase the

risk of AD. The increase in AD-related cytokines and chemokines, along with the decrease in

PPAR-γ, not only induces inflammation in adipose tissue but also triggers insulin resistance and

leptin resistance. This results in adipocyte hypertrophy, adipose tissue hyperplasia, and lipid

accumulation, causing obesity. (13)Imbalance in gut microbiota can increase an individual's

susceptibility to AD by disrupting mucosal immune tolerance. This disruption can affect skin

homeostasis through its influence on the signaling pathways that maintain healthy skin barrier

function. However, research suggests that changes in gut microbiota alone are likely not enough to

trigger the development of AD. The interaction between specific microbial communities and the

immune system, as well as other external factors such as diet, may explain the pathogenesis of

AD.(14)

1. Correlation between atopic dermatitis and obesity

Among the numerous research records, the results of various studies are not consistent, and the

specific role of obesity in atopic dermatitis is not clear, and further exploration is needed.

However, more and more evidence shows a certain correlation between atopic dermatitis and

obesity.Obesity is one of the comorbidities of AD, and it has been confirmed as one of the risk

factors for AD, which can also exacerbate the severity of AD. Compared to non-AD patients, AD

patients have a higher probability of developing obesity, and the impact of obesity is more

pronounced in the pediatric population. This implies that early-onset obesity in the childhood

stage can increase the likelihood of developing AD.(15)In a study of datasets in children, it was

found that the prevalence of AD peaked early in the age group of 1 to 6 years, with a gradual

downward trend.(16)In a cohort study,AD was found to be associated with shorter stature, higher

BMI, and lower weight in children during childhood,There was a clear association between AD
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and obesity in children before the age of 5,The association gradually weakened around the age of

5,As children grew,the association between AD and BMI was not consistent throughout

childhood,further studies are needed to measure the long-term association and eliminate the

impact of diet, sleep, etc.(17)Similarly, one study found that obesity was also significantly

associated with the presence of AD in adults.(18)Apart from age, geographical variations and

gender differences may also influence the clinical presentation of AD and obesity. For instance, in

North America and Asia, there is a correlation between increased prevalence of obesity and

AD.(19)In another study, it was found that there is a positive correlation between obesity and AD

occurrence in the female population.(20)The interaction between obesity and AD is mediated by

various cytokines, immune mediators, and chemokines. Due to the interconnection of these two

conditions, alleviating one may potentially prevent or mitigate the progression of the other disease,

thereby effectively managing the conditions and enhancing individual health status.(13)

2. The role of the microbiota in obesity and AD

Studies have reported a cross-talk mechanism between the skin and the gut. Dysbiosis in gut

microbiota potentially disrupts microbial metabolites and pro-inflammatory factors as well as Th2

immune response, causing skin inflammation.(21)Furthermore, infants with AD exhibit reduced

levels of lactobacilli and bifidobacteria in their gut microbiota. There is also an increased

proportion of Escherichia coli, Clostridium difficile, and Staphylococcus aureus.(22) Obesity

reduces gut microbial diversity and beneficial microbes in the gut, including Lactobacillus, and

Bifidobacterium. A high-fat and high-sugar dietary habit decreases the abundance of beneficial

bacteria including bifidobacteria and lactobacilli. This dietary pattern can also induce increased

gut permeability and increased expression of inflammatory markers including TNF-α.(23) The

abundance of lactobacilli and bifidobacteria was decreased in obese mice models, causing higher

circulating levels of LPS, promoting NF-kB pathway activation through TLR4 signaling pathway,

thereby enhancing inflammatory response.(24) Additionally, Corynebacterium colonization of the

epidermis was associated with BMI. One study revealed that a high-fat diet increased skin

Corynebacterium species and free fatty acids in mice.(25) Gut microbiota analysis revealed

reduced abundance of Ruminococcaceae in fecal samples of atopic eczema infants. Interestingly,

the relative abundance of Ruminococcus was inversely related to TLR2-induced IL-6 and TNF-α

in IgE-associated eczema.(26)Ruminococcaceae was more abundant in the gut microbes of mice

with normal weight than in obese mice.(27)Moreover, the diversity of Bacteroidetes and

Actinobacteria was reduced in atopic eczema infants compared to healthy controls.(28)A new

polysaccharide, ARS, has been shown to reverse or resist high-fat-diet-induced obesity. It appears

to function by increasing the diversity of gut microbiota and optimizing the ratio of Firmicutes to

Bacteroidetes.(29) Topical treatments for AD, including corticosteroids, antibiotics, and

calcineurin inhibitors, increase species diversity of the epidermis, including Streptococcus,

Cutibacterium, and Corynebacterium spp.(30) Functional foods that prevent obesity increase

intestinal microbial diversity and beneficial bacteria (Bifidobacterium, Alloprevotella, and

Lactobacillus) and, at the same time decrease harmful bacteria (Staphylococcus and
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Corynebacterium 1).(31) Research has shown that "plant-based foods" intake suppresses

moderate-to-severe AD.(32) L. plantarum LM1004 significantly improves the restoration of

AD-like symptoms accompanied by decreased levels of Th2 and Th17 cell transcription factors,

increased transcription factors of Treg and Th1 cells, and upregulated FLG expression.(33) Gut

inflammation and gut barrier leakage activate skin epithelial cells and promote the recruitment of

T cells in patients with Omenn syndrome, thus exacerbating skin inflammation.(34) The above

findings revealed that BMI and diet influence the composition of skin microbiota and

susceptibility of an individual to AD.

3. The role of the signaling pathways in obesity and AD

3.1 JAK-STAT pathway
The Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway plays a
crucial role in the immunological and physiological processes of AD and obesity.In the context of
immune responses related to AD in the Th2 immune reaction, the binding of IL-4 and IL-4R
stimulates the phosphorylation of JAK1 and JAK3, leading to the activation and phosphorylation
of IL-4Rα and STAT6.(35)Furthermore, IL-4 and IL-13 can bind to the type II IL-4R, inducing
the phosphorylation of JAK1 and TYK2, subsequently activating and phosphorylating STAT3 and
STAT6. This results in the downregulation of FLG expression and impairment of skin barrier
function, as well as an increase in the production of TSLP, IL-25, and IL-33 in
keratinocytes.(36)TSLP is a Th2 cell cytokine that can activate dendritic cells to drive Th2 cell
differentiation and produce IL-4, IL-5, and IL-13.(37)Binding of the TSLPR heterodimeric
receptor results in the interaction with JAK1 and JAK2, leading to phosphorylation and activation
of STAT5.(38)IL-5 can also trigger the phosphorylation of JAK1 and JAK2 by binding to its
corresponding receptor, resulting in the activation of STAT1, STAT3, and STAT5.(39) For Th17
immunity, the JAK-STAT pathway does not appear to be directly involved in Th17 signal
transduction. However, research has shown that STAT3 is crucial for the proliferation and
survival of Th17 cells.(40)In Th1 immune responses, IL-12 signaling occurs through the binding
of IL-12 to a heterodimeric receptor composed of IL-12R β 1 and IL-12R β 2
subunits.(41)Subsequently, this interaction triggers the activation of JAK2 and TYK2, leading to
the activation of STAT4-mediated signaling, and to a lesser extent, signaling mediated by STAT1,
STAT3, and STAT5.(42)In skin function regulation, excessive activation of JAK1 can lead to
overexpression of serine proteases in the skin, thereby impairing skin barrier function.
Additionally, the STAT3 signaling molecule is a key transcription factor that regulates the
differentiation of keratinocytes and maintains skin integrity.(43)Secretory factors produced by
adipocytes can participate in the JAK-STAT signaling pathway. In mice fed a high-fat diet, leptin
secretion is associated with increased expression of STAT3 target genes. STAT3 can promote fat
breakdown and inhibit fat synthesis.(44)In the low-grade systemic inflammation associated with
obesity, interferon-gamma (IFN- γ ) secreted by CD4+ and CD8+ lymphocytes can activate
STAT1 in adipocytes, leading to dysfunctional adipocyte function and insulin
resistance.(44)Studies have also shown that mice lacking STAT4 under high-fat diet feeding
conditions can reduce adipose tissue inflammation, prevent insulin resistance, and improve
glucose homeostasis.(45)Additionally, STAT5 directly regulates the expression of key
transcription factor PPARγ involved in adipocyte differentiation. STAT6 in macrophages is also
essential for the browning of white adipose tissue.(44)Inhibiting the JAK-STAT pathway
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pharmacologically can lead to downregulation of interferon response, resulting in the
accumulation of UCP1 and browning of adipocytes.(46)
3.2 TLR pathway

TLRs recognize and bind to pathogen-associated molecular patterns (PAMPs) including

peptidoglycans, lipopolysaccharides, and yeast polysaccharides, initiating a cascade of signaling

events. Research has found that the TLR2-mediated immune signaling pathway is impaired in

patients with AD. Blocking the TLR2 pathway inhibits pro-inflammatory cytokines (IL-6, IL-8,

and IL-1β) and promotes the expression of tight junction proteins, hence restoring the epidermal

barrier in AD.(47)On the other hand, TLR4 modulates the immune balance in AD. Its activation

can impair Th1 immune response, exacerbate Th2 inflammatory response, induce migration of

skin dendritic cells (DCs), and promote IL-22 expression in naive CD4 T cells, resulting in

incremental proliferation of keratinocytes and inflammatory infiltration.(48) TLR3 expression in

primary sensory neurons potentially induces itch.(49) Clinical studies have shown that TLR5 and

TLR9 upregulation in umbilical cord blood may significantly reduce the incidence of AD. TLR

signaling pathway influences AD development. A high level of LDL-C is also a risk factor for AD.

Adolescents with AD have significantly higher total cholesterol and low-density lipoprotein

cholesterol (LDL-C) levels than those without AD.(50) Saturated fatty acids (SFAs) and free fatty

acids (FFAs) increase upon high-fat intake. SFAs can promote inflammatory signaling in

macrophages via the plasma membrane.(51)Moreover, an increase in SFA levels promotes the

synthesis of endocannabinoids, which can cause NLRP3 inflammasome activation in macrophages

of diet-induced obese mice.(52) NLRP3 inflammasome activation promotes the cleavage of

pro-IL-1βand pro-IL-18, which stimulates the release of various active cytokines. IL-1β can

stimulate the production of IL-6. A previous study found that IL-6 was increased in lesion of

moderate to severe AD compared to normal skin.(53) Obese patients often have increased serum

uric acid levels and uric acid crystals which can act as NLRP3 activators, thereby releasing

pro-inflammatory cytokines (IL-1β). Uric acid crystals can also activate the immune system by

facilitating the production of reactive oxygen species (ROS) and activating the NF-kB and MAPK

pathways.(54) When deposited in adipose tissue and immune cells, cholesterol crystals can also

activate the NLRP3 inflammasome through similar mechanisms mentioned above.(55)NLRP3

inflammasome activation promotes pro-IL-1β and pro-IL-18 cleavage, hence releasing various

active cytokines including IL-6. IL-6 is significantly upregulated in lesions of moderate to severe

AD compared to normal skin.(53)

4. The role of cytokines and adipokines in obesity and AD

Analysis of bodies of obese individuals has revealed the presence of metabolic abnormalities,

oxidative stress, mitochondrial dysfunction, impaired immune function, and chronic low-grade

inflammation.(56)The infiltration of inflammatory cells into white adipose tissue (WAT) causes

dysfunction of adipocytes and metabolic functions. White adipose tissue (WAT) comprises

immune-regulatory cells, including M2-like adipose tissue macrophages, Tregs, Th2 cells, NK

cells, and eosinophils. The quantity and phenotype of these cells vary between obese and lean
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individuals. Adipose secretes various cytokines, chemokines, and adipokines, which play a key

role in regulating immune processes. Elevated lipid storage induce adipocyte hypertrophy,

hypoxia, and cell death triggering the secretion of proinflammatory cytokines by adipocytes,

including TNF-α, IL-6, IL-8, and MCP-1.(57) For lean individuals, regulatory and

immunosuppressive cells promote the clearance of dead adipose tissue, suppressing adipose tissue

cell proliferation, and secreting anti-inflammatory cytokines (IL-10, IL-4, IL-13, and IL-1Rα).

(58)

4.1 TNF-α

TNF-α is a cytokine that plays a role in inflammation and immune responses. (59)It can activate

inflammatory responses, leading to the release of inflammatory cytokines and triggering

inflammation. In patients with AD, TNF-α levels are typically elevated, and correlated with the

severity of AD. (60)High levels of TNF-α are associated with the inflammation and itching

symptoms of AD. TNF-α can also promote the proliferation of skin keratinocytes and the

synthesis of keratin, thereby promoting the onset of AD. The use of TNF-α inhibitors can help

alleviate skin barrier dysfunction in AD patients and improve skin barrier function.(61)

Upregulated TNF-α in obesity activates the NF-κB pathway via a c-Jun N-terminal

kinase-dependent pathway, resulting in downregulated expression of epidermal barrier proteins,

including FLG and loricrin (LOR).(62)Elevated levels of TNF-α in obese individuals may disrupt

the balance between Th1 and Th2 cells. TNF-α promotes Th1 immune response by enhancing the

production of pro-inflammatory cytokines such as interferon-gamma (IFN-γ) and interleukin-2

(IL-2).(63) Obesity alters skin properties, increasing surface roughness, and decreasing water

content thus causing significant redness accompanied by an increase in skin blood flow.

Correlation analysis revealed a significant correlation between water content and TNF-α levels in

the stratum corneum.(64) Moreover, obesity changes the baseline levels of serum

cytokines/adipocytokines IL-6, TNF-α, and CRP/hs-CRP.(65) Research has shown higher serum

TNF-α levels in obese individuals than in individuals with normal weight.(65)This physiological

activity may be associated with the action of leptin produced during obesity.(66)Leptin can

augment the secretion of inflammatory cytokines including TNF-α, resulting in an inflammatory

environment.(67)Simultaneously, exposure to an inflammatory environment can increase leptin

expression in adipose tissue, creating a feedback loop that promotes inflammation.(68) TNF-α

secreted by M1 pro-inflammatory adipose tissue macrophages initiates a cascade reaction by

activating the NF-κB and JNK pathways. TNF-α may stimulate the production of

pro-inflammatory cytokines including IL-6, but reduce anti-inflammatory cytokine levels,

including adiponectin in the inflammatory response.(69) Adiponectin inhibits the TNF-α and IL-6

production in macrophages at the same time increasing levels of anti-inflammatory mediators

(IL-10 and IL-1 receptor antagonist).(70) (71)Adiponectin-deficient mice exhibit an increased

number of M1 macrophages in their adipose tissue, further improving cytokine production

including TNF-α, IL-6, and MCP-1.(72)Additionally, TNF-α can cause the generation of reactive

oxygen species (ROS) by binding to specific receptors.(73)
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4.2 IL-6

Research on the relationship between IL-6 levels in obesity and AD is limited.IL-6 regulates

autoimmune and chronic inflammatory diseases. IL-6 signaling exerts pleiotropic effects via two

primary pathways, the classical signaling and trans-signaling pathways. In the classical signaling

pathway, IL-6 binds to IL-6R on the cell membrane, followed by interaction with

membrane-bound gp130, hence activating JAK to initiate intracellular signaling.(74) In the

trans-signaling pathway, the extracellular portion of IL-6R can be proteolytically cleaved to form

soluble sIL-6R. IL-6 subsequently binds to sIL-6R and continues to bind to gp130, initiating

intracellular signaling.(74)Activation of the classic IL-6 signaling pathway promotes macrophages

polarized to M2 phenotype via upregulated IL4 response despite causing proinflammatory actions

of T cells.(75) Serum IL-6 levels in AD patients are significantly higher than that in healthy

volunteers.(76)The flg-/- mice exhibited severe clinical symptoms such as increased ear thickness

and elevated IL-6 level.(77) IL-6 production in adipose tissue is two to three times higher than that

in subcutaneous tissue among obese individuals. IL-6 may stimulate JAK1 activation and

phosphorylation, which in turn activates STAT1, STAT3, and STAT6 signaling

pathways.(78)IL-6 activates the STAT3 pathway of local macrophage to promote IL4Ra

expression, sensitizing them to IL-4 signaling and promoting an anti-inflammatory gene

expression pattern.(79) Additionally, adipocytes release IL-6, promoting differentiation of Th cells,

either directly or indirectly, thereby stimulating antibody production.(80)IL-6/STAT3, together

with TGF-β or IL-1β and IL-23 causes the differentiation of Th17 cells, which play a

pro-inflammatory role. IL-6 promotes an HFD-induced increase in FFA and leptin release from

adipocytes.(81)Research also reports that leptin stimulates macrophages to generate IL-6 via

synergistic interaction with LPS.(82)

4.3 IL-4 and IL-13

IL-4 and IL-13 negatively influence the skin barrier in AD. They downregulate FLG expression,

destroy the skin structure, reduce its capacity to resist pathogens and allergens as well as weaken

the capacity to maintain adequate moisture.(83)IL-4 and IL-13 increase the proliferation of

keratinocytes, reduce their differentiation, and prevent their full maturation.(84) IL-13 also

downregulates the expression of skin barrier proteins and lipids of keratinocytes by mediating

MMP-9 expression. Recent studies have shown that IL-4 and IL-13 weaken skin resistance to

pathogens by reducing antimicrobial peptides, hence rendering skin more susceptible to infectious

organisms.(85) IL-13 is also implicated in the upregulation of collagen degradation and fibrosis

mediated by MMP-13, causing fibrosis, dermis thickening, and the typical lichenified lesions in

AD.(86) IL-4 and IL-13 also promote neurogenic itch by directly acting on pruriceptive sensory

neurons.(87)Th2 pathway activation mediates type 2 inflammation in AD. Th2 cells may release

vital inflammatory cytokines including IL-4, IL-13, IL-5, and IL-9, recruit eosinophils and mast

cells, as well as stimulate B cell activity.(82) Through their interactions with Th2 cells, M2

macrophages in white adipose tissue activate the release of Th2 cytokines, including IL-4 and

IL-13.(88) A few studies have shown that obesity exerts IL-4/IL-13-associated inflammatory
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responses. Elsewhere, the typical Th2-dominant inflammation of AD progressed to more severe

Th17-driven inflammation in obese mice. Biologic treatments inhibiting cytokines IL-4 and IL-13

treatment protects lean mice from developing AD but not obese mice.(89) IL-6 secreted by

inflammatory-stimulated adipocytes activates macrophages STAT3 and upregulates IL4ra

expression, and increases the sensitivity of macrophages to IL-4 activation.(79)

Hypercholesterolemia induces strong Th2 responses to an exogenous antigen characterized by an

increased induction of IL-4 and IL-10.(90)

4.4 Adipokines

Expanded fat cells themselves produce various signaling molecules through a process called

autocrine signaling. These mediators have both immune system regulatory functions as well as

metabolic functions, and are collectively called adipokines. For example, chemokines promote the

infiltration of macrophages into white adipose tissue (WAT), while calcium-binding proteins

enhance the adhesion of circulating monocytes and their recruitment as macrophages. Adipokines

include pro-inflammatory ones like leptin, as well as anti-inflammatory cytokines like adiponectin.

However, adiponectin levels are suppressed in both acute and chronic obesity.

4.5 Leptin

Leptin is a 16-kDa monomeric non-glycosylated protein primarily secreted by adipocytes.

Circulating leptin levels are directly proportional to body fat mass.(91) Leptin activates CD4+T

lymphocytes towards Th1 phenotype and inhibits infiltration of Tregs into adipose tissue, altered

immune tolerance, and inflammatory effects.(92) Leptin promotes the release of IL-2 and INF-γ.

IL-2 acts on IL-2R, stimulating JAK1 and JAK3 phosphorylation, further activating as well as

phosphorylating STAT1, STAT3, STAT5, and STAT6. The INF-γ signaling pathway involves

JAK1 and JAK2 phosphorylation, hence activating and phosphorylating STAT1.(93) The binding

of leptin to LEP-R also activates the phosphoinositide 3-kinase (PI3K) and mitogen-activated

protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascades, as well as

the JAK2-STAT signaling cascade.(57) Additionally, chronic treatment of obesity with leptin

promotes preadipocyte differentiation and secretion of pro-inflammatory cytokine TNF-α.(94)

Leptin increases TNF and IL-6 production by monocytes as well as stimulates CCL3, CCL4, and

CCL5 production by macrophages via JAK2–sTAT3 pathway activation.(95) Leptin also induces

TNF-α expression via the JNK pathway in macrophages.(96)A positive feedback mechanism is

established when leptin stimulates inflammatory mediator production, including IL-6 and TNF-α

from the adipose tissue. TNF-α and IL-6 promote the expression and release of leptin.

4.6 Adiponectin

One study observation revealed a potential relationship between adiponectin and AD, i.e., obese

children with asthma had higher leptin levels and lower adiponectin levels in serum than

non-obese children with asthma.(97)In BMDC cells, adiponectin induces DC maturation and

activation, accelerating naive T cells polarized into Th1 and Th17 cells. High-fat diet-fed

upregulates IFN-γ expression in adipocytes and IL-17 in CD4 T cells.(98) Additional experiments

have shown that adiponectin derived from adipocytes reduces T lymphocytes, thus producing
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IFN-γ and IL-17.(99)Adiponectin-deficient mice had higher TNFα levels in the blood.

Adiponectin abrogated LPS-stimulated production of TNF-α in macrophages and suppressed

TLR-mediated NF-κB activation in mouse macrophages.(100) In this context, adiponectin may

exert anti-inflammatory mechanisms in AD. However, additional studies are necessary to

comprehensively understand this mechanism.

4.7 Resistin

Resistin, named as a result of inducing insulin resistance, is a 12.5-kDa cysteine-rich peptide,

produced by macrophages and peripheral monocytes. Nevertheless, the potential role of resistance

in AD is unclear. Studies revealed that blood content of resistin increases in AD boys unlike in

healthy children.(101) Besides, resistin upregulates pro-inflammatory cytokines including TNF-α,

IL-1β, IL-6, and IL-12 via NF-kB signaling pathway activation.(102) However, other findings

contradict previous results. Studies also discovered a decrease of resistin in AD patients, with an

inverse correlation between blood resistin quantity and SCORAD score.(103, 104)Notably,

resistin weakens the atopic immune response by suppressing dendritic cell function.(92) Thus,

lower levels of resistin are thought to be associated with increased severity of AD symptoms in

adults. Nonetheless, additional studies are necessary to define and validate the role of resistin in

AD.

4.8 Fatty acid binding protein

Fatty acid binding protein (FABP) regulates fatty acid uptake, transport, and metabolism.

Epidermal-FABP (FABP5), an extensively studied member of the FABP family, was has been

reported to be positively correlated with adiposity, glucose metabolism, and lipolysis parameters

and linked to the development of AD.(105, 106) Mass spectrometry of AD skin revealed that

FABP5 is highly expressed in both acute and chronic AD lesions.(107) Elsewhere, it was

demonstrated that FABP5 promoted TNF-α-induced NF-κB signaling by forming a complex with

valosin-containing protein (VCP) in keratinocytes.(108) Another study provided evidence

supporting a Th17-related mechanism in AD, involving FABP5. Knockdown of FABP5 in HaCaT

cells resulted in a significant reduction of the expression of Th17-inducing cytokines, including

IL-6 and TGF-β (109). In HFD-induced obese mice models, FABP5 expression in skin

macrophages promoted saturated FA-induced IL-1β production and instigated chronic

inflammatory skin lesions (110).Indeed, adipose-FABP (FABP4) and FABP5 regulate different

signaling pathways in macrophages. Although FABP5 expression activates the STAT1/2/IFNβ,

LTA4/LTB4, RAR/CD11c, or NLRP3/IL-1β pathways, FABP4 mainly stimulates NFκB/IL-6,

COX2/PGE2, CER/cell death, or LXR/SCD1 in macrophages. (111)

4.9 Zinc-α2-glycoprotein

Zinc-α2-glycoprotein (ZAG), a 41-kDa protein produced by adipocytes and keratinocytes in the

skin plays a role in lipolysis in adipocytes.(112) In sera and skin of AD patients, it was reported

that the expression of ZAG was consistently reduced. ZAG regulated FLG and TSLP expression

in normal human epidermal keratinocytes (NHEKs) and repaired abnormalities in the skin barrier

under AD conditions.(113) Furthermore, topical ZAG treatment decreased levels of Il-4, Il-17a,
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Ifng and levels of serum total IgE, and restored ADAM17 and Notch1 signaling in AD-induced

mice.(113)

4.10 Visfatin

Visfatin, a novel adipocytokine, has been linked to chronic inflammatory diseases. A study

suggested a connection between visfatin and both adult-onset AD and classical AD in adults

during the chronic phase of the disease. The study also found a significant correlation between

visfatin levels and eosinophil counts in AD patients.(114) Visfatin induced pro-inflammatory

effects by dose-dependently up-regulating IL-1β, IL-1Ra, IL-6, IL-10, and TNF-μ in human

monocytes.(115) Moreover, it stimulated the production of chemokines such as CXCL8, CXCL10,

and CCL20 in human keratinocytes.(116) However, the serum concentration of visfatin in AD

children was significantly reduced compared to that of healthy subjects,(101)which differs from

finding of other studies. This is likely due to differences in the underlying mechanism of child AD

and adult AD. Some studies have shown that patients with adult-onset AD have significantly

higher serum visfatin levels than those who had developed the skin lesions in childhood.(113)

4.11 Lipocalin-2

Lipocalin-2 (LCN2) is associated with various obesity-related disorders, such as Type 2 diabetes

and non-alcoholic fatty liver disease (117). It circulates in the body in two main forms: a single

molecule (25 kDa monomer) and a double molecule (46 kDa homodimer). Notably, LCN2 can

block the breakdown of MMP-9, an enzyme involved in tissue remodeling.(118) Interestingly,

research suggests LCN2 may also play a role in AD. A study using a mouse model of AD found

upregulated levels of LCN2 in spinal astrocytes, which are cells that support nerve function in the

spinal cord. This finding suggests a potential link between LCN2 and itch sensation at the spinal

level in AD (119). Furthermore, the LCN2 gene has binding sites for several inflammatory

signaling molecules, including NF-κB, STAT1, STAT3, and C/EBP (120).

5. PPAR-γ and AD

Peroxisome proliferator-activated receptor-gamma (PPAR-γ) is a critical transcription factor

involved in adipogenesis. PPAR-γ plays an important in regulating adipocyte differentiation and

lipid metabolism, hence providing positive feedback regulation of adipogenesis. Accumulating

evidence indicates that PPAR-γ regulates type 2 immune response.(121)

PPAR-γ agonists reduce neutrophil MPO activity in response to LPS and induce neutrophil

apoptosis in a dose-dependent manner.(122)PPAR-γ activation also impairs the functional

capacity of eosinophils, hence reducing antibody-dependent cellular cytotoxicity (ADCC), CD69

expression induced by IL-5, and release of eosinophil-derived neurotoxin (EDN).(123) Mast cell

activation mediated by IgE plays a significant role in AD, which is also suppressed by activated

PPAR-γ.(124) PPAR-γ is a key factor mediating M2 phenotype associated with type 2 cytokine

activation (such as IL-4 and IL-13). PPAR-γ prevents the uptake of lipids of ILC2s, IL-33

signaling activation, and reduces the severity of airway inflammation.(125) Mice treated with

PPAR-γ agonists showed reduced levels of cytokines IL-4, IL-5, and IL-13,(126)whereas mice

without PPAR-γ mice revealed enhanced release of epithelial-derived alarm proteins including
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IL-25, IL-33, and TSLP as well as NF-κB activation.(127) However, the effect of PPAR-γ

deletion on IL-4 expression was unclear.(128) Activated PPAR-γ reduces the expression of

pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-2 as well as promotes the activity of

suppressive Treg cells.(129)

Experimental evidence indicates that PPAR-γ in epithelial cell Treg cells is activated by TCR

signaling in an IRF4-dependent manner. PPAR-γ binds to IRF4 and modulates IL-33 receptor

(IL-33R) expression on Treg cells.(130)The role of PPAR-γ in other TH cell subsets has also been

proposed. IL-9 expression in the skin positively correlates with the severity of chronic atopic

dermatitis (cAD) and acute contact dermatitis reactions (aACD).(131) TH9 cells can be perceived

as a highly differentiated subset of TH2 cells that can simultaneously promote the levels of IL-5,

IL-13, and IL-9.(128) IL-9 is preferentially downregulated among the TH2 cytokines upon

inhibition of PPAR-γ expression.(132) The relationship between TH9 immune response and AD is

poorly understood. However, cytokine secretion including IL-5 and IL-13 by TH9 cells implies a

potential relationship with AD.

Conclusion

Current clinical research and scientific studies suggest that overweight or obesity are considered

primary factors leading to the pathogenesis of inflammatory skin diseases. Our review covers

multiple important aspects. Under the influence of initial inflammatory factors, obese individuals

experience a complex interplay of various pro-inflammatory and anti-inflammatory signals within

their bodies. Inflamed adipocytes locally and systemically secrete pro-inflammatory cytokines, a

process that damages both adipose tissue itself and skin functions. Another key factor in obesity

involves the gut microbiota, which plays a role in energy homeostasis, circulatory system, and

immune response. The increase in skin lipids following obesity can lead to dysbiosis of the

microbial ecosystem, resulting in colonization by lipophilic bacteria. Concurrently, obesity also

alters the pathological changes of inflammatory diseases, shifting the classical Th2-type immune

response to a more severe Th17-type immune response through the action of adipokines, thereby

affecting keratinocyte differentiation, epithelial barrier permeability, and antimicrobial peptide

production. Simultaneously, maintaining balance in the gut microbiota and probiotics play a

complex role in preventing atopic dermatitis (AD), including inhibition of inflammation, alteration

of microbial diversity, and enhancement of skin barrier function. These contents provide more

thinking and inspiration about AD, and will have a positive impact on the field of AD.

More data is needed to understand how weight and BMI affect the effectiveness of AD therapy.

Reducing weight and managing obesity might decrease inflammatory mediators and cytokines

from adipose tissue, thereby improving the inflammatory state and alleviating AD symptoms. As

such, besides targeting skin lesions in the treatment of AD, the management and intervention of

obesity should also be emphasized to comprehensively contain disease progression.
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