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Obesity is a prevalent metabolic disease that reduces bacterial diversity,

colonizes the epidermis with lipophilic bacteria, and increases intestinal pro-

inflammatory species, all of which lead to impaired epithelial barriers. Adipose

tissue secretes immunomodulatory molecules, such as adipokines, leptin, and

adiponectin, which alters the morphology of adipocytes and macrophages as

well as modulates T cell differentiation and peripheral Th2-dominated immune

responses. Atopic dermatitis (AD) and obesity have similar pathological

manifestations, including inflammation as well as insulin and leptin resistance.

This review examines the major mechanisms between obesity and AD, which

focus on the effect on skin and gut microbiota, immune responses mediated by

the toll like receptor (TLR) signaling pathway, and changes in cytokine levels

(TNF-a, IL-6, IL-4, and IL13). Moreover, we describe the potential effects of

adipokines on AD and finally mechanisms by which PPAR-g suppresses and

regulates type 2 immunity.
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1 Introduction

Atopic dermatitis (AD) is a chronic, recurrent, inflammatory, pruritic dermatosis with

complex pathophysiology, involving disruption of the epidermal barrier, microbial

dysbiosis within affected lesions, and Th2 immune responses to skin allergens

(1).Impaired skin barrier function is thought to be both a cause and a consequence of

AD. Severe atopic dermatitis has been linked to deficiencies in the filaggrin (FLG) protein

or antimicrobial peptides (2). Increased inflammatory cell infiltration is observed in AD

lesions, including T cells, dendritic cells, macrophages, mast cells, and eosinophils (3).These

often precipitate increased cytokines including thymic stromal lymphopoietin (TSLP),

interleukin-1 (IL-1), IL-4, IL-5, IL-6, IL-25, IL-33, and transforming growth factor-b (TGF-

b), which promote inflammation and immune activation. Upregulated expression levels of

IL-12, interferon-g (IFN-g), and granulocyte-macrophage colony-stimulating factor (GM-

CSF) are detected during chronic phase (4). Additionally, Th17 and Th22 cell cytokines,

such as IL13, IL-17, CCL17, tumor necrosis factor-a (TNF-a), and IL-22, promote the
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formation of chronic skin lesions in AD (4). Atopic sensitization is

also associated with IL9, IL33, and IL33R expression during infancy.

In addition, AD could be aggravated by dysbiosis or imbalances in

microbial species diversity and environmental factors including

diet (5).

Obesity, a major health problem, is a result of metabolic

syndrome in adipose tissue and is linked to various chronic

immune disorders (6). Studies have shown that adipose expansion

in early and chronic obesity activates an inflammatory program,

altering the immune phenotype to a pro-inflammatory status (7).

Adipose depots usually release cytokines, chemokines, and

adipokines that coordinately regulate other immune cells,

including eosinophils, mast cells, and macrophages in an M2-

polarized or alternately activated state (7). Treatment that reduces

obesity symptoms could reduce epidermal thickness and

eosinophil/mast cell infiltration, along with a reduction in IgE, IL-

4, IL-6, TNF-a, and AD-like lesions (8).

Currently, the association of obesity/overweight with AD is not

conclusive. Studies addressing obesity in infancy or early childhood

(age < 2 years) and AD have found a positive association; from

childhood into adulthood; but this was not observed in other cross-

sectional studies (9). It has also been shown that obesity may have a

pathogenic function in AD. Obese adults are more likely to develop

moderate-to-severe AD (10). Investigations have revealed that

higher levels of serum IgE and cutaneous mRNA levels of TNF-a,
IL-13, and IL-31 are associated with more severe AD in rat models

with a higher body weight than those with lower body weight (11).

Moreover, IL-5 serum level correlated with both body mass index

(BMI) and waist circumference (12). Collectively, these findings

indicate that obesity may predispose individuals to or exacerbate

AD. The discrepancies observed here may be explained by

differences in study designs, the diagnostic criteria of AD,

regional differences, and by the varied definitions of overweight

and obesity used across studies. Although the potential mechanisms

by which obesity contributes to AD are not fully understood, several

potential mechanisms should be considered.

In obese or overweight individuals, low levels of adiponectin

and PPAR-g trigger a cascade of events. First, these low levels lead to

increased production of cytokines and chemokines. These signaling

molecules then activate macrophages and T cells, further promoting

inflammation. The resulting inflammatory state can further elevate

leptin levels, which can create a vicious cycle by further suppressing

adiponectin and PPARg (13). The leptin secreted in obese or

overweight individuals can upregulate the expression levels of

cytokines and chemokines, thereby increase the risk of AD. The

increase in AD-related cytokines and chemokines, along with the

decrease in PPAR-g, not only induces inflammation in adipose

tissue but also triggers insulin resistance and leptin resistance. This

results in adipocyte hypertrophy, adipose tissue hyperplasia, and

lipid accumulation, causing obesity (13). Imbalance in gut

microbiota can increase an individual’s susceptibility to AD by

disrupting mucosal immune tolerance. This disruption can affect

skin homeostasis through its influence on the signaling pathways

that maintain healthy skin barrier function. However, research

suggests that changes in gut microbiota alone are likely not

enough to trigger the development of AD. The interaction
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between specific microbial communities and the immune system,

as well as other external factors such as diet, may explain the

pathogenesis of AD (14).
2 Correlation between atopic
dermatitis and obesity

Among the numerous research records, the results of various

studies are not consistent, and the specific role of obesity in atopic

dermatitis is not clear, and further exploration is needed. However,

more and more evidence shows a certain correlation between atopic

dermatitis and obesity. Obesity is one of the comorbidities of AD,

and it has been confirmed as one of the risk factors for AD, which

can also exacerbate the severity of AD. Compared to non-AD

patients, AD patients have a higher probability of developing

obesity, and the impact of obesity is more pronounced in the

pediatric population. This implies that early-onset obesity in the

childhood stage can increase the likelihood of developing AD (15).

In a study of datasets in children, it was found that the prevalence of

AD peaked early in the age group of 1 to 6 years, with a gradual

downward trend (16). In a cohort study, AD was found to be

associated with shorter stature, higher BMI, and lower weight in

children during childhood, There was a clear association between

AD and obesity in children before the age of 5,The association

gradually weakened around the age of 5,As children grew, the

association between AD and BMI was not consistent throughout

childhood, further studies are needed to measure the long-term

association and eliminate the impact of diet, sleep, etc. (17)

Similarly, one study found that obesity was also significantly

associated with the presence of AD in adults (18). Apart from

age, geographical variations and gender differences may also

influence the clinical presentation of AD and obesity. For

instance, in North America and Asia, there is a correlation

between increased prevalence of obesity and AD (19). In another

study, it was found that there is a positive correlation between

obesity and AD occurrence in the female population (20). The

interaction between obesity and AD is mediated by various

cytokines, immune mediators, and chemokines. Due to the

interconnection of these two conditions, alleviating one may

potentially prevent or mitigate the progression of the other

disease, thereby effectively managing the conditions and

enhancing individual health status (13).
3 The role of the microbiota in obesity
and AD

Studies have reported a cross-talk mechanism between the skin

and the gut. Dysbiosis in gut microbiota potentially disrupts

microbial metabolites and pro-inflammatory factors as well as

Th2 immune response, causing skin inflammation (21).

Furthermore, infants with AD exhibit reduced levels of

lactobacilli and bifidobacteria in their gut microbiota. There is

also an increased proportion of Escherichia coli, Clostridium
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difficile, and Staphylococcus aureus (22). Obesity reduces gut

microbial diversity and beneficial microbes in the gut, including

Lactobacillus, and Bifidobacterium. A high-fat and high-sugar

dietary habit decreases the abundance of beneficial bacteria

including bifidobacteria and lactobacilli. This dietary pattern can

also induce increased gut permeability and increased expression of

inflammatory markers including TNF-a (23). The abundance of

lactobacilli and bifidobacteria was decreased in obese mice models,

causing higher circulating levels of LPS, promoting NF-kB pathway

activation through TLR4 signaling pathway, thereby enhancing

inflammatory response (24). Additionally, Corynebacterium

colonization of the epidermis was associated with BMI. One study

revealed that a high-fat diet increased skin Corynebacterium species

and free fatty acids in mice (25). Gut microbiota analysis revealed

reduced abundance of Ruminococcaceae in fecal samples of atopic

eczema infants. Interestingly, the relative abundance of

Ruminococcus was inversely related to TLR2-induced IL-6 and

TNF-a in IgE-associated eczema (26). Ruminococcaceae was more

abundant in the gut microbes of mice with normal weight than in

obese mice (27). Moreover, the diversity of Bacteroidetes and

Actinobacteria was reduced in atopic eczema infants compared to

healthy controls (28). A new polysaccharide, ARS, has been shown

to reverse or resist high-fat-diet-induced obesity. It appears to

function by increasing the diversity of gut microbiota and

optimizing the ratio of Firmicutes to Bacteroidetes (29). Topical

treatments for AD, including corticosteroids, antibiotics, and

calcineurin inhibitors, increase species diversity of the epidermis,

including Streptococcus, Cutibacterium, and Corynebacterium spp

(30). Functional foods that prevent obesity increase intestinal

microbial diversity and beneficial bacteria (Bifidobacterium,

Alloprevotella, and Lactobacillus) and, at the same time decrease

harmful bacteria (Staphylococcus and Corynebacterium 1) (31).

Research has shown that “plant-based foods” intake suppresses

moderate-to-severe AD (32). L. plantarum LM1004 significantly

improves the restoration of AD-like symptoms accompanied by

decreased levels of Th2 and Th17 cell transcription factors,

increased transcription factors of Treg and Th1 cells, and

upregulated FLG expression (33). Gut inflammation and gut

barrier leakage activate skin epithelial cells and promote the

recruitment of T cells in patients with Omenn syndrome, thus

exacerbating skin inflammation (34). The above findings revealed

that BMI and diet influence the composition of skin microbiota and

susceptibility of an individual to AD.
4 The role of the signaling pathways
in obesity and AD

4.1 JAK-STAT pathway

The Janus kinase (JAK) - signal transducer and activator of

transcription (STAT) pathway plays a crucial role in the

immunological and physiological processes of AD and obesity. In

the context of immune responses related to AD in the Th2 immune

reaction, the binding of IL-4 and IL-4R stimulates the

phosphorylation of JAK1 and JAK3, leading to the activation and
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phosphorylation of IL-4Ra and STAT6 (35).Furthermore, IL-4 and

IL-13 can bind to the type II IL-4R, inducing the phosphorylation of

JAK1 and TYK2, subsequently activating and phosphorylating

STAT3 and STAT6. This results in the downregulation of FLG

expression and impairment of skin barrier function, as well as an

increase in the production of TSLP, IL-25, and IL-33 in keratinocytes

(36). TSLP is a Th2 cell cytokine that can activate dendritic cells to

drive Th2 cell differentiation and produce IL-4, IL-5, and IL-13 (37).

Binding of the TSLPR heterodimeric receptor results in the

interaction with JAK1 and JAK2, leading to phosphorylation and

activation of STAT5 (38). IL-5 can also trigger the phosphorylation of

JAK1 and JAK2 by binding to its corresponding receptor, resulting in

the activation of STAT1, STAT3, and STAT5 (39). For Th17

immunity, the JAK-STAT pathway does not appear to be directly

involved in Th17 signal transduction. However, research has shown

that STAT3 is crucial for the proliferation and survival of Th17 cells

(40). In Th1 immune responses, IL-12 signaling occurs through the

binding of IL-12 to a heterodimeric receptor composed of IL-12Rb1
and IL-12Rb2 subunits (41). Subsequently, this interaction triggers

the activation of JAK2 and TYK2, leading to the activation of STAT4-

mediated signaling, and to a lesser extent, signaling mediated by

STAT1, STAT3, and STAT5 (42). In skin function regulation,

excessive activation of JAK1 can lead to overexpression of serine

proteases in the skin, thereby impairing skin barrier function.

Additionally, the STAT3 signaling molecule is a key transcription

factor that regulates the differentiation of keratinocytes and maintains

skin integrity (43). Secretory factors produced by adipocytes can

participate in the JAK-STAT signaling pathway. In mice fed a high-

fat diet, leptin secretion is associated with increased expression of

STAT3 target genes. STAT3 can promote fat breakdown and inhibit

fat synthesis (44). In the low-grade systemic inflammation associated

with obesity, interferon-gamma (IFN-g) secreted by CD4+ and CD8+

lymphocytes can activate STAT1 in adipocytes, leading to

dysfunctional adipocyte function and insulin resistance (44).

Studies have also shown that mice lacking STAT4 under high-fat

diet feeding conditions can reduce adipose tissue inflammation,

prevent insulin resistance, and improve glucose homeostasis (45).

Additionally, STAT5 directly regulates the expression of key

transcription factor PPARg involved in adipocyte differentiation.

STAT6 in macrophages is also essential for the browning of white

adipose tissue (44). Inhibiting the JAK-STAT pathway

pharmacologically can lead to downregulation of interferon

response, resulting in the accumulation of UCP1 and browning of

adipocytes (46).
4.2 TLR pathway

TLRs recognize and bind to pathogen-associated molecular

patterns (PAMPs) including peptidoglycans, lipopolysaccharides,

and yeast polysaccharides, initiating a cascade of signaling events.

Research has found that the TLR2-mediated immune signaling

pathway is impaired in patients with AD. Blocking the TLR2

pathway inhibits pro-inflammatory cytokines (IL-6, IL-8, and IL-

1b) and promotes the expression of tight junction proteins, hence

restoring the epidermal barrier in AD (47). On the other hand,
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TLR4 modulates the immune balance in AD. Its activation can

impair Th1 immune response, exacerbate Th2 inflammatory

response, induce migration of skin dendritic cells (DCs), and

promote IL-22 expression in naive CD4 T cells, resulting in

incremental proliferation of keratinocytes and inflammatory

infiltration (48). TLR3 expression in primary sensory neurons

potentially induces itch (49). Clinical studies have shown that

TLR5 and TLR9 upregulation in umbilical cord blood may

significantly reduce the incidence of AD. TLR signaling pathway

influences AD development. A high level of LDL-C is also a risk

factor for AD. Adolescents with AD have significantly higher total

cholesterol and low-density lipoprotein cholesterol (LDL-C) levels

than those without AD (50). Saturated fatty acids (SFAs) and free

fatty acids (FFAs) increase upon high-fat intake. SFAs can promote

inflammatory signaling in macrophages via the plasma membrane

(51). Moreover, an increase in SFA levels promotes the synthesis of

endocannabinoids, which can cause NLRP3 inflammasome

activation in macrophages of diet-induced obese mice (52).

NLRP3 inflammasome activation promotes the cleavage of pro-

IL-1band pro-IL-18, which stimulates the release of various active

cytokines. IL-1b can stimulate the production of IL-6. A previous

study found that IL-6 was increased in lesion of moderate to severe

AD compared to normal skin (53). Obese patients often have

increased serum uric acid levels and uric acid crystals which can

act as NLRP3 activators, thereby releasing pro-inflammatory

cytokines (IL-1b). Uric acid crystals can also activate the immune

system by facilitating the production of reactive oxygen species

(ROS) and activating the NF-kB and MAPK pathways (54). When

deposited in adipose tissue and immune cells, cholesterol crystals

can also activate the NLRP3 inflammasome through similar

mechanisms mentioned above (55). NLRP3 inflammasome

activation promotes pro-IL-1b and pro-IL-18 cleavage, hence

releasing various active cytokines including IL-6. IL-6 is

significantly upregulated in lesions of moderate to severe AD

compared to normal skin (53).
5 The role of cytokines and adipokines
in obesity and AD

Analysis of bodies of obese individuals has revealed the presence

of metabolic abnormalities, oxidative stress, mitochondrial

dysfunction, impaired immune function, and chronic low-grade

inflammation (56). The infiltration of inflammatory cells into white

adipose tissue (WAT) causes dysfunction of adipocytes and

metabolic functions. White adipose tissue (WAT) comprises

immune-regulatory cells, including M2-like adipose tissue

macrophages, Tregs, Th2 cells, NK cells, and eosinophils. The

quantity and phenotype of these cells vary between obese and

lean individuals. Adipose secretes various cytokines, chemokines,

and adipokines, which play a key role in regulating immune

processes. Elevated lipid storage induce adipocyte hypertrophy,

hypoxia , and ce l l death tr igger ing the secre t ion of

proinflammatory cytokines by adipocytes, including TNF-a, IL-6,
Frontiers in Immunology 04
IL-8, and MCP-1 (57). For lean individuals, regulatory and

immunosuppressive cells promote the clearance of dead adipose

tissue, suppressing adipose tissue cell proliferation, and secreting

anti-inflammatory cytokines (IL-10, IL-4, IL-13, and IL-1Ra) (58).
5.1 TNF-a

TNF-a is a cytokine that plays a role in inflammation and

immune responses (59). It can activate inflammatory responses,

leading to the release of inflammatory cytokines and triggering

inflammation. In patients with AD, TNF-a levels are typically

elevated, and correlated with the severity of AD (60). High levels

of TNF-a are associated with the inflammation and itching

symptoms of AD. TNF-a can also promote the proliferation of

skin keratinocytes and the synthesis of keratin, thereby promoting

the onset of AD. The use of TNF-a inhibitors can help alleviate skin

barrier dysfunction in AD patients and improve skin barrier

function (61). Upregulated TNF-a in obesity activates the NF-kB
pathway via a c-Jun N-terminal kinase-dependent pathway,

resulting in downregulated expression of epidermal barrier

proteins, including FLG and loricrin (LOR) (62). Elevated levels

of TNF-a in obese individuals may disrupt the balance between Th1

and Th2 cells. TNF-a promotes Th1 immune response by

enhancing the production of pro-inflammatory cytokines such as

interferon-gamma (IFN-g) and interleukin-2 (IL-2) (63). Obesity

alters skin properties, increasing surface roughness, and decreasing

water content thus causing significant redness accompanied by an

increase in skin blood flow. Correlation analysis revealed a

significant correlation between water content and TNF-a levels in

the stratum corneum (64). Moreover, obesity changes the baseline

levels of serum cytokines/adipocytokines IL-6, TNF-a, and CRP/hs-
CRP (65). Research has shown higher serum TNF-a levels in obese

individuals than in individuals with normal weight (65).This

physiological activity may be associated with the action of leptin

produced during obesity (66). Leptin can augment the secretion of

inflammatory cytokines including TNF-a, resulting in an

inflammatory environment (67). Simultaneously, exposure to an

inflammatory environment can increase leptin expression in

adipose tissue, creating a feedback loop that promotes

inflammation (68). TNF-a secreted by M1 pro-inflammatory

adipose tissue macrophages initiates a cascade reaction by

activating the NF-kB and JNK pathways. TNF-a may stimulate

the production of pro-inflammatory cytokines including IL-6, but

reduce anti-inflammatory cytokine levels, including adiponectin in

the inflammatory response (69). Adiponectin inhibits the TNF-a
and IL-6 production in macrophages at the same time increasing

levels of anti-inflammatory mediators (IL-10 and IL-1 receptor

antagonist) (70, 71). Adiponectin-deficient mice exhibit an

increased number of M1 macrophages in their adipose tissue,

further improving cytokine production including TNF-a, IL-6,
and MCP-1 (72). Additionally, TNF-a can cause the generation

of reactive oxygen species (ROS) by binding to specific

receptors (73).
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5.2 IL-6

Research on the relationship between IL-6 levels in obesity and

AD is limited.IL-6 regulates autoimmune and chronic

inflammatory diseases. IL-6 signaling exerts pleiotropic effects via

two primary pathways, the classical signaling and trans-signaling

pathways. In the classical signaling pathway, IL-6 binds to IL-6R on

the cell membrane, followed by interaction with membrane-bound

gp130, hence activating JAK to initiate intracellular signaling (74).

In the trans-signaling pathway, the extracellular portion of IL-6R

can be proteolytically cleaved to form soluble sIL-6R. IL-6

subsequently binds to sIL-6R and continues to bind to gp130,

initiating intracellular signaling (74). Activation of the classic IL-6

signaling pathway promotes macrophages polarized to M2

phenotype via upregulated IL4 response despite causing

proinflammatory actions of T cells (75). Serum IL-6 levels in AD

patients are significantly higher than that in healthy volunteers (76).

The flg-/- mice exhibited severe clinical symptoms such as increased

ear thickness and elevated IL-6 level (77). IL-6 production in

adipose tissue is two to three times higher than that in

subcutaneous tissue among obese individuals. IL-6 may stimulate

JAK1 activation and phosphorylation, which in turn activates

STAT1, STAT3, and STAT6 signaling pathways (78). IL-6

activates the STAT3 pathway of local macrophage to promote

IL4Ra expression, sensitizing them to IL-4 signaling and

promoting an anti-inflammatory gene expression pattern (79).

Additionally, adipocytes release IL-6, promoting differentiation of

Th cells, either directly or indirectly, thereby stimulating antibody

production (80). IL-6/STAT3, together with TGF-b or IL-1b and

IL-23 causes the differentiation of Th17 cells, which play a pro-

inflammatory role. IL-6 promotes an HFD-induced increase in FFA

and leptin release from adipocytes (81). Research also reports that

leptin stimulates macrophages to generate IL-6 via synergistic

interaction with LPS (82).
5.3 IL-4 and IL-13

IL-4 and IL-13 negatively influence the skin barrier in AD. They

downregulate FLG expression, destroy the skin structure, reduce its

capacity to resist pathogens and allergens as well as weaken the

capacity to maintain adequate moisture (83). IL-4 and IL-13

increase the proliferation of keratinocytes, reduce their

differentiation, and prevent their full maturation (84). IL-13 also

downregulates the expression of skin barrier proteins and lipids of

keratinocytes by mediating MMP-9 expression. Recent studies have

shown that IL-4 and IL-13 weaken skin resistance to pathogens by

reducing antimicrobial peptides, hence rendering skin more

susceptible to infectious organisms (85). IL-13 is also implicated

in the upregulation of collagen degradation and fibrosis mediated

by MMP-13, causing fibrosis, dermis thickening, and the typical

lichenified lesions in AD (86). IL-4 and IL-13 also promote

neurogenic itch by directly acting on pruriceptive sensory

neurons (87). Th2 pathway activation mediates type 2

inflammation in AD. Th2 cells may release vital inflammatory

cytokines including IL-4, IL-13, IL-5, and IL-9, recruit eosinophils
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and mast cells, as well as stimulate B cell activity (82). Through their

interactions with Th2 cells, M2 macrophages in white adipose tissue

activate the release of Th2 cytokines, including IL-4 and IL-13 (88).

A few studies have shown that obesity exerts IL-4/IL-13-associated

inflammatory responses. Elsewhere, the typical Th2-dominant

inflammation of AD progressed to more severe Th17-driven

inflammation in obese mice. Biologic treatments inhibiting

cytokines IL-4 and IL-13 treatment protects lean mice from

developing AD but not obese mice (89). IL-6 secreted by

inflammatory-stimulated adipocytes activates macrophages

STAT3 and upregulates IL4ra expression, and increases the

sens i t iv i ty o f macrophages to IL-4 ac t iva t ion (79) .

Hypercholesterolemia induces strong Th2 responses to an

exogenous antigen characterized by an increased induction of IL-

4 and IL-10 (90).
5.4 Adipokines

Expanded fat cells themselves produce various signaling

molecules through a process called autocrine signaling. These

mediators have both immune system regulatory functions as well

as metabolic functions, and are collectively called adipokines. For

example, chemokines promote the infiltration of macrophages into

white adipose tissue (WAT), while calcium-binding proteins

enhance the adhesion of circulating monocytes and their

recruitment as macrophages. Adipokines include pro-

inflammatory ones like leptin, as well as anti-inflammatory

cytokines like adiponectin. However, adiponectin levels are

suppressed in both acute and chronic obesity.
5.5 Leptin

Leptin is a 16-kDa monomeric non-glycosylated protein

primarily secreted by adipocytes. Circulating leptin levels are

directly proportional to body fat mass (91). Leptin activates CD4

+T lymphocytes toward Th1 phenotype and inhibits infiltration of

Tregs into adipose tissue, altered immune tolerance, and

inflammatory effects (92). Leptin promotes the release of IL-2 and

INF-g. IL-2 acts on IL-2R, stimulating JAK1 and JAK3

phosphorylation, further activating as well as phosphorylating

STAT1, STAT3, STAT5, and STAT6. The INF-g signaling

pathway involves JAK1 and JAK2 phosphorylation, hence

activating and phosphorylating STAT1 (93). The binding of leptin

to LEP-R also activates the phosphoinositide 3-kinase (PI3K) and

mitogen-activated protein kinase/extracellular signal-regulated

kinase (MAPK/ERK) signaling cascades, as well as the JAK2-

STAT signaling cascade (57). Additionally, chronic treatment of

obesity with leptin promotes preadipocyte differentiation and

secretion of pro-inflammatory cytokine TNF-a (94). Leptin

increases TNF and IL-6 production by monocytes as well as

stimulates CCL3, CCL4, and CCL5 production by macrophages

via JAK2–sTAT3 pathway activation (95). Leptin also induces TNF-

a expression via the JNK pathway in macrophages (96). A positive

feedback mechanism is established when leptin stimulates
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inflammatory mediator production, including IL-6 and TNF-a
from the adipose tissue. TNF-a and IL-6 promote the expression

and release of leptin.
5.6 Adiponectin

One study observation revealed a potential relationship between

adiponectin and AD, i.e., obese children with asthma had higher

leptin levels and lower adiponectin levels in serum than non-obese

children with asthma (97). In BMDC cells, adiponectin induces DC

maturation and activation, accelerating naive T cells polarized into

Th1 and Th17 cells. High-fat diet-fed upregulates IFN-g expression
in adipocytes and IL-17 in CD4 T cells (98). Additional experiments

have shown that adiponectin derived from adipocytes reduces T

lymphocytes, thus producing IFN-g and IL-17 (99). Adiponectin-

deficient mice had higher TNFa levels in the blood. Adiponectin

abrogated LPS-stimulated production of TNF-a in macrophages

and suppressed TLR-mediated NF-kB activation in mouse

macrophages (100). In this context, adiponectin may exert anti-

inflammatory mechanisms in AD. However, additional studies are

necessary to comprehensively understand this mechanism.
5.7 Resistin

Resistin, named as a result of inducing insulin resistance, is a

12.5-kDa cysteine-rich peptide, produced by macrophages and

peripheral monocytes. Nevertheless, the potential role of

resistance in AD is unclear. Studies revealed that blood content of

resistin increases in AD boys unlike in healthy children (101).

Besides, resistin upregulates pro-inflammatory cytokines including

TNF-a, IL-1b, IL-6, and IL-12 via NF-kB signaling pathway

activation (102). However, other findings contradict previous

results. Studies also discovered a decrease of resistin in AD

patients, with an inverse correlation between blood resistin

quantity and SCORAD score (103, 104). Notably, resistin

weakens the atopic immune response by suppressing dendritic

cell function (92). Thus, lower levels of resistin are thought to be

associated with increased severity of AD symptoms in adults.

Nonetheless, additional studies are necessary to define and

validate the role of resistin in AD.
5.8 Fatty acid binding protein

Fatty acid binding protein (FABP) regulates fatty acid uptake,

transport, and metabolism. Epidermal-FABP (FABP5), an

extensively studied member of the FABP family, was has been

reported to be positively correlated with adiposity, glucose

metabolism, and lipolysis parameters and linked to the

development of AD (105, 106). Mass spectrometry of AD skin

revealed that FABP5 is highly expressed in both acute and chronic

AD lesions (107). Elsewhere, it was demonstrated that FABP5

promoted TNF-a-induced NF-kB signaling by forming a complex

with valosin-containing protein (VCP) in keratinocytes (108).
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Another study provided evidence supporting a Th17-related

mechanism in AD, involving FABP5. Knockdown of FABP5 in

HaCaT cells resulted in a significant reduction of the expression of

Th17-inducing cytokines, including IL-6 and TGF-b (109). In

HFD-induced obese mice models, FABP5 expression in skin

macrophages promoted saturated FA-induced IL-1b production

and instigated chronic inflammatory skin lesions (110). Indeed,

adipose-FABP (FABP4) and FABP5 regulate different signaling

pathways in macrophages. Although FABP5 expression activates

the STAT1/2/IFNb, LTA4/LTB4, RAR/CD11c, or NLRP3/IL-1b
pathways, FABP4 mainly stimulates NFkB/IL-6, COX2/PGE2,

CER/cell death, or LXR/SCD1 in macrophages (111).
5.9 Zinc-a2-glycoprotein

Zinc-a2-glycoprotein (ZAG), a 43-kDa protein produced by

adipocytes and keratinocytes in the skin plays a role in lipolysis in

adipocytes (112). In sera and skin of AD patients, it was reported

that the expression of ZAG was consistently reduced. ZAG

regulated FLG and TSLP expression in normal human epidermal

keratinocytes (NHEKs) and repaired abnormalities in the skin

barrier under AD conditions (113). Furthermore, topical ZAG

treatment decreased levels of Il-4, Il-17a, Ifng and levels of serum

total IgE, and restored ADAM17 and Notch1 signaling in AD-

induced mice (113).
5.10 Visfatin

Visfatin, a novel adipocytokine, has been linked to chronic

inflammatory diseases. A study suggested a connection between

visfatin and both adult-onset AD and classical AD in adults during

the chronic phase of the disease. The study also found a significant

correlation between visfatin levels and eosinophil counts in AD

patients (114). Visfatin induced pro-inflammatory effects by dose-

dependently up-regulating IL-1b, IL-1Ra, IL-6, IL-10, and TNF-m in

human monocytes (115). Moreover, it stimulated the production of

chemokines such as CXCL8, CXCL10, and CCL20 in human

keratinocytes (116). However, the serum concentration of visfatin

in AD children was significantly reduced compared to that of

healthy subjects (101), which differs from finding of other studies.

This is likely due to differences in the underlying mechanism of

child AD and adult AD. Some studies have shown that patients with

adult-onset AD have significantly higher serum visfatin levels than

those who had developed the skin lesions in childhood (113).
5.11 Lipocalin-2

Lipocalin-2 (LCN2) is associated with various obesity-related

disorders, such as Type 2 diabetes and non-alcoholic fatty liver

disease (117). It circulates in the body in two main forms: a single

molecule (25 kDa monomer) and a double molecule (46 kDa

homodimer). Notably, LCN2 can block the breakdown of MMP-9,

an enzyme involved in tissue remodeling (118). Interestingly,
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research suggests LCN2 may also play a role in AD. A study using a

mouse model of AD found upregulated levels of LCN2 in spinal

astrocytes, which are cells that support nerve function in the spinal

cord. This finding suggests a potential link between LCN2 and itch

sensation at the spinal level in AD (119). Furthermore, the LCN2

gene has binding sites for several inflammatory signaling molecules,

including NF-kB, STAT1, STAT3, and C/EBP (120).
6 PPAR-g and AD

Peroxisome proliferator-activated receptor-gamma (PPAR-g) is
a critical transcription factor involved in adipogenesis. PPAR-g
plays an important in regulating adipocyte differentiation and lipid

metabolism, hence providing positive feedback regulation of

adipogenesis. Accumulating evidence indicates that PPAR-g
regulates type 2 immune response (121).

PPAR-g agonists reduce neutrophil MPO activity in response to

LPS and induce neutrophil apoptosis in a dose-dependent manner

(122). PPAR-g activation also impairs the functional capacity of

eosinophils, hence reducing antibody-dependent cellular

cytotoxicity (ADCC), CD69 expression induced by IL-5, and

release of eosinophil-derived neurotoxin (EDN) (123). Mast cell

activation mediated by IgE plays a significant role in AD, which is
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also suppressed by activated PPAR-g (124). PPAR-g is a key factor

mediating M2 phenotype associated with type 2 cytokine activation

(such as IL-4 and IL-13). PPAR-g prevents the uptake of lipids of
ILC2s, IL-33 signaling activation, and reduces the severity of airway

inflammation (125). Mice treated with PPAR-g agonists showed

reduced levels of cytokines IL-4, IL-5, and IL-13 (126), whereas

mice without PPAR-g mice revealed enhanced release of epithelial-

derived alarm proteins including IL-25, IL-33, and TSLP as well as

NF-kB activation (127). However, the effect of PPAR-g deletion on

IL-4 expression was unclear (128). Activated PPAR-g reduces the

expression of pro-inflammatory cytokines including TNF-a, IFN-g,
and IL-2 as well as promotes the activity of suppressive Treg

cells (129).

Experimental evidence indicates that PPAR-g in epithelial cell

Treg cells is activated by TCR signaling in an IRF4-dependent

manner. PPAR-g binds to IRF4 and modulates IL-33 receptor (IL-

33R) expression on Treg cells (130). The role of PPAR-g in other

TH cell subsets has also been proposed. IL-9 expression in the skin

positively correlates with the severity of chronic atopic dermatitis

(cAD) and acute contact dermatitis reactions (aACD) (131). TH9

cells can be perceived as a highly differentiated subset of TH2 cells

that can simultaneously promote the levels of IL-5, IL-13, and IL-9

(128). IL-9 is preferentially downregulated among the TH2

cytokines upon inhibition of PPAR-g expression (132). The
FIGURE 1

The molecular mechanisms of obesity predisposes to AD.
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relationship between TH9 immune response and AD is poorly

understood. However, cytokine secretion including IL-5 and IL-13

by TH9 cells implies a potential relationship with AD.
7 Conclusion

Current clinical research and scientific studies suggest that

overweight or obesity are considered primary factors leading to

the pathogenesis of inflammatory skin diseases. Our review covers

multiple important aspects. Under the influence of initial

inflammatory factors, obese individuals experience a complex

interplay of various pro-inflammatory and anti-inflammatory

signals within their bodies. Inflamed adipocytes locally and

systemically secrete pro-inflammatory cytokines, a process that

damages both adipose tissue itself and skin functions. Another

key factor in obesity involves the gut microbiota, which plays a role

in energy homeostasis, circulatory system, and immune response.

The increase in skin lipids following obesity can lead to dysbiosis of

the microbial ecosystem, resulting in colonization by lipophilic

bacteria. Concurrently, obesity also alters the pathological changes

of inflammatory diseases, shifting the classical Th2-type immune

response to a more severe Th17-type immune response through the

action of adipokines, thereby affecting keratinocyte differentiation,

epithelial barrier permeability, and antimicrobial peptide

production. Simultaneously, maintaining balance in the gut

microbiota and probiotics play a complex role in preventing

atopic dermatitis (AD), including inhibition of inflammation,

alteration of microbial diversity, and enhancement of skin barrier

function. These contents provide more thinking and inspiration

about AD, and will have a positive impact on the field of

AD (Figure 1).

More data is needed to understand how weight and BMI affect

the effectiveness of AD therapy. Reducing weight and managing

obesity might decrease inflammatory mediators and cytokines from
Frontiers in Immunology 08
adipose tissue, thereby improving the inflammatory state and

alleviating AD symptoms. As such, besides targeting skin lesions

in the treatment of AD, the management and intervention of

obesity should also be emphasized to comprehensively contain

disease progression.
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